首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heterocyst‐forming cyanobacteria are multicellular organisms that grow as filaments that can be hundreds of cells long. Septal junction complexes, of which SepJ is a possible component, appear to join the cells in the filament. SepJ is a cytoplasmic membrane protein that contains a long predicted periplasmic section and localizes not only to the cell poles in the intercellular septa but also to a position similar to a Z ring when cell division starts suggesting a relation with the divisome. Here, we created a mutant of Anabaena sp. strain PCC 7120 in which the essential divisome gene ftsZ is expressed from a synthetic NtcA‐dependent promoter, whose activity depends on the nitrogen source. In the presence of ammonium, low levels of FtsZ were produced, and the subcellular localization of SepJ, which was investigated by immunofluorescence, was impaired. Possible interactions of SepJ with itself and with divisome proteins FtsZ, FtsQ and FtsW were investigated using the bacterial two‐hybrid system. We found SepJ self‐interaction and a specific interaction with FtsQ, confirmed by co‐purification and involving parts of the SepJ and FtsQ periplasmic sections. Therefore, SepJ can form multimers, and in Anabaena, the divisome has a role beyond cell division, localizing a septal protein essential for multicellularity.  相似文献   

2.
Heterocyst‐forming cyanobacteria are organized as multicellular filaments of tightly interacting, functionally specialized cells. N2‐fixing heterocysts differentiate from vegetative cells under nitrogen limitation in a semi‐regular pattern along the filament. Diazotrophic growth requires metabolite exchange between neighboring cells within the filament. This exchange occurs via cell–cell junction complexes that span the gap between the plasma membranes and thereby cross the septal peptidoglycan through an array of uniform nanopores formed by AmiC‐type cell wall hydrolases. We investigated how the lytic hydrolase AmiC1 (Alr0092) from Anabaena sp. PCC 7120, whose activity needs to be tightly controlled to avoid cell lysis, is regulated by the LytM factor Alr3353. Inactivation of alr3353 resulted in significantly fewer nanopores and as a consequence, a lower rate of fluorescent tracer exchange between cells. The mutant was not able to grow with N2 as sole nitrogen source, although heterocysts were formed. Alr3353 localized mainly to fully developed intercellular septa of vegetative cells. The purified protein bound to peptidoglycan and enhanced the hydrolytic activity of AmiC1 in vitro. Our data show that the LytM factor Alr3353 regulates nanopore formation and cell–cell communication by directly interacting with AmiC1.  相似文献   

3.
Bacterial cell division is a fundamental process that requires the coordinated actions of a number of proteins which form a complex macromolecular machine known as the divisome. The membrane‐spanning proteins DivIB and its orthologue FtsQ are crucial divisome components in Gram‐positive and Gram‐negative bacteria respectively. However, the role of almost all of the integral division proteins, including DivIB, still remains largely unknown. Here we show that the extracellular domain of DivIB is able to bind peptidoglycan and have mapped the binding to its β subdomain. Conditional mutational studies show that divIB is essential for Staphylococcus aureus growth, while phenotypic analyses following depletion of DivIB results in a block in the completion, but not initiation, of septum formation. Localisation studies suggest that DivIB only transiently localises to the division site and may mark previous sites of septation. We propose that DivIB is required for a molecular checkpoint during division to ensure the correct assembly of the divisome at midcell and to prevent hydrolytic growth of the cell in the absence of a completed septum.  相似文献   

4.
The rod‐shaped bacterium Escherichia coli grows by insertion of peptidoglycan into the lateral wall during cell elongation and synthesis of new poles during cell division. The monofunctional transpeptidases PBP2 and PBP3 are part of specialized protein complexes called elongasome and divisome, respectively, which catalyse peptidoglycan extension and maturation. Endogenous immunolabelled PBP2 localized in the cylindrical part of the cell as well as transiently at midcell. Using the novel image analysis tool Coli‐Inspector to analyse protein localization as function of the bacterial cell age, we compared PBP2 localization with that of other E. coli cell elongation and division proteins including PBP3. Interestingly, the midcell localization of the two transpeptidases overlaps in time during the early period of divisome maturation. Försters Resonance Energy Transfer (FRET) experiments revealed an interaction between PBP2 and PBP3 when both are present at midcell. A decrease in the midcell diameter is visible after 40% of the division cycle indicating that the onset of new cell pole synthesis starts much earlier than previously identified by visual inspection. The data support a new model of the division cycle in which the elongasome and divisome interact to prepare for cell division.  相似文献   

