首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study presents an evaluation of an irrigated “market garden” trial established with 3-month-old seedlings of baobab. The trial included offspring from 59 open-pollinated family lots from ten provenances and four bulked provenance sample lots. Leaf productivity and seedling growth were evaluated monthly from the third month after establishment. We found lowered leaf productivity during the dry season despite the plants being irrigated. We provide the first estimates of heritability for leaf production and growth of the species. We assumed that the families of seed from open-pollinated single trees consist of true half-sibs but also provided adjusted estimates assuming a high level of selfing. Differences among provenances and families within provenances were highly significant (p?<?0.01) with respect to leaf productivity. Heritability estimates (adjusted and non-adjusted) for leaf productivity were moderate to low, predicting moderate genetic gain from selection. Strong genetic and phenotypic correlations were estimated between diameter and leaf production, indicating that simple selection for diameter can efficiently increase leaf production. The dry weight/fresh weight ratio was not significantly different among provenances or families within provenances. Based on the findings, we discuss how breeding can increase the total leaf production and its seasonal distribution.  相似文献   

2.
Results of studies on growth and development of offspring of two genetically marked dwarf pea lines planted during the whole ontogenesis cycle in the Lada space greenhouse on board of Russian Segment of International Space Station (RS ISS) are presented. The offspring of M1 and M2 plants grown from seeds formed during space flight was examined under conditions of Earth-based cultivation. It had been shown that growth and developmental characteristics, frequency of chromosome aberrations in primary root meristem and level of molecular polymorphism revealed in individual plants via RAPD method show no significant differences between offspring of “space-grown” and control seeds.  相似文献   

3.

Key message

Beech trees were able to cope with the drought of 2003. Harmful water shortage has been avoided by an effective stomatal closure while use of carbon storage pools may have prevented carbon starvation and growth reduction.

Abstract

We applied hydrodynamic modeling together with a tree ring stable isotope approach to identify the physiological responses of beech trees to changing environmental conditions. The drought conditions of the extreme hot and dry summer in 2003 were hypothesized to significantly influence the radial growth of European beech mainly triggered by the stomatal response towards water scarcity leading, in turn, to a decline in carbon assimilation. The functional–structural single tree modeling approach applied, revealed in fact a strong limitation of water use and carbon gain during drought. However, tree ring width data did not show a clear drought response and no differentiation in radial growth during six subsequent years examined (2002–2007) has been observed. Using integrated results from mechanistic carbon–water balance simulations, tree ring carbon and oxygen isotope analysis and tree ring width measurements we postulate that the suggested drought-induced growth decline has been prevented by the remobilization of stored carbohydrates, an early onset in growth and the relatively late occurrence of the severe drought in 2003. Furthermore, we demonstrate that the stomatal response played a significant role in avoiding harmful water tension that would have caused xylem dysfunction. As a result of the combined investigation with physiological measurements (stable isotope approach) and hydrodynamic modeling of stomatal aperture, we could give insights into the physiological control of mature beech tree functioning under drought. We conclude that beech trees have been operating at their hydraulic limits and that the longer or repeated drought periods would have affected the growth considerably.
  相似文献   

4.
5.
The adaptive potential and genetic background of tree species will determine their performance and vitality under changing climate conditions. How environment and genotype influence secondary growth and their climate sensitivity in boreal and temperate conifers has been fairly studied. Provenance studies assessing the genetic variation in plasticity of radial growth, however, are scarce in Mediterranean tree species. We explored the impact of climate on tree-ring growth in Pinus pinaster based on plantation sites and genetic background. We assessed the climate sensitivity, plastic response of growth, and intraspecific genetic differentiation of pines from 10 provenances planted in two trials in south-central Spain. Trees from areas with a climate similar to that of the planting sites showed greater growth rates. Higher within-site than among-site similitude in inter-annual growth variation was evidenced by similar growth patterns in each trial test, irrespective of seed provenance. We found positive growth responses to mild conditions in late winter, and to wet and cloudy conditions in spring and early summer. Greater site-dependent than genetically-driven control was observed on growth sensitivity to climate. Central Spanish seed sources were better able to withstand the combination of stressful environmental conditions in the test sites. Inter-site environmental variation was the factor that explained a higher number of growth responses to climate variation. The significant “genetic × environment” interaction on radial growth suggested that genotypic determinants were strongly modulated by plastic adaptations due to local conditions. The site-dependent relationships of provenance climate responses with the conditions at origin also reflected the prevailing local adaptation to site constraints. Since plastic response of P. pinaster trees to local environment has more influence than its genetic predisposition, assessing the spatio-temporal variation of growth sensitivity to climate becomes increasingly important.  相似文献   

