首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protoplasma - This is the first study to describe in a timescale morphohistological and ultrastructural characteristics of fruit (cypsela) and seed development in Trichocline catharinensis, which...  相似文献   

2.
脱落酸和赤霉素调控种子休眠与萌发研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
刘晏  李俊德  李家儒 《生物资源》2020,42(2):157-163
种子的休眠与萌发是高等植物生长发育进程中非常重要的环节,是维系物种繁衍的重要过程。而激素在这一过程中扮演着非常重要的角色。而在这个过程中脱落酸(abscisic acid,ABA)和赤霉素(gibberellin GA)发挥着尤其重要的作用。本文综述了当前对复杂分子网络的理解,这些分子网络涉及脱落酸和赤霉素在调节种子休眠和萌发中的关键作用,其中含AP2结构域的转录因子起着关键作用。  相似文献   

3.
Journal of Plant Growth Regulation - An improved understanding of seed quality and germination control can contribute effectively to the use and conservation of neglected native species with...  相似文献   

4.
以粤东地区4种菊科入侵植物三叶鬼针草(Bidens pilosa)、微甘菊(Mikania micrantha)、南美蟛蜞菊(Wedelia trilobata)、藿香蓟(Ageratum conyzoides)和1种本土植物醴肠(Eclipta prostrata)为材料,研究了种子扩散时的萌发率以及种子经历低温(15℃、湿润)和常温(25℃和25/15℃、湿润)后的萌发响应特点。结果表明:种子扩散时,三叶鬼针草、醴肠、藿香蓟种子萌发率分别为100%、98%和62%~78%,微甘菊为44%~52%,南美蟛蜞菊为2%(25℃)和86%(25/15℃);5种菊科植物种子在15℃培养期间,平均萌发率由高至低依次是三叶鬼针草(82%~91%)、微甘菊(19%~26%)、醴肠(9%~12%)、南美蟛蜞菊(0~1%)、藿香蓟(0);在25℃和25/15℃下,藿香蓟种子萌发率为35%~49%,醴肠为58%~68%,南美蟛蜞菊为4%(25℃)和55%(25/15℃)。种子快速萌发、高萌发率,以及宽泛的萌发温度需求是1年生草本入侵种的主要入侵特性。  相似文献   

5.
Milk thistle (Silybum marianum) is a medicinal plant; however, lack of consistency in past dormancy studies has hindered propagation of this species from seeds. We tested the germination responses of freshly harvested and after-ripened (stored for 2 and 7 months; 25°C at 50% relative humidity) seeds from three populations (P1, P2 and P3) in Iran at varying constant or alternating temperatures, with or without GA3 and in light and continuous darkness. No germination occurred in freshly harvested seeds incubated at any condition without GA3 application, indicating that all the seeds were dormant. Seeds from P1 and P2, which developed under relatively dry, warm conditions, germinated over a wider range of temperatures after 2 months of dry storage, indicating type 6 of non-deep physiological dormancy (PD). Seeds from P3, which developed under relatively wet, cool conditions, incubated at constant temperatures (especially on GA3), exhibited an increase in maximum temperature for germination, indicating type 1 of non-deep PD. Light improved germination of after-ripened seeds, and GA3 application substituted for the light requirement for germination. This is the first report that environmental conditions during seed development may be correlated with differences in the type of non-deep PD. We conclude that milk thistle seeds are positively photoblastic and photodormant and the germination responses of after-ripened seeds from different populations are different under darkness. Therefore, the impacts of genetic differences and maternal effects on the induction of dormancy during seed development should be considered in attempts to domesticate this medicinal plant.  相似文献   