5.
Filamentous cyanobacteria of the order Nostocales are primordial multicellular organisms, a property widely considered unique to eukaryotes. Their filaments are composed of hundreds of mutually dependent vegetative cells and regularly spaced N(2)-fixing heterocysts, exchanging metabolites and signalling molecules. Furthermore, they may differentiate specialized spore-like cells and motile filaments. However, the structural basis for cellular communication within the filament remained elusive. Here we present that mutation of a single gene, encoding cell wall amidase AmiC2, completely changes the morphology and abrogates cell differentiation and intercellular communication. Ultrastructural analysis revealed for the first time a contiguous peptidoglycan sacculus with individual cells connected by a single-layered septal cross-wall. The mutant forms irregular clusters of twisted cells connected by aberrant septa. Rapid intercellular molecule exchange takes place in wild-type filaments, but is completely abolished in the mutant, and this blockage obstructs any cell differentiation, indicating a fundamental importance of intercellular communication for cell differentiation in Nostoc. AmiC2-GFP localizes in the cell wall with a focus in the cross walls of dividing cells, implying that AmiC2 processes the newly synthesized septum into a functional cell-cell communication structure during cell division. AmiC2 thus can be considered as a novel morphogene required for cell-cell communication, cellular development and multicellularity.  相似文献   

6.
Filamentous heterocyst‐forming cyanobacteria are a beautiful example of prokaryotic multicellularity. The filaments can achieve simultaneous nitrogen fixation and oxygenic photosynthesis by cooperation between two cell types: the photosynthetic vegetative cells and the nitrogen‐fixing heterocysts. The multicellular features exhibited by the system include differentiation of different cell types, metabolic interdependence and even pattern formation, as the spacing of heterocysts along the filament is non‐random. Recent years have seen exciting progress both in understanding the control of heterocyst differentiation, and also in understanding the function of ‘septal junctions’: an array of pore‐like structures at the cell junctions that allow intercellular communication by facilitating the diffusion of small molecules from cell to cell. A new report by Rivers et al. (2014) makes the connection between pattern formation and intercellular communication by showing that a mutation that partially disables the septal junctions leads to a decrease in the range of a signal dependent on the HetN protein that is one of the factors controlling heterocyst spacing. This suggests that the signal travels from cell to cell by diffusion through the septal junctions, opening the door to quantitative understanding of the mechanism that controls heterocyst spacing in filamentous cyanobacteria.  相似文献   

7.
The bacterial cell division machinery is organized in the so‐called divisome composed of highly dynamic but low abundant interacting (membrane‐bound) proteins. In order to elucidate the molecular interactions between these proteins, we developed a robust background‐insensitive quantitative spectral unmixing method for estimating FRET efficiencies at near endogenous protein levels using fluorescent protein fusions. The assembly of the division machinery of Escherichia coli occurs in two steps that are discrete in time: first the FtsZ‐ring and the so‐called early localizing proteins that together seem to prepare the division assembly at midcell. Subsequently, the late localizing protein complexes that contain the peptidoglycan‐synthesizing proteins PBP1B and FtsI (PBP3) are recruited to the division site, which initiates septation. Physical interactions were observed between members within each group but also between the early and late localizing proteins strongly suggesting that these proteins despite their differential localization in time are linked at the molecular and functional level. Interestingly, we find FtsN, one of the latest proteins in the divisome assembly, interacting with late assembling proteins FtsI and FtsW, but also with early (proto‐ring) protein ZapA. This is in line with the recently described role of FtsN in divisome stabilization including the proto‐ring elements.  相似文献   

