首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Whinam  J.  Hope  G.S.  Clarkson  B.R.  Buxton  R.P.  Alspach  P.A.  Adam  P. 《Wetlands Ecology and Management》2003,11(1-2):37-49
In comparison to the northern hemisphere, Sphagnum peatlands are an unusual andinfrequent component of the Australasianlandscape. Most peatlands in Australasiaare primarily composed of eitherRestionaceous or Cyperaceous peats. Sphagnum peatlands in Australia and PapuaNew Guinea/Irian Jaya (now West Papua) arelargely located in montane and alpineenvironments, but also occur down to sealevel in New Zealand and as moss patches onsome subantarctic islands. Fire is a majordeterminant of the characteristics ofpeatlands in Australasia. Peatlandmanagement in Australasia is hindered bythe need for increased understanding ofpeatland processes to enable a sustainablebalance of conservation of a small resourcewith localised utilisation. Themanagement focus in Australasia has largelybeen on ensuring ecologically sustainable Sphagnum moss harvesting, withlimited peat mining. We have found thatgeneral recovery of Sphagnum after moss harvesting canbe enhanced by harvesting larger peatlands,and by leaving one-third of the acrotelm toregenerate. The largest upland peat swampin mainland Australia, Wingecarribee Swamp,suffered a major collapse in 1998 followingpeat mining. Environmental and managementconsequences of this collapse have majorramifications for rehabilitation options. Sphagnum peatlands in Australasia arelikely to be adversely affected bydrainage, burning, grazing, trampling,global warming and peat mining.  相似文献   

3.
Abstract. Vegetation, water table depth and water chemistry of 16 peatlands in the southern Alps, Italy, were analysed in 115 sample plots. A poor-rich gradient could be detected along the first axis of a partial Detrended Canonical Correspondence Analysis. Both vegetation and hydrochemistry vary gradually along the gradient. Vascular plants have much broader niches along the gradient than bryophytes. Mosses (except Sphangnum) and hepatics have narrower niches than Sphagnum. The various species of Sphagnum segregate more clearly from each other along the moisture gradient than along the poor-rich one. The positions of species optima along the latter gradient largely reflect the ecological preferences of mire plants in peatlands with respect to nutrient status.  相似文献   

4.
Climate change will influence plant photosynthesis by altering patterns of temperature and precipitation, including their variability and seasonality. Both effects may be important for peatlands as the carbon (C) sink potential of these ecosystems depends on the balance between plant C uptake through photosynthesis and microbial decomposition. Here, we show that the effect of climate warming on Sphagnum community photosynthesis toggles from positive to negative as the peatland goes from rainy to dry periods during summer. More particularly, we show that mechanisms of compensation among the dominant Sphagnum species (Sphagnum fallax and Sphagnum medium) stabilize the average photosynthesis and productivity of the Sphagnum community during summer despite rising temperatures and frequent droughts. While warming had a negligible effect on S. medium photosynthetic capacity (Amax) during rainy periods, Amax of S. fallax increased by 40%. On the opposite, warming exacerbated the negative effects of droughts on S. fallax with an even sharper decrease of its Amax while S. medium Amax remained unchanged. S. medium showed a remarkable resistance to droughts due to anatomical traits favouring its water holding capacity. Our results show that different phenotypic plasticity among dominant Sphagnum species allow the community to cope with rising temperatures and repeated droughts, maintaining similar photosynthesis and productivity over summer in warmed and control conditions. These results are important because they provide information on how soil water content may modulate the effects of climate warming on Sphagnum productivity in boreal peatlands. It further confirms the transitory nature of warming‐induced photosynthesis benefits in boreal systems and highlights the vulnerability of the ecosystem to excess warming and drying.  相似文献   

5.
Sphagnum magellanicum has been viewed as being a predominantly circumpolar species in the northern hemisphere, but it occurs in the southern hemisphere and was originally described from the southern parts of Chile. It is an ecologically important species in mire ecosystems and has been extensively used as a model to study processes of growth, carbon sequestration and peat decomposition. Molecular and experimental studies have, however, revealed genetic structure within S. magellanicum, and morphological differences associated with these genetic groups. Here we describe Sphagnum divinum in Sphagnum subgenus Sphagnum (Sphagnaceae, Bryophyta) as a new species, based on molecular and morphological evidence. Sphagnum medium is reinstated as a distinct species and is epitypified. Consequently, a new species concept of S. magellanicum is presented including an epitypification. Important morphological characters to separate these three species in the field and under the microscope are presented. Ecology and distribution differ among the species; S. divinium has a wide habitat range including mire margin, forested peatlands and moist heaths, and a circumpolar distribution around the northern hemisphere. Sphagnum medium seems to be more restricted to ombrotrophic mire expanse habitats and shows an amphi-Atlantic distribution in the northern hemisphere. Sphagnum magellanicum has a very broad ecological niche in peatlands and is found in most mire habitats in Tierra del Fuego on the southern tip of South America.  相似文献   