6.
7.
Semi‐arid rangeland degradation is a reoccurring issue throughout the world. In the Great Basin of North America, seeds sown in the fall to restore degraded sagebrush (Artemisia spp.) steppe plant communities may experience high mortality in winter due to exposure of seedlings to freezing temperatures and other stressors. Delaying germination until early spring when conditions are more suitable for growth may increase survival. We evaluated the use of BioNik? (Valent BioSciences LLC) abscisic acid (ABA) to delay germination of bluebunch wheatgrass (Pseudoroegneria spicata). Seed was either left untreated or coated at five separate rates of ABA ranging from 0.25 to 6.0 g 100 g?1 of seed. Seeds were incubated at five separate constant temperatures from 5 to 25°C. From the resultant germination data, we developed quadratic thermal accumulation models for each treatment and applied them to 4 years of historic soil moisture and temperature data across six sagebrush steppe sites to predict germination timing. Total germination percentage remained similar across all temperatures except at 25°C, where high ABA rates had slightly lower values. All ABA doses delayed germination, with the greatest delays at 5–10°C. For example, the time required for 50% of the seeds to germinate at 5°C was increased by 16–46 d, depending on the amount of ABA applied. Seed germination models predicted that the majority of untreated seed would germinate 5–11 weeks after a 15 October simulated planting date. In contrast, seeds treated with ABA were predicted to delay germination to late winter or early spring. These results indicate that ABA coatings may delay germination of fall planted seed until conditions are more suitable for plant survival and growth.  相似文献   

8.
Artemisia monosperma是分布于西奈半岛以及以色列地中海沿岸许多活动沙丘及固定沙丘上的建群种植物,在固定沙丘上,雨后的蓝细菌结皮上能产生径流水,A.monosperma的种子在径流水上漂浮并被传播到低洼处或土壤缝隙中,实验表明,有一半的种子在蒸馏水上漂浮3d,而在各种浓度的盐溶液上则能漂浮更长时间,低浓度的盐溶液对种子的萌发无影响而高浓度的盐分抑制种子的萌发,NO3^-可能是影响种子在沙质蓝细菌结皮上萌发的因素,低浓度的NO2_促进种子萌发而高浓度则抑制。预湿处理的实验表明,在自然生境中,暴露地表或埋在浅表层的种子经受每晚的露水以及小量雨水的反复湿,春萌发力有可能通过强人作用而提高。  相似文献   

9.
Seed mass variation and heteromorphism may afford plant species differential germination behavior and ultimately seedling success, particularly in disturbed habitats. We asked whether such variation occurs in Packera tomentosa (Michx.) C. Jeffrey (Asteraceae), a clonal species of the southeastern USA. Seed mass was compared within and among genetic individuals differentiated using amplified fragment length polymorphisms. We compared central and peripheral seeds produced by disc and ray florets, respectively, for their morphology, mass, and germination behavior, including response to water availability, aging, and cold stratification. Seed mass was highly variable both within and among individuals and influenced germination behavior. We found cryptic seed heteromorphism in P. tomentosa. Central and peripheral seeds had similar morphologies but dissimilar mass and biomass allocation. We used failure time analysis to detect different germination behavior. Central seeds were heavier, contained larger embryos, and germinated faster and at a higher proportion in most germination studies. Highly variable mass and heteromorphism of seeds may allow persistence of P. tomentosa in its disturbed habitats. Based on our results, some future studies of Asteraceae species with disc and ray florets may need to account for possible differences between seed types, even when morphological differences are not apparent. Evaluation of individual seed mass and maternal differences in germination studies may assist in the detection of cryptic seed heteromorphism, a phenomenon thought to be common, yet rarely documented.  相似文献   