6.
Current climate models predict a shift to warmer, drier conditions in the southwestern US. While major shifts in plant distribution are expected to follow these climate changes, interactions among species and intraspecific genetic variation rarely have been incorporated into models of future plant distributions. We examined the drought‐related mortality of pinyon pine (Pinus edulis) in northern Arizona focusing on trees that showed genetically‐based resistance or susceptibility to a nonlethal herbivore, the shoot‐boring moth, Dioryctria albovittella. Because moth resistant trees have outperformed susceptible trees during 20 years of study, and herbivory has been shown to increase drought related mortality, we expected higher mortality rates in susceptible trees. However, our field observations and greenhouse experiments showed several unexpected patterns relevant to understanding the consequences of climate change: (1) The mortality of adult P. edulis resistant to the moth was three times higher than the mortality of trees susceptible to the moth. (2) Over a few years, differential mortality caused a shift in stand structure from resistant dominated to equality (3 : 1 resistant : susceptible to 1 : 1). (3) Adult moth resistant trees suffered significantly greater water stress than adult moth susceptible trees, suggesting that variation among the two groups in drought tolerance may be a mechanism for differential mortality. (4) When grown under drought conditions in the greenhouse, seedlings from resistant mothers died sooner than seedlings from susceptible mothers. These data support the hypothesis that drought can act as an agent of balancing selection and that drought resistance is a heritable trait. Taken together, our findings suggest that genetic variation in a population can be an important factor in determining its response to future climate change, and argue for the inclusion of genetics into models developed to understand the consequences of climate change.  相似文献   

7.
To predict the possible evolutionary response of a plant species to a new environment, it is necessary to separate genetic from environmental sources of phenotypic variation. In a case study of the invader Solidago altissima, the influences of several kinds of parental effects and of direct inheritance and environment on offspring phenotype were separated. Fifteen genotypes were crossed in three 5 × 5 diallels excluding selfs. Clonal replicates of the parental genotypes were grown in two environments such that each diallel could be made with maternal/paternal plants from sand/sand, sand/soil, soil/sand, and soil/soil. In a first experiment (1989) offspring were raised in the experimental garden and in a second experiment (1990) in the glasshouse. Parent plants growing in sand invested less biomass in inflorescences but produced larger seeds than parent plants growing in soil. In the garden experiment, phenotypic variation among offspring was greatly influenced by environmental heterogeneity. Direct genetic variation (within diallels) was found only for leaf characters and total leaf mass. Germination probability and early seedling mass were significantly affected by phenotypic differences among maternal plants because of genotype ( genetic maternal effects ) and soil environment ( general environmental maternal effects ). Seeds from maternal plants in sand germinated better and produced bigger seedlings than seeds from maternal plants in soil. They also grew taller with time, probably because competition accentuated the initial differences. Height growth and stem mass at harvest (an integrated account of individual growth history) of offspring varied significantly among crosses within parental combinations ( specific environmental maternal effects ). In the glasshouse experiment, the influence of environmental heterogeneity and competition could be kept low. Except for early characters, the influence of direct genetic variation was large but again leaf characters (= basic module morphology) seemed to be under stricter genetic control than did size characters. Genetic maternal effects, general environmental maternal effects, and specific environmental maternal effects dominated in early characters. The maternal effects were exerted both via seed mass and directly on characters of young offspring. Persistent effects of the general paternal environment ( general environmental paternal effects ) were found for leaf length and stem and leaf mass at harvest. They were opposite in direction to the general environmental maternal effects, that is the same genotypes produced “better mothers” in sand but “better fathers” in soil. The general environmental paternal effects must have been due to differences in pollen quality, resulting from pollen selection within the male parent or leading to pre- or postzygotic selection within the female parent. The ranking of crosses according to mean offspring phenotypes was different in the two experiments, suggesting strong interaction of the observed effects with the environment. The correlation structure among characters changed less between experiments than did the pattern of variation of single characters, but under the competitive conditions in the garden plant height seemed to be more directly related to fitness than in the glasshouse. Reduced competition could also explain why maternal effects were less persistent in the glasshouse than in the garden experiment. Evolution via selection of maternal effects would be possible in the study population because these effects are in part due to genetic differences among parents.  相似文献   

