首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  1. Echolocation is the ability of some animals to orient themselves through sound emission and interpretation of the echoes. This is bats’ main sense for orientation and recognising biotopes that provide food, water, and roosts. It is widely accepted that echolocation call frequency is related to body mass, and this relationship has been described as the ‘allometric hypothesis’, which proposes a negative correlation between these variables.
  2. There is evidence that, in many cases, the allometric hypothesis does not apply. Additionally, studies supporting this hypothesis were done at the family level, resulting in a broad range of correlation values with r ranging from −0.36 to −0.76, and only insectivorous bats were included. Due to the notable exceptions and the lack of a quantitative synthesis of this hypothesis including all echolocating bats, we evaluated the allometric hypothesis of echolocation calls for this group.
  3. Using a meta-analysis and phylogenetic generalised least-squares techniques, we evaluated the relationship between echolocation call peak frequency and the body mass of bats.
  4. We found a negative relationship between body mass and echolocation call peak frequency for the 85 bat species that were included in our analysis (r = −0.3, p = 0.005). The relationship was consistent when we analysed the data at the insectivorous guild level, and in bats belonging to the families Vespertilionidae, Rhinolophidae, Emballonuridae, and the genus Myotis. However, the wide range of r values suggests that the strength of the relationship between peak frequency and body mass varies within the order Chiroptera.
  5. Our results support the allometric hypothesis of sound production in echolocating bats. However, the low coefficient we found suggests that factors other than body mass may influence the peak frequency of echolocation calls produced by bats.
  相似文献   

2.
  1. Migration is ubiquitous among animals and has evolved repeatedly and independently. Comparative studies of the evolutionary origins of migration in birds are widespread, but are lacking in mammals. Mammalian species have greater variation in functional traits that may be relevant for migration. Interspecific variation in migration behaviour is often attributed to mode of locomotion (i.e. running, swimming, and flying) and body size, but traits associated with the evolutionary precursor hypothesis, including geographic distribution, habitat, and diet, could also be important predictors of migration in mammals. Furthermore, mammals vary in thermoregulatory strategies and include many heterothermic species, providing an alternative strategy to avoid seasonal resource depletion.
  2. We tested the evolutionary precursor hypothesis for the evolution of migration in mammals and tested predictions linking migration to locomotion, body size, geographic distribution, habitat, diet, and thermoregulation. We compiled a dataset of 722 species from 27 mammalian orders and conducted a series of analyses using phylogenetically informed models.
  3. Swimming and flying mammals were more likely to migrate than running mammals, and larger species were more likely to migrate than smaller ones. However, heterothermy was common among small running mammals that were unlikely to migrate. High-latitude swimming and flying mammals were more likely to migrate than high-latitude running mammals (where heterothermy was common), and most migratory running mammals were herbivorous. Running mammals and frugivorous bats with high thermoregulatory scope (greater capacity for heterothermy) were less likely to migrate, while insectivorous bats with high thermoregulatory scope were more likely to migrate.
  4. Our results indicate a broad range of factors that influence migration, depending on locomotion, body size, and thermoregulation. Our analysis of migration in mammals provided insight into some of the general rules of migration, and we highlight opportunities for future investigations of exceptions to these rules, ultimately leading to a comprehensive understanding of the evolution of migration.
  相似文献   

3.
The evolution of flight and echolocation in bats: another leap in the dark   总被引:3,自引:0,他引:3  
The earliest known complete bats, from the Eocene (49–53 Mya), were already capable of flapping flight and echolocation. In the absence of direct fossil evidence there have been many speculative scenarios advanced to explain the evolution of these behaviours and their distributions in extant bats. Theories assuming chiropteran monophyly have generally presumed the ancestral pre‐bat was nocturnal, arboreal and insectivorous. Following this assumption hypotheses can be divided into the echolocation first, flight first and tandem development hypotheses, all of which assume that flight evolved only once in the lineage. In contrast, the chiropteran diphyly hypothesis suggests that flight evolved twice. Evidence supporting and refuting the different hypotheses are reviewed. It is concluded that there are significant problems attached to all the current models. A novel hypothesis is advanced, which starts from the assumption that bats are monophyletic and the ancestral pre‐bat was arboreal, but diurnal and frugivorous. After the evolution of flight it is suggested that these animals were driven into the nocturnal niche by the evolution of raptorial birds, and different groups evolved either specialised nocturnal vision (megachiropterans) or echolocation (microchiropterans). A block on sensory modality transfer has retained this distribution of perceptual capabilities ever since, despite some Megachiroptera evolving rudimentary echolocation, and the dietary convergence of some Microchiroptera with the Megachiroptera. The new hypothesis overcomes many of the problems identified in previous treatments.  相似文献   