10.
  • MicroRNAs (miRNAs) are an important class of non‐coding small RNAs that regulate the expression of target genes through mRNA cleavage or translational inhibition. Previous studies have revealed their roles in regulating seed dormancy and germination in model plants such as Arabidopsis thaliana, rice (Oryza sativa) and maize (Zea mays). However, the miRNA response to exogenous gibberellic acid (GA) and abscisic acid (ABA) during seed germination in maize has yet to be explored.
  • In this study, small RNA libraries were generated and sequenced from maize embryos treated with GA, ABA or double‐distilled water as control.
  • A total of 247 miRNAs (104 known and 143 novel) were identified, of which 45 known and 53 novel miRNAs were differentially expressed in embryos in the different treatment groups. In total, 74 (37 up‐regulated and 37 down‐regulated) and 55 (23 up‐regulated and 32 down‐regulated) miRNAs were expressed in response to GA and to ABA, respectively, and a total of 18 known and 38 novel miRNAs displayed differential expression between the GA‐ and ABA‐treated groups. Using bioinformatics tools, we predicted the target genes of the differentially expressed miRNAs. Using GO enrichment and KEGG pathway analysis of these targets, we showed that miRNAs differentially expressed in our samples affect genes encoding proteins involved in the peroxisome, ribosome and plant hormonal signalling pathways.
  • Our results indicate that miRNA‐mediated gene expression influences the GA and ABA signalling pathways during seed germination.
  相似文献   

11.
The genus Hypochaeris offers an excellent model for studies of recent adaptive radiation in the South American continent. We used karyotype analysis with chromomycin?A3 (CMA3)/4??,6-diamidino-2-phenylindole (DAPI) banding and fluorescence in?situ hybridization (FISH), and amplified fragment length polymorphism (AFLP) fingerprinting to investigate for the first time the Brazilian endemic H.?catharinensis and define its position within the South American group of species. Strong CMA-positive signals were seen at the end of both arms of chromosome?3 and at the end of the long arm of chromosome?4. DAPI bands were only detected in subterminal position on short arm of chromosome?4. FISH with 5S and 35S ribosomal DNA (rDNA) probes revealed a single 5S rDNA locus on short arm of chromosome?2, typical for all other South American Hypochaeris taxa analyzed to date. The 35S rDNA locus was identified at subterminal position on the short arm of chromosome?3, as reported so far for only two of the known species (H.?lutea and H.?patagonica). The AFLP study included 55 individuals, comprising nine species of the South American Hypochaeris plus their putative ancestor H.?angustifolia. Eleven AFLP primer combinations generated a total of 401 fragments, of which 388 (96.7%) were polymorphic. High genetic similarities were observed among taxa, with all South American Hypochaeris species falling into one main cluster [100% bootstrap (BS)]. Hypochaeris catharinensis is closely related to H.?lutea (82% BS), forming a well-separated subcluster within the South American species. Taken together, the karyological and AFLP data contribute to the placement of H.?catharinensis within the phylogenetic framework of South American species of Hypochaeris and allow the definition of a novel and well-resolved phylogenetic group (the Lutea group).  相似文献   

12.
13.

Background and Aims

Coffee seed germination represents an interplay between the embryo and the surrounding endosperm. A sequence of events in both parts of the seed determines whether germination will be successful or not. Following previous studies, the aim here was to further characterize the morphology of endosperm degradation and embryo growth with respect to morphology and cell cycle, and the influence of abscisic acid on these processes.

Methods

Growth of cells in a fixed region of the axis was quantified from light micrographs. Cell cycle events were measured by flow cytometry and by immunocytochemistry, using antibodies against β-tubulin. Aspects of the endosperm were visualized by light and scanning electron microscopy.

Key Results

The embryonic axis cells grew initially by isodiametric expansion. This event coincided with reorientation and increase in abundance of microtubules and with accumulation of β-tubulin. Radicle protrusion was characterized by a shift from isodiametric expansion to elongation of radicle cells and further accumulation of β-tubulin. Early cell division events started prior to radicle protrusion. Abscisic acid decreased the abundance of microtubules and inhibited the growth of the embryo cells, the reorganization of the microtubules, DNA replication in the embryonic axis, the formation of a protuberance and the completion of germination. The endosperm cap cells had smaller and thinner cell walls than the rest of the endosperm. Cells in the endosperm cap displayed compression followed by loss of cell integrity and the appearance of a protuberance prior to radicle protrusion.