8.
Maternal effects can have substantial impacts on plant fitness and plant populations. Stressful environmental conditions can cause a maternal plant to inadequately provision its progeny, resulting in poor seedling growth, low reproductive success, and decreased competitive ability. Maternal effects consist of environmental and genetic load components, but the interactions between these two components have rarely been considered. To determine the effects of maternal drought stress and maternal inbreeding on progeny biomass (a fitness correlate) and physiological responses to drought stress, we conducted a greenhouse experiment with genetic lines from two populations (mesic site vs. dry site) of the herbaceous annual Impatiens capensis (Balsaminaceae). Seeds were collected from cleistogamous flowers of inbred or outcrossed maternal plants that were subject to either a drought or control treatment. These seeds were grown into juvenile plants that were also subject to either a drought stress or a control treatment. Plants from the mesic site had significantly reduced biomass from maternal drought stress, while plants from the dry site maintained biomass despite adverse maternal environmental conditions. Juvenile plants of both populations had reduced biomass only as a result of maternal inbreeding. Interestingly, inbreeding depression was more apparent when maternal environmental conditions were benign.  相似文献   

9.

Background and aims

Extensive worldwide dryland degradation calls for identification of functional traits critical to dryland plant performance and restoration outcomes. Most trait examination has focused on drought tolerance, although most dryland systems are water and nutrient co-limited. We studied how drought impacts both plant water relations and nitrogen (N) nutrition.

Methods

We grew a suite of grasses common to the Intermountain West under both well-watered and drought conditions in the greenhouse. These grasses represented three congener pairs (Agropyron, Elymus, Festuca) differing in their habitat of origin (“wetter” or “drier”). We measured growth, water relations, N resorption efficiency and proficiency and photosynthetic N use efficiency in response to drought.

Results

Drought decreased growth and physiological function in the suite of grasses studied, including a negative impact on plant N resorption efficiency and proficiency. This effect on resorption increased over the course of the growing season. Evolutionary history constrained species responses to treatment, with genera varying in the magnitude of their response to drought conditions. Surprisingly, habitat of origin influenced few trait responses.

Conclusions

Drought impacted plant N conservation, although these responses also were constrained by evolutionary history. Future plant development programs should consider drought tolerance not only from the perspective of water relations but also plant mineral nutrition, taking into account the role of phylogeny.  相似文献   

10.
Effects of soil drought on growth and productivity of 16 single cross maize hybrids were investigated under field and greenhouse experiments. The Drought Susceptibility Index (DSI) was evaluated in a three year field experiment by the determination of grain loss in conditions of two soil moisture levels (drought and irrigated) and in a pot experiment by the effects of periodical soil drought on seedling dry matter. In the greenhouse experiment response to drought in maize genotypes was also evaluated by root to shoot dry mater ratio, transpiration productivity index, indexes of kernel germination and index of leaf injury by drought and heat temperature. The obtained values of DSI enabled the ranking of the tested genotypes with respect to their drought tolerance. The values of DSI obtained in the field experiment allow to divide the examined genotypes into three, and in the greenhouse experiment into two groups of drought susceptibility. The correlation coefficients between the DSI of maize hybrids in the field and the greenhouse experiments was high and statistically significant, being equal to 0.876. The ranking of hybrids drought tolerance, identified on the basis of field experiments was generally in agreement with the ranking established on the basis of the greenhouse experiment. In the greenhouse experiment statistically significant coefficients of correlation with DSI values in hybrids were obtained for the ratio of dry matter of overground parts to dry matter of roots, both for control and drought treatments, whereas in the estimation of the transpiration productivity coefficient and total dry matter the correlation coefficients were not statistically significant. In this study several laboratory tests were carried out for the drought tolerance of plants (kernel germination, leaf injury) on 4 drought resistant and 4 drought sensitive maize hybrids. Statistically significant correlation coefficients between DSI and the examined parameter of grain germination and leaf injury were obtained for the determination of promptness index (PI), seedling survival index (SS) and leaf injuries indexes (IDS, ITS) as a result of exposure to 14 days of soil drought, osmotic drought −0.9 MPa and exposure to high temperature 45 ° or 50 °C. The results of laboratory tests show that in maize the genetic variation in the degree of drought tolerance is better manifested under severe conditions of water deficit in the soil.  相似文献   