8.
In Escherichia coli, cell division is mediated by the concerted action of about 12 proteins that assemble at the division site to presumably form a complex called the divisome. Among these essential division proteins, the multimodular class B penicillin-binding protein 3 (PBP3), which is specifically involved in septal peptidoglycan synthesis, consists of a short intracellular M1-R23 peptide fused to a F24-L39 membrane anchor that is linked via a G40-S70 peptide to an R71-I236 noncatalytic module itself linked to a D237-V577 catalytic penicillin-binding module. On the basis of localization analyses of PBP3 mutants fused to green fluorescent protein by fluorescence microscopy, it appears that the first 56 amino acid residues of PBP3 containing the membrane anchor and the G40-E56 peptide contain the structural determinants required to target the protein to the cell division site and that none of the putative protein interaction sites present in the noncatalytic module are essential for the positioning of the protein to the division site. Based on the effects of increasing production of FtsQ or FtsW on the division of cells expressing PBP3 mutants, it is suggested that these proteins could interact. We postulate that FtsQ could play a role in regulating the assembly of these division proteins at the division site and the activity of the peptidoglycan assembly machineries within the divisome.  相似文献   

9.
FtsN is a bitopic membrane protein and the last essential component to localize to the Escherichia coli cell division machinery, or divisome. The periplasmic SPOR domain of FtsN was previously shown to localize to the divisome in a self‐enhancing manner, relying on the essential activity of FtsN and the peptidoglycan synthesis and degradation activities of FtsI and amidases respectively. Because FtsN has a known role in recruiting amidases and is predicted to stimulate the activity of FtsI, it follows that FtsN initially localizes to division sites in a SPOR‐independent manner. Here, we show that the cytoplasmic and transmembrane domains of FtsN (FtsNCytoTM) facilitated localization of FtsN independently of its SPOR domain but dependent on the early cell division protein FtsA. In addition, SPOR‐independent localization preceded SPOR‐dependent localization, providing a mechanism for the initial localization of FtsN. In support of the role of FtsNCytoTM in FtsN function, a variant of FtsN lacking the cytoplasmic domain localized to the divisome but failed to complement an ftsN deletion unless it was overproduced. Simultaneous removal of the cytoplasmic and SPOR domains abolished localization and complementation. These data support a model in which FtsA–FtsN interaction recruits FtsN to the divisome, where it can then stimulate the peptidoglycan remodelling activities required for SPOR‐dependent localization.  相似文献   

10.
In Escherichia coli, FtsEX, a member of the ABC transporter superfamily, is involved in regulating the assembly and activation of the divisome to couple cell wall synthesis to cell wall hydrolysis at the septum. Genetic studies indicate FtsEX acts on FtsA to begin the recruitment of the downstream division proteins but blocks septal PG synthesis until a signal is received that divisome assembly is complete. However, the details of how FtsEX localizes to the Z ring and how it interacts with FtsA are not clear. Our results show that recruitment of FtsE and FtsX is codependent and suggest that the FtsEX complex is recruited through FtsE interacting with the conserved tail of FtsZ (CCTP), thus adding FtsEX to a growing list of proteins that interacts with the CCTP of FtsZ. Furthermore, we find that the N‐terminus of FtsX is not required for FtsEX localization to the Z ring but is required for its functions in cell division indicating that it interacts with FtsA. Taken together, these results suggest that FtsEX first interacts with FtsZ to localize to the Z ring and then interacts with FtsA to promote divisome assembly and regulate septal PG synthesis.  相似文献   

11.
The oval shape of pneumococci results from a combination of septal and lateral peptidoglycan synthesis. The septal cross‐wall is synthesized by the divisome, while the elongasome drives cell elongation by inserting new peptidoglycan into the lateral cell wall. Each of these molecular machines contains penicillin‐binding proteins (PBPs), which catalyze the final stages of peptidoglycan synthesis, plus a number of accessory proteins. Much effort has been made to identify these accessory proteins and determine their function. In the present paper we have used a novel approach to identify members of the pneumococcal elongasome that are functionally closely linked to PBP2b. We discovered that cells depleted in PBP2b, a key component of the elongasome, display several distinct phenotypic traits. We searched for proteins that, when depleted or deleted, display the same phenotypic changes. Four proteins, RodA, MreD, DivIVA and Spr0777, were identified by this approach. Together with PBP2b these proteins are essential for the normal function of the elongasome. Furthermore, our findings suggest that DivIVA, which was previously assigned as a divisomal protein, is required to correctly localize the elongasome at the negatively curved membrane region between the septal and lateral cell wall.  相似文献   