Conclusions

Coffee seed germination is the result of isodiametric growth of the embryo followed by elongation, at the expense of integrity of endosperm cap cells. The cell cycle, including cell division, is initiated prior to radicle protrusion. ABA inhibits expansion of the embryo, and hence subsequent events, including germination.Key words: Abscisic acid, β-tubulin, Coffea arabica, coffee seed, cell morphology, germination, microtubules  相似文献   

14.
Carrot seeds taken from the parent plant were capable of germinating before the stage when maximum seed dry weight was reached but even after this stage, when the seed moisture content had fallen below 20%, improvement in seed germination characteristics continued. In the latter stages of seed growth losses by shedding were 12–20 kg/ha/day. For low density crops (10 plants/m2) the yield of viable seed was at a maximum in crops whose seed was harvested with a moisture content of between 20 and 40% but no consistent relationship could be established for high density crops (80 plants/m2). There were no effects of umbel order or plant density on mean germination time or spread of germination. At any early harvest, percentage germination was highest for primary-umbel-seeds and seeds from low density crops but the differences between the seed origins diminished with later harvests. Drying the seeds on the umbels improved the percentage germination, reduced the mean germination time and the spread of germination particularly at the early harvests compared with seeds removed from the umbels and germinated immediately without drying.  相似文献   

15.
16.
To synthesize glycyrrhetinic acid (GA) derivatives (3, 4, 5, 10, 13, 14, 15, and 16), we first removed the ketonic group in the C-11 position, and the carboxylic function at the C-30 position was kept intact, reduced to an alcohol, or transformed to an aldehyde corresponding derivatives 10 and 13. Glycyrrhetinic acid (GA) derivatives (3, 4, 5, 15, and 16) were coupled with 4-amino piperpyridine derivatives (12 and 14) and 4-fluorobenzyl bromide at C-30 carboxylic acid position of glycyrrhetinic acid. In subsequent tyrosinase assays, we found that GA derivatives 4, 5, and 16 were not active at early time points, but strongly inhibited tyrosinase activity at late time points. Of the GA derivatives examined, derivative 5 was most active, with an IC50 value of 50 μM after 2 h reaction. IC50 values of derivatives 4 and 16 were 120 and 170 μM, respectively. Further kinetic data indicated that these derivatives are slow-binding inhibitors of tyrosinase. The time-dependent inhibition was reversed when vitamin C or kojic acid was used, that is, both compounds showed active inhibition at early time points. These results suggest that GA derivatives are much more stable than vitamin C or kojic acid, although their intrinsic inhibitory potentials are relatively low. Higher stability and activity suggest that GA derivative 5 might be a useful candidate for skin whitening.  相似文献   

17.
Impaired germination is common among halophyte seeds exposed to salt stress, partly resulting from the salt-induced reduction of the growth regulator contents in seeds. Thus, the understanding of hormonal regulation during the germination process is a main key: (i) to overcome the mechanisms by which NaCl-salinity inhibit germination; and (ii) to improve the germination of these species when challenged with NaCl. In the present investigation, the effects of ABA, GA3, NO3, and NH+4 on the germination of the oilseed halophyte Crithmum maritimum (Apiaceae) were assessed under NaCl-salinity (up to 200 mM NaCl). Seeds were collected from Tabarka rocky coasts (N-W of Tunisia). The exogenous application of GA3, nitrate (either as NaNO3 or KNO3), and NH4Cl enhanced germination under NaCl salinity. The beneficial impact of KNO3 on germination upon seed exposure to NaCl salinity was rather due to NO3 than to K+, since KCl failed to significantly stimulate germination. Under optimal conditions for germination (0 mM NaCl), ABA inhibited germination over time in a dose dependent manner, but KNO3 completely restored the germination parameters. Under NaCl salinity, the application of fluridone (FLU) an inhibitor of ABA biosynthesis, stimulated substantially seed germination. Taken together, our results point out that NO3 and GA3 mitigate the NaCl-induced reduction of seed germination, and that NO3 counteracts the inhibitory effect of ABA on germination of C. maritimum. To cite this article: A. Atia et al., C. R. Biologies 332 (2009).  相似文献   