11.
Most studies on consequences of environmental change focus on evolutionary and phenotypic plastic responses, but parental effects represent an additional mechanism by which organisms respond to their local environment. Parental effects can be adaptive if they enhance offsprings ability to cope with environments experienced by their parents, but can also be non-adaptive for instance when offspring from benign environments are just better provisioned and hence perform better than offspring from less benign environments. Parental effects originate from both the abiotic and biotic environmental variation. However, the effects of the parental abiotic and biotic environment are rarely studied together. We make use of an experimental set-up containing plots in a natural heath land, where summer precipitation was manipulated to reflect either ambient or drought conditions. In both plot types, competition from grasses was prevalent. We assessed survival and reproduction of Hieracium umbellatum offspring originating from ambient and drought plots grown in a factorial design with two levels of moisture (control and drought) and two levels of competition (grown with and without a local perennial grass). The maternal environment strongly affected offspring performance. Biomass and reproduction was higher in offspring from ambient plots in agreement with the hypothesis of a better maternal provisioning in the most benign environment. However, adding competition revealed potentially adaptive responses to survival, and altered allocation to reproduction in offspring from maternal drought plots. Under combined competition and drought (mimicking maternal drought plots), survival was only reduced in offspring from ambient plots, and offspring from drought plots survived best. When grown in competition under control watering conditions mimicking maternal ambient plots, offspring from drought plots (growing in an environment different from their maternal one) showed a 25% reduction in reproduction. Potential adaptive responses to the home maternal environment were only revealed when jointly manipulating levels of competition and water availability.  相似文献   

12.
Irrigation effects on whole-plant sap flow and leaf-level water relations were characterised throughout a growing season in an experimental olive (Olea europaea L.) orchard. Atmospheric evaporative demand and soil moisture conditions for irrigated and non-irrigated olive trees were also monitored. Whole-plant water use in field-grown irrigated and rain fed olive trees was determined using a xylem sap flow method (compensation heat-pulse velocity). Foliage gas exchange and water potentials were determined throughout the experimental period. Physiological parameters responded diurnally and seasonally to variations in tree water status, soil moisture conditions and atmospheric evaporative demand. There was a considerable degree of agreement between daily transpiration deduced from heat-pulse velocity and that determined by calibration using the Penman–Monteith equation in the field. Summer drought caused decreasing leaf gas exchange and water potentials, and a progressive increase in hydraulic conductance (stronger in non-irrigated than irrigated trees), probably attributable to modifications in hydraulic properties at the soil-root interface. Negligible hysteresis, attributable to low plant capacitance, was observed in the relationship between leaf water potential and sap flow. A proportional decrease in maximum daily leaf conductance with increasing vapour pressure deficit was observed, while mean daytime canopy stomatal conductance decreased with the season. As a result, plant water use was limited and excessive drought stress prevented. Non-irrigated olive trees recovered after the summer drought, showing a physiological behaviour similar to that of irrigated trees. In addition to physiological and environmental factors, there are endogenous keys (chemical signals) influencing leaf level parameters. Olive trees are confirmed to be economical and sparing users of soil water, with an efficient xylem sap transport, maintenance of significant gas exchange and transpiration, even during drought stress.  相似文献   

13.
Bananas are one of the most important fruits in tropical and subtropical regions worldwide. Each year, banana plantations expand, but the areas available are mostly dry lands. The establishment of strategies for obtaining drought tolerant cultivars depends on understanding of biological responses at genetic, molecular and biochemical levels. Proteomics is a powerful tool for functional characterization of the response of plants to abiotic stress and little is known about drought tolerance in Musa spp. Therefore, the aim of this study was to identify proteins related to drought tolerance in two contrasting banana genotypes, Prata Anã and BRS Tropical, susceptible and tolerant to drought, respectively. Proteins were extracted from rhizomes of bananas grown under greenhouse conditions with control, irrigated and water deficit regimes. The differential protein expression pattern was established by two-dimensional (2-D) electrophoresis and spots analyzed in nano Q-Tof Micro UPLC. Twenty-three differentially expressed proteins were found in the tolerant genotype (BRS Tropical) under water deficit, with proteins involved in metabolism, defense and transport. Proteins were classified according to known function and biosynthetic pathways. Signaling proteins in response to water stress, especially for the biological function of growth and development of plants cells, were also encountered, whereas heat shock proteins played a significant role. This is the first report of proteomic analysis for drought tolerance in ‘Pome’ and ‘Silk-type’ bananas containing the ‘B’ genome. Our work provides insights into Musa spp. response to drought and data for further studies regarding molecular mechanisms, which determine how Musa spp. cells better overcome environmental perturbations.  相似文献   