12.
At the heart of bacterial cell division is a dynamic ring-like structure of polymers of the tubulin homologue FtsZ. This ring forms a scaffold for assembly of at least ten additional proteins at midcell, the majority of which are likely to be involved in remodeling the peptidoglycan cell wall at the division site. Together with FtsZ, these proteins are thought to form a cell division complex, or divisome. In Escherichia coli, the components of the divisome are recruited to midcell according to a strikingly linear hierarchy that predicts a step-wise assembly pathway. However, recent studies have revealed unexpected complexity in the assembly steps, indicating that the apparent linearity does not necessarily reflect a temporal order. The signals used to recruit cell division proteins to midcell are diverse and include regulated self-assembly, protein-protein interactions, and the recognition of specific septal peptidoglycan substrates. There is also evidence for a complex web of interactions among these proteins and at least one distinct subcomplex of cell division proteins has been defined, which is conserved among E. coli, Bacillus subtilis and Streptococcus pneumoniae.  相似文献   

13.
14.
Although archaea, Gram‐negative bacteria, and mammalian cells constitutively secrete membrane vesicles (MVs) as a mechanism for cell‐free intercellular communication, this cellular process has been overlooked in Gram‐positive bacteria. Here, we found for the first time that Gram‐positive bacteria naturally produce MVs into the extracellular milieu. Further characterizations showed that the density and size of Staphylococcus aureus‐derived MVs are both similar to those of Gram‐negative bacteria. With a proteomics approach, we identified with high confidence a total of 90 protein components of S. aureus‐derived MVs. In the group of identified proteins, the highly enriched extracellular proteins suggested that a specific sorting mechanism for vesicular proteins exists. We also identified proteins that facilitate the transfer of proteins to other bacteria, as well to eliminate competing organisms, antibiotic resistance, pathological functions in systemic infections, and MV biogenesis. Taken together, these observations suggest that the secretion of MVs is an evolutionally conserved, universal process that occurs from simple organisms to complex multicellular organisms. This information will help us not only to elucidate the biogenesis and functions of MVs, but also to develop therapeutic tools for vaccines, diagnosis, and antibiotics effective against pathogenic strains of Gram‐positive bacteria.  相似文献   

15.
Filamentous, N2‐fixing, heterocyst‐forming cyanobacteria grow as chains of cells that are connected by septal junctions. In the model organism Anabaena sp. strain PCC 7120, the septal protein SepJ is required for filament integrity, normal intercellular molecular exchange, heterocyst differentiation, and diazotrophic growth. An Anabaena strain overexpressing SepJ made wider septa between vegetative cells than the wild type, which correlated with a more spread location of SepJ in the septa as observed with a SepJ–GFP fusion, and contained an increased number of nanopores, the septal peptidoglycan perforations that likely accommodate septal junctions. The septa between heterocysts and vegetative cells, which are narrow in wild‐type Anabaena, were notably enlarged in the SepJ‐overexpressing mutant. Intercellular molecular exchange tested with fluorescent tracers was increased for the SepJ‐overexpressing strain specifically in the case of calcein transfer between vegetative cells and heterocysts. These results support an association between calcein transfer, SepJ‐related septal junctions, and septal peptidoglycan nanopores. Under nitrogen deprivation, the SepJ‐overexpressing strain produced an increased number of contiguous heterocysts but a decreased percentage of total heterocysts. These effects were lost or altered in patS and hetN mutant backgrounds, supporting a role of SepJ in the intercellular transfer of regulatory signals for heterocyst differentiation.  相似文献   

16.
Most bacteria possess a peptidoglycan cell wall that determines their morphology and provides mechanical robustness during osmotic challenges. The biosynthesis of this structure is achieved by a large set of synthetic and lytic enzymes with varying substrate specificities. Although the biochemical functions of these proteins are conserved and well‐investigated, the precise roles of individual factors and the regulatory mechanisms coordinating their activities in time and space remain incompletely understood. Here, we comprehensively analyze the autolytic machinery of the alphaproteobacterial model organism Caulobacter crescentus, with a specific focus on LytM‐like endopeptidases, soluble lytic transglycosylases and amidases. Our data reveal a high degree of redundancy within each protein family but also specialized functions for individual family members under stress conditions. In addition, we identify two lytic transglycosylases and an amidase as new divisome components that are recruited to midcell at distinct stages of the cell cycle. The midcell localization of these proteins is affected by two LytM factors with degenerate catalytic domains, DipM and LdpF, which may serve as regulatory hubs coordinating the activities of multiple autolytic enzymes during cell constriction and fission respectively. These findings set the stage for in‐depth studies of the molecular mechanisms that control peptidoglycan remodeling in C. crescentus.  相似文献   