4.
5.
  1. Interspecific competition (IC) is often seen as a main driver of evolutionary patterns and community structure. Bats might compete for key resources, and cases of exaggerated divergence of resource-related characters or trait overdispersion in bat assemblages are often explained in terms of current or past interspecific competition. However, other pressures leading to patterns that mimic the outcome of competition cannot always be ruled out.
  2. We present the state of knowledge on IC among bats, providing a critical evaluation of the information available and identifying open questions and challenges.
  3. We reviewed 100 documents addressing potential or actual IC in bats and categorised them in terms of the resource for which bats compete (food, foraging habitat, roosts, water, and acoustic space). We also examined the ecomorphological and behavioural traits considered therein to highlight responses to IC or niche partitioning.
  4. We found that: although resources should be limiting in order for competition to occur, this is seldom tested; sympatry is sometimes taken as synonymous of syntopy (yet sympatric species that are not syntopic will never experience competition); comparisons between sympatry and allopatry are rare; and testing of objective criteria exploring the existence of niche partitioning or character displacement is not commonly adopted.
  5. While morphological examination of food remains in droppings has often led to coarse-grained analysis that proved insufficient to establish the occurrence of food niche overlap or partitioning, new frontiers are being opened by state-of-the-art molecular dietary analysis.
  6. A better understanding of IC in bats is paramount, since distributional changes leading to novel bat assemblages driven by climate change are already taking place, and the dramatic decline in insect availability, as well as the global loss or alteration of foraging habitat, may generate new competitive interactions or exacerbate existing interactions in the Anthropocene, and into the future.
  相似文献   

6.
Neomorphic, membrane‐associated skeletal rods are found in disparate vertebrate lineages, but their evolution is poorly understood. Here we show that one of these elements—the calcar of bats (Chiroptera)—is a skeletal novelty that has anatomically diversified. Comparisons of evolutionary models of calcar length and corresponding disparity‐through‐time analyses indicate that the calcar diversified early in the evolutionary history of Chiroptera, as bats phylogenetically diversified after evolving the capacity for flight. This interspecific variation in calcar length and its relative proportion to tibia and forearm length is of functional relevance to flight‐related behaviors. We also find that the calcar varies in its tissue composition among bats, which might affect its response to mechanical loading. We confirm the presence of a synovial joint at the articulation between the calcar and the calcaneus in some species, which suggests the calcar has a kinematic functional role. Collectively, this functionally relevant variation suggests that adaptive advantages provided by the calcar led to its anatomical diversification. Our results demonstrate that novel skeletal additions can become integrated into vertebrate body plans and subsequently evolve into a variety of forms, potentially impacting clade diversification by expanding the available morphological space into which organisms can evolve.  相似文献   

7.
8.
Order Chiroptera is a unique group of mammals whose members have attained self-powered flight as their main mode of locomotion. Much speculation persists regarding bat evolution; however, lack of sufficient molecular data hampers evolutionary and conservation studies. Of ~ 1200 species, complete mitochondrial genome sequences are available for only eleven. Additional sequences should be generated if we are to resolve many questions concerning these fascinating mammals. Herein, we describe the complete mitochondrial genomes of three bats: Corynorhinus rafinesquii, Lasiurus borealis and Artibeus lituratus. We also compare the currently available mitochondrial genomes and analyze codon usage in Chiroptera. C. rafinesquii, L. borealis and A. lituratus mitochondrial genomes are 16438 bp, 17048 bp and 16709 bp, respectively. Genome organization and gene arrangements are similar to other bats. Phylogenetic analyses using complete mitochondrial genome sequences support previously established phylogenetic relationships and suggest utility in future studies focusing on the evolutionary aspects of these species. Comprehensive analyses of available bat mitochondrial genomes reveal distinct nucleotide patterns and synonymous codon preferences corresponding to different chiropteran families. These patterns suggest that mutational and selection forces are acting to different extents within Chiroptera and shape their mitochondrial genomes.  相似文献   