14.
Reciprocal transplant and “common garden” experiments were done to distinguish the genetic and environmental components of geographic variation in growth, development and morphological characters of Mallard Ducks (Anas platyrhynchos) from California, USA and Manitoba, Canada. Most of the variation in growth and development could be attributed to differences in nesting phenology and local environmental conditions. Differences in morphological characters typical of birds in the two wild populations could be induced by transplanting young between localities. All differences between populations disappeared in the F1 offspring from captive breeding crosses, reared in a common environment. These results suggest that population-level variation in growth, development and morphology of Mallards in the wild is environmentally induced.  相似文献   

15.
If pollen donor performance during mating correlates with differences in offspring growth and fitness, processes that sort among potential mates may directly improve offspring fitness. Here seeds sired by three pollen donors on ten maternal plants were grown for eight weeks in the greenhouse. The performance of the pollen donors during pollination and fertilization was known from a previous experiment. There were significant effects of paternity on two measures of early growth: leaf number and plant height. Paternal effects on three measures more closely related to fitness; final plant weight, day of first flower production, and total flower number were also significant. Under the conditions of this experiment, final plant weight was probably the best predictor of fitness. The pollen donor that sired the largest seeds in the previous experiment sired offspring that were largest after 8 weeks of growth. Half of the plants were grown under low-water conditions. Paternal effects on growth were not masked by the environmental effects. In fact, some paternal effects became stronger under stress. This suggests that paternal effects could also be important in the field. Plants sired by donor A bolted very early when water was limited and would probably have an advantage in a season that was very short due to an early and severe drought. During fertilization and seed filling, seeds sired by this donor were more frequent on water-stressed maternal plants than on control maternal plants (Marshall, 1988). The data from this experiment indicate a connection between pollen donor performance during mating and offspring growth. These results suggest that the processes that sort among potential fathers during pollination, fertilization, and seed filling, may improve offspring quality.  相似文献   

16.
选取福建中西部地区相似气候条件下马尾松和杉木的天然林和人工林进行研究,利用年轮宽度、年轮宽度指数和断面积增量重建了4种林型共109株松树20年(1993—2012年)的年生长量,计算其对连续两次极端干旱事件(2003—2004年和2011年)的抵抗力、恢复力和弹性指数,分析人工林和天然林在抵抗力和弹性方面的差异。结果表明:马尾松和杉木对水分的需求在时间上存在差异,这解释了其对2003—2004年干旱事件的响应不一致。干旱压力极大地降低了马尾松和杉木的生长,但树木生长并未表现出干旱遗留效应。受干旱强度的影响,4种林型径向生长对2003—2004年干旱的响应强于2011年。干旱事件后马尾松比杉木具有更强的恢复能力;天然林比人工林对干旱的敏感性更高,同时弹性也更大。杉木人工林更容易受到频发的极端干旱事件的影响,在人工林抚育管理中应选择抗旱能力较强的遗传种源,以应对气候变暖导致的干旱频发。  相似文献   

17.
油茶产区在夏季常伴有持续干旱、高温少雨等天气,造成油茶产量不高。为了解持续干旱对油茶生理造成的影响,该研究以两年生的9个长林无性系油茶为材料,在温室内模拟自然干旱胁迫试验,并研究干旱胁迫第0、5、10、15、20和25天时其叶片生理生化指标的变化。同时以各生理指标的抗旱系数作为衡量油茶抗旱性的指标,利用主成分分析、隶属函数法及权重对其抗旱能力进行综合评价。结果表明:将14个单项指标降维成3个独立的综合指标,并通过隶属函数值和权重确定各油茶耐旱性综合评价值,进而得到长林无性系油茶的抗旱强弱依次为长林59号>长林22号>长林53号>长林4号>长林40号>长林8号>长林3号>长林27号>长林18号。  相似文献   