18.
Many studies have focused on the ecology of seed dimorphism, the production of two seed types by a single plant. Morphology and seed size are usually correlated, but how morphology affects germination percentage and seedling growth is poorly understood. Here we explicitly separate these effects for nine populations of the dimorphic species Tragopogon pratensis subsp. pratensis. Larger seeds yielded higher germination percentages, yet seed morphology had no additional direct effect on germination. Neither seed size nor seed morphology affected seedling growth. Neither germination nor seedling growth varied among populations, but seed head varied significantly. Results show that germination is mainly controlled by seed size rather than by seed morphology. This study is one of the few to distinguish explicitly between seed size and seed morphology effects on ecological characteristics and suggests that seed dimorphism may exert its ecological effects predominantly through its correlated size.  相似文献   

19.
The ecological role of plant secondary compounds has received a great deal of attention yet little is known regarding variation in the ecological significance of different compounds produced by a single species. This is particularly pertinent to species where variation in compound presence is under genetic control. In this study we have quantified variation in the inhibitory effects of the six dominant monoterpene oils produced by different genotypes (or chemotypes) of Thymus vulgaris on achene germination of an associated species (Brachypodium phoenicoides), and seeds of T. vulgaris itself, in controlled experimental conditions. The experiments involved the germination of seeds of the two species with crushed leaves or pure essences of the six chemotypes, i.e. four experimental trials. A significant inhibitory effect against B. phoenicoides was found for both crushed leaves and the range of concentrations of pure oils used in the trial. The two phenolic compounds had a greater effect than the non-phenolic leaves and pure oils. The significant differences between non-phenols and the controls declined faster over time for crushed leaves and low concentrations of the pure essences than did that between the phenolics and the controls. There was a significant inhibitory effect against the germination of T. vulgaris seeds for the crushed leaves and the pure oils, although the contrast between the non-phenols and the phenols was not significant. The effect of the different oils varied depending on the seed source of the thyme seeds used in the trial. This is suggested to be due to differences in the rates of outcrossing among the sampled populations. The effects of the oils on the associated species, B. phoenicoides, were not found to be greater than their effects on the germination of thyme seeds. The results are discussed in the context of a potential role for such inhibitory effects in relation to the onset of rainfall and suitable germination conditions.  相似文献   

20.
The germination of Amaranthus paniculatus seeds was inhibited by applying paclobutrazol, a specific inhibitor of gibberellin biosynthesis. This inhibition was markedly counteracted by gibberellin A3 (GA3), suggesting that endogenous gibberellins are required for germination in this species. The inhibitory effect of paclobutrazol was also overcome by ethephon (2-chloroethylphosphonic acid) or the precursor of ethylene biosynthesis, ACC (1-aminocyclopropane-l-carboxylic acid). Thus the physiological effect of gibberellin can be mimicked by ethylene released from ethephon or synthesised from exogenous ACC. It is suggested, that endogenous gibberellins are involved in germination of Amaranthus paniculatus seeds and that action of GA3 can be substituted by ethylene.Abbreviations ACC 1-aminocyclopropane-l-carboxylic acid - AMO-1618 (2-isopropyl-5methyl-4-trimethylammoniumchloride)-phenyl-l-piperidinium-carboxylate - ancymidol -cyclopropyl--(4-methoxyphenyl)-5-pyrimidine methanol - chloromequat chloride (2-chloroethyl)trimethylammoniumchloride - ethephon 2-chloroethylphosphonic acid - GA gibberellin A3 - paclobutrazol (2RS, 3RS)-1-(4-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-lyl)pentan-3-ol - Phosphon D 2,4,dichlorobenzyl-tributhylphosphoniumchloride - tetcyclacis 5,(4-chlorophenyl)-3,4,5,9,10-pentaaza-tetracyclo)5,4,1,0,Z,6,08,11 dodeca-3,9-diene  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号