9.
The vestibular system maintains the body’s sense of balance and, therefore, was probably subject to strong selection during evolutionary transitions in locomotion. Among mammals, bats possess unique traits that place unusual demands on their vestibular systems. First, bats are capable of powered flight, which in birds is associated with enlarged semicircular canals. Second, many bats have enlarged cochleae associated with echolocation, and both cochleae and semicircular canals share a space within the petrosal bone. To determine how bat vestibular systems have evolved in the face of these pressures, we used micro-CT scans to compare canal morphology across species with contrasting flight and echolocation capabilities. We found no increase in canal radius in bats associated with the acquisition of powered flight, but canal radius did correlate with body mass in bat species from the suborder Yangochiroptera, and also in non-echolocating Old World fruit bats from the suborder Yinpterochiroptera. No such trend was seen in members of the Yinpterochiroptera that use laryngeal echolocation, although canal radius was associated with wing-tip roundedness in this group. We also found that the vestibular system scaled with cochlea size, although the relationship differed in species that use constant frequency echolocation. Across all bats, the shape of the anterior and lateral canals was associated with large cochlea size and small body size respectively, suggesting differential spatial constraints on each canal depending on its orientation within the skull. Thus in many echolocating bats, it seems that the combination of small body size and enlarged cochlea together act as a principal force on the vestibular system. The two main groups of echolocating bats displayed different canal morphologies, in terms of size and shape in relation to body mass and cochlear size, thus suggesting independent evolutionary pathways and offering tentative support for multiple acquisitions of echolocation.  相似文献   

10.
Bats (Order Chiroptera), the only mammals capable of powered flight and sophisticated laryngeal echolocation, represent one of the most species-rich and ubiquitous orders of mammals. However, phylogenetic relationships within this group are poorly resolved. A robust evolutionary tree of Chiroptera is essential for evaluating the phylogeny of echolocation within Chiroptera, as well as for understanding their biogeographical history. We generated 4 kb of sequence data from portions of four novel nuclear intron markers for multiple representatives of 17 of the 18 recognized extant bat families, as well as the putative bat family Miniopteridae. Three echolocation-call characters were examined by mapping them onto the combined topology: (1) high-duty cycle versus low-duty cycle, (2) high-intensity versus low-intensity call emission, and (3) oral versus nasal emission. Echolocation seems to be highly convergent, and the mapping of echolocation-call design onto our phylogeny does not appear to resolve the question of whether echolocation had a single or two origins. Fossil taxa may also provide insight into the evolution of bats; we therefore evaluate 195 morphological characters in light of our nuclear DNA phylogeny. All but 24 of the morphological characters were found to be homoplasious when mapped onto the supermatrix topology, while the remaining characters provided insufficient information to reconstruct the placement of the fossil bat taxa with respect to extant families. However, a morphological synapomorphy characterizing the Rhinolophoidea was identified and is suggestive of a separate origin of echolocation in this clade. Dispersal-Vicariance analysis together with a relaxed Bayesian clock were used to evaluate possible biogeographic scenarios that could account for the current distribution pattern of extant bat families. Africa was reconstructed as the center of origin of modern-day bat families.  相似文献   