18.
Riparian ecosystems in South Africa's fynbos biome are heavily invaded by alien woody plants. Although large-scale clearing of these species is underway, the assumption that native vegetation will self-repair after clearing has not been thoroughly tested. Understanding the processes that mediate the recruitment of native species following clearing of invasive species is crucial for optimising restoration techniques.This study aimed to determine native species recovery patterns following implementation of different management interventions. We tested the influence of two clearing treatments (“fell & remove” and “fell & stack burn”) on the outcomes of passive restoration (natural recovery of native riparian species) and active restoration (seed sowing and planting of cuttings) along the Berg River in the Western Cape. Under greenhouse conditions we investigated seed viability and germination pre-treatments of selected native species.There was no recruitment of native species in sites that were not seeded (passive restoration sites), possibly because of the dominance of alien herbaceous species and graminoids or the lack of native species in the soil-stored seed bank. Germination of our targeted native species in the field was low in both “fell & remove” and “fell & stack burn” treatments. However, “fell & stack burn” gave better germination for the species Searsia angustifolia, Leonotis leonurus and Melianthus major. Seedling survival in the field was significantly reduced in summer, with drought stress being the main cause for seedling mortality. Germination rates in the greenhouse were high, an indication that harvested seeds were viable. Most seeds germinated without germination pre-treatments.We conclude that failure of native seeds to germinate under field conditions, secondary invasion of alien herbs and graminoids, the lack of native species in the soil-stored seed bank, and dry summer conditions hamper seedling establishment and recovery on sites cleared of dense stands of alien trees. For active restoration to achieve its goals, effective recruitment and propagation strategies need to be established.  相似文献   

19.
Norway spruce is a widely cultivated species in Central Europe; however, it is highly susceptible to droughts, which are predicted to become more frequent in the future. A solution to adapt spruce forests to droughts could be the conversion to mixed-species stands containing species which are less sensitive to drought and do not increase the drought stress in spruce. Here we assessed the drought response of spruce and the presumably more drought-tolerant silver fir and Douglas fir in mixed-conifer stands. We measured tree ring widths of 270 target trees, which grew in mixed and mono-specific neighbourhoods in 18 managed stands in the Black Forest, to quantify the complementarity effects caused by species interactions on growth during the extreme drought event of 2003 and for a number of years with “normal” growth and climatic conditions. Mixed-species neighbourhoods did not significantly affect tree ring growth in normal years. However, during the drought, silver fir benefitted from mixing, while Douglas fir was more drought-stressed in the mixture. The drought response of spruce was dependent on the density and species composition of the neighbourhood, showing both positive and negative mixing effects. Mixed stands containing these tree species could improve adaptation to drought because the risks of extreme events are spread across species, and the performance of individual species is improved. Our knowledge about specific species interactions needs to be improved to manage tree mixtures more effectively with regard to the participating species and stand density.  相似文献   

20.
In this study, we provide a detailed analysis of tree growth and water status in relation to climate of three major species of forest trees in lower regions of Bavaria, Southern Germany: Scots pine (Pinus sylvestris), Norway spruce (Picea abies) and common oak (Quercus robur). Tree-ring chronologies and latewood δ13C were used to derive measures for drought reaction across trees of different dimensions: growth reduction associated with drought years, long-term growth/climate relations and stomatal control on photosynthesis. For Scots pine, growth/climate relations indicated a stronger limitation of radial growth by high summer temperatures and low summer precipitation in smaller trees in contrast to larger trees. This is corroborated by a stronger stomatal control on photosynthesis for smaller pine trees under average conditions. In dry years, however, larger pine trees exhibited stronger growth reductions. For Norway spruce, a significantly stronger correlation of tree-ring width with summer temperatures and summer precipitation was found for larger trees. Additionally, for Norway spruce there is evidence for a change in competition mode from size-asymmetric competition under conditions with sufficient soil water supply to a more size-symmetric competition under dry conditions. Smaller oak trees showed a weaker stomatal control on photosynthesis under both dry and average conditions, which is also reflected by a significantly faster recovery of tree-ring growth after extreme drought events in smaller oak trees. The observed patterns are discussed in the context of the limitation-caused matter partitioning hypothesis and possible species-specific ontogenetic modifications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号