17.
Cell division in nearly all bacteria is initiated by polymerization of the conserved tubulin-like protein FtsZ into a ring-like structure at midcell. This Z-ring functions as a scaffold for a group of conserved proteins that execute the synthesis of the division septum (the divisome). Here we describe the identification of a new cell division protein in Bacillus subtilis. This protein is conserved in Gram positive bacteria, and because it has a role in septum development, we termed it SepF. sepF mutants are viable but have a cell division defect, in which septa are formed slowly and with a severely abnormal morphology. Yeast two-hybrid analysis showed that SepF can interact with itself and with FtsZ. Accordingly, fluorescence microscopy showed that SepF accumulates at the site of cell division, and this localization depends on the presence of FtsZ. Combination of mutations in sepF and ezrA, encoding another Z-ring interacting protein, had a synthetic lethal division effect. We conclude that SepF is a new member of the Gram positive divisome, required for proper execution of septum synthesis.  相似文献   

18.
Gap junctions mediate communication between adjacent cells and are fundamental to the development and homeostasis in multicellular organisms. In invertebrates, gap junctions are formed by transmembrane proteins called innexins. Gap junctions allow the passage of small molecules through an intercellular channel, between a cell and another adjacent cell. The dipteran Rhynchosciara americana has contributed to studying the biology of invertebrates and the study of the interaction and regulation of genes during biological development. Therefore, this paper aimed to study the R. americana innexin-2 by molecular characterization, analysis of the expression profile and cellular localization. The molecular characterization results confirm that the message is from a gap junction protein and analysis of the expression and cellular localization profile shows that innexin-2 can participate in many physiological processes during the development of R. americana.  相似文献   

19.
N2-fixing heterocystous cyanobacteria grow as chains of cells that are connected by proteinaceous septal junctions, which traverse the septal peptidoglycan through nanopores and mediate intercellular molecular transfer. In the model organism Anabaena sp. strain PCC 7120, proteins SepJ, FraC and FraD, which are localized at the cell poles in the intercellular septa, are needed to produce septal junctions. The pentapeptide-repeat, membrane-spanning protein HglK has been described to be involved in the deposition of the heterocyst-specific glycolipid layer, but the hglK mutant also showed intercellular septa broader than in the wild type. Here we found that hglK mutant of Anabaena is impaired in the expression of heterocyst-related genes coxB2A2C2 (cytochrome c oxidase) and nifHDK (nitrogenase), indicating a defect in heterocyst differentiation. HglK was predominantly localized at the intercellular septa and was required to make long filaments, produce a normal number of nanopores and express full intercellular molecular transfer activity. However, the effects of hglK inactivation were not additive to those of the inactivation of sepJ and/or fraC-fraD. We suggest that HglK contributes to the architecture of the intercellular septa with an impact on the function of septal junctions.  相似文献   

20.
Sporulating Bacillus subtilis cells assemble a transenvelope secretion complex that connects the mother cell and developing spore. The forespore protein SpoIIQ and the mother‐cell protein SpoIIIAH interact across the double membrane septum and are thought to assemble into a channel that serves as the basement layer of this specialized secretion system. SpoIIQ is absolutely required to recruit SpoIIIAH to the sporulation septum on the mother‐cell side, however the mechanism by which SpoIIQ is localized has been unclear. Here, we show that SpoIIQ localization requires its partner protein SpoIIIAH and degradation of the septal peptidoglycan (PG) by the two cell wall hydrolases SpoIID and SpoIIP. Our data suggest that PG degradation enables a second mother‐cell‐produced protein to interact with SpoIIQ. Cells in which both mother‐cell anchoring mechanisms have been disabled have a synergistic sporulation defect suggesting that both localization factors function in the secretion complex. Finally, we show that septal PG degradation is critical for the assembly of an active complex. Altogether, these results suggest that the specialized secretion system that links the mother cell and forespore has a complexity approaching those found in Gram‐negative bacteria and reveal that the sporulating cell must overcome similar challenges in assembling a transenvelope complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号