11.
  1. SARS-CoV-2, the virus that caused the COVID-19 pandemic, is genomically similar to a SARS-like beta-coronavirus found in Asian rhinolophid bats. This evolutionary relationship impressed the global media, which then emphasised bats as key actors in the spillover that resulted in the pandemic. In this study, we highlight changes in the traditional and new media coverage of bats and in Internet search volumes that occurred since the beginning of the COVID-19 pandemic in 2020.
  2. We analysed Google and Wikipedia searches for bats and coronaviruses in 21 countries and eight languages, as well as television broadcasts in the USA, some of which have global coverage, between January 2016 and December 2020. In January 2020, the amount of television news about bats boomed, and news associated with the term ‘bat’ shifted to COVID-19-related topics. A nearly identical pattern was observed in Google searches during 2020 at the global scale. The daily time series of television coverage and Internet search volumes on bats and coronavirus in the USA covaried in the first quarter of 2020, in line with the existence of a media bubble. Time-series analysis revealed that both the Google Trends index and visits to Wikipedia pages about bats boomed in early 2020, despite the fact that this time of year is usually characterised by low search volumes.
  3. Media coverage emphasised, correctly or not, the role of bats in the COVID-19 pandemic and amplified public interest in bats worldwide. The public image of these mammals, in many cases threatened and important ecosystem service providers, was seriously compromised. We therefore recommend that policymakers and journalists prioritise scientifically accurate communication campaigns about bats, which would help counteract the surge in bat persecution, and leverage interest towards positive human–bat interactions.
  相似文献   

12.

Background

How migration evolved represents one of the most poignant questions in evolutionary biology. While studies on the evolution of migration in birds are well represented in the literature, migration in bats has received relatively little attention. Yet, more than 30 species of bats are known to migrate annually from breeding to non-breeding locations. Our study is the first to test hypotheses on the evolutionary history of migration in bats using a phylogenetic framework.

Methods and Principal Findings

In addition to providing a review of bat migration in relation to existing hypotheses on the evolution of migration in birds, we use a previously published supertree to formulate and test hypotheses on the evolutionary history of migration in bats. Our results suggest that migration in bats has evolved independently in several lineages potentially as the need arises to track resources (food, roosting site) but not through a series of steps from short- to long-distance migrants, as has been suggested for birds. Moreover, our analyses do not indicate that migration is an ancestral state but has relatively recently evolved in bats. Our results also show that migration is significantly less likely to evolve in cave roosting bats than in tree roosting species.

Conclusions and Significance

This is the first study to provide evidence that migration has evolved independently in bat lineages that are not closely related. If migration evolved as a need to track seasonal resources or seek adequate roosting sites, climate change may have a pivotal impact on bat migratory habits. Our study provides a strong framework for future research on the evolution of migration in chiropterans.  相似文献   

13.
Recent advances in molecular phylogenetics indicate that the order Chiroptera is monophyletic and that one of four lineages of microbats (Rhinolophoidea) shares a common origin with megabats. Against this background we undertook a comprehensive analysis of placental evolution in bats. We defined a range of characters and character states associated with female reproduction, early development, placentation and the neonate. These were then mapped on a pre-existing hypothesis of bat relationships that represents the current view from molecular studies. Our purpose was threefold. First, on the assumption of bat monophyly, we wished to establish the stem species pattern of extant chiropterans. Secondly, we asked whether there are derived character conditions in support of a common origin for Rhinolophoidea and the megabats. Thirdly, we looked for evolutionary character transformations that characterize higher-level clades within Chiroptera, i.e. the megabats and the four lineages of microbats. The character condition occurring in the last common ancestor of Chiroptera was unequivocal for 21 of the 25 characters included in the analysis. The data did not offer support for a megabat-rhinolophoid clade or the implication that microbats are paraphyletic. However, analysis of early development, placentation and other reproductive parameters resulted in derived character conditions for the megabats as well as for each of the four major lineages of microbats.  相似文献   

14.
The two living groups of flying vertebrates, birds and bats, both have constricted genome sizes compared with their close relatives. But nothing is known about the genomic characteristics of pterosaurs, which took to the air over 70 Myr before birds and were the first group of vertebrates to evolve powered flight. Here, we estimate genome size for four species of pterosaurs and seven species of basal archosauromorphs using a Bayesian comparative approach. Our results suggest that small genomes commonly associated with flight in bats and birds also evolved in pterosaurs, and that the rate of genome-size evolution is proportional to genome size within amniotes, with the fastest rates occurring in lineages with the largest genomes. We examine the role that drift may have played in the evolution of genome size within tetrapods by testing for correlated evolution between genome size and body size, but find no support for this hypothesis. By contrast, we find evidence suggesting that a combination of adaptation and phylogenetic inertia best explains the correlated evolution of flight and genome-size contraction. These results suggest that small genome/cell size evolved prior to or concurrently with flight in pterosaurs. We predict that, similar to the pattern seen in theropod dinosaurs, genome-size contraction preceded flight in pterosaurs and bats.  相似文献   

15.
Similar to insects, birds and pterosaurs, bats have evolved powered flight. But in contrast to other flying taxa, only bats are furry. Here, we asked whether flight is impaired when bat pelage and wing membranes get wet. We studied the metabolism of short flights in Carollia sowelli, a bat that is exposed to heavy and frequent rainfall in neotropical rainforests. We expected bats to encounter higher thermoregulatory costs, or to suffer from lowered aerodynamic properties when pelage and wing membranes catch moisture. Therefore, we predicted that wet bats face higher flight costs than dry ones. We quantified the flight metabolism in three treatments: dry bats, wet bats and no rain, wet bats and rain. Dry bats showed metabolic rates predicted by allometry. However, flight metabolism increased twofold when bats were wet, or when they were additionally exposed to rain. We conclude that bats may not avoid rain only because of sensory constraints imposed by raindrops on echolocation, but also because of energetic constraints.  相似文献   

16.
The evolutionary sequence of events that led to flight and echolocation in bats is a compelling question in biology. Fundamentally lacking from this discussion is the ontogeny of how these two systems become functionally integrated producing an evolutionary developmental model. We build such a model by integrating growth and development of the cochlea, larynx, and sound production with the ontogeny of locomotion in newborn bats. In addition, we use available fossil and molecular data along with patterns of high frequency vocalization in extant mammals to model probable evolutionary transitions in bats. We find clear evidence that the ability to hear high frequency echolocation-like sounds preceded the ability to produce it and that a simple echolocation system was likely inherited from a shrew-like ancestor and was not an in situ evolutionary innovation of bats. Refinement of this system coevolved with sustained flight, both ontogenetically and evolutionarily, leading to the sophisticated echolocation observed today.  相似文献   

17.
  1. Plant–bird pollination interactions evolved independently on different continents. Specific adaptations can lead to their restriction when potential partners from distant evolutionary trajectories come into contact. Alternatively, these interactions can be enabled by convergent evolution and subsequent ecological fitting.
  2. We studied the interactions between New World plants from the genus Heliconia, Asian plants of genus Etlingera and African sunbirds on a local farm in Cameroon. Heliconia spp. evolved together with hummingbirds and Etlingera spp. with spiderhunters —an oriental subgroup of the sunbird family.
  3. Sunbirds fed on all studied plants and individual plant species were visited by a different sunbird spectrum. We experimentally documented a higher number of germinated pollen grains in sunbird‐visited flowers of Etlingera spp. For Heliconia spp., this experiment was not successful and pollen tubes were rarely observed, even in hand‐pollinated flowers, where enough pollen was deposited. The analyses of contacts with plant reproductive organs nevertheless confirmed that sunbirds are good pollen vectors for both Heliconia and Etlingera species.
  4. Our study demonstrated a high ecological fit between actors of distinct evolutionary history and the general validity of bird‐pollination syndrome. We moreover show that trait matching and niche differentiation are important ecological processes also in semi‐artificial plant‐pollinator systems.
  相似文献   

18.
19.
梁运鹏  于黎 《遗传》2015,37(1):25-33
作为哺乳动物第二大目的翼手目(Chiroptera;俗称蝙蝠)在飞行能力、回声定位与听觉系统、食性、冬眠、免疫防御等诸多方面表现出显著而独特的适应性进化,是研究生物对环境适应性进化分子机制的热点模型之一。文章综述了翼手目适应性进化分子机制的研究进展,特别是近年来在基因组水平上开展的相关研究,显示出更为复杂的分子进化模式和功能分化。随着越来越多的翼手目物种基因组数据的产生,将有望揭示新的进化机制,并为后续的功能实验奠定基础,促进人们对翼手目这一类群的认识和了解,同时也为系统认识动物适应性进化分子机制做出贡献。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号