6.
Peat mosses (Sphagnum spp.) are keystone species in boreal peatlands, where they dominate net primary productivity and facilitate the accumulation of carbon in thick peat deposits. Sphagnum mosses harbor a diverse assemblage of microbial partners, including N2-fixing (diazotrophic) and CH4-oxidizing (methanotrophic) taxa that support ecosystem function by regulating transformations of carbon and nitrogen. Here, we investigate the response of the Sphagnum phytobiome (plant + constituent microbiome + environment) to a gradient of experimental warming (+0°C to +9°C) and elevated CO2 (+500 ppm) in an ombrotrophic peatland in northern Minnesota (USA). By tracking changes in carbon (CH4, CO2) and nitrogen (NH4-N) cycling from the belowground environment up to Sphagnum and its associated microbiome, we identified a series of cascading impacts to the Sphagnum phytobiome triggered by warming and elevated CO2. Under ambient CO2, warming increased plant-available NH4-N in surface peat, excess N accumulated in Sphagnum tissue, and N2 fixation activity decreased. Elevated CO2 offset the effects of warming, disrupting the accumulation of N in peat and Sphagnum tissue. Methane concentrations in porewater increased with warming irrespective of CO2 treatment, resulting in a ~10× rise in methanotrophic activity within Sphagnum from the +9°C enclosures. Warming's divergent impacts on diazotrophy and methanotrophy caused these processes to become decoupled at warmer temperatures, as evidenced by declining rates of methane-induced N2 fixation and significant losses of keystone microbial taxa. In addition to changes in the Sphagnum microbiome, we observed ~94% mortality of Sphagnum between the +0°C and +9°C treatments, possibly due to the interactive effects of warming on N-availability and competition from vascular plant species. Collectively, these results highlight the vulnerability of the Sphagnum phytobiome to rising temperatures and atmospheric CO2 concentrations, with significant implications for carbon and nitrogen cycling in boreal peatlands.  相似文献   

7.

Aims

The cultivation of Sphagnum mosses in paludiculture has high potential for the use of formerly drained peatlands under wet conditions. The aim of this study was to evaluate the plant species composition and vegetation structure of Sphagnum cultivation sites in comparison with near-natural donor sites and rewetted sites without Sphagnum introduction.

Location

Central Europe, northwest Germany close to the Dutch–German border.

Methods

The treatments (rewetting with and without Sphagnum introduction) and a near-natural donor as a reference were each studied at three different sites. At each site, bryophyte and vascular plant species composition as well as parameters of vegetation structure were sampled in 40 randomly positioned plots of 25 cm × 25 cm.

Results

In addition to the highly frequent Sphagnum, several further plant species typical of bogs were introduced. At two cultivation sites, the species composition showed a high degree of similarity to the near-natural donor sites, whereas the third site was more similar to the rewetted sites without the introduction of Sphagnum biomass. Rewetted sites were species-poor in comparison with all other sites. Apart from a high cover of Sphagnum, the vegetation structure at the cultivation sites differed significantly from the near-natural donor sites.

Conclusions

Sphagnum cultivation sites can be used to grow donor material for peatland restoration and contribute to species conservation by providing substitute habitat for bog-typical and threatened plant species.  相似文献   

8.
Introduction. Sphagnum L. forms much of the ground cover in northern peatlands. Different species show affinities for bioclimatic regions in Europe (oceanic/continental; northern/southern) and species-specific tolerance of winter conditions can be a factor explaining their distribution.

Methods. We focussed on low temperature in a series of experiments and tested (1) the innate ability of a selection of Sphagnum species to tolerate low temperature in relation to their micro-topographic (wetness) and geographical (climate) distribution; (2) the rate of cold tolerance acquisition; and (3) the ability of species to survive a range of low temperature once cold hardened.

Key results. Our experiments showed that maximal PSII efficiency (Fv/Fm, chlorophyll fluorescence), growth rates and survival were all negatively affected by sub-zero temperatures. Environmental conditions associated with the onset of winter (colder nights and shorter days) triggered the acquisition of cold tolerance in Sphagnum.

Conclusions. The results were not unequivocal, but species associated with colder climates were generally more tolerant of sub-zero conditions. Species associated with the wettest and driest ends of the wetness gradient were more consistent in their responses than those in between, with wetter-dwelling species being less sensitive to sub-zero temperature than species found in drier microhabitats. Overall, our results suggest that adaptation to winter conditions contribute to the current distribution patterns of Sphagnum species.  相似文献   

9.
Peat mosses (Sphagnum) largely govern carbon sequestration in Northern Hemisphere peatlands. We investigated functional traits related to growth and decomposition in Sphagnum species. We tested the importance of environment and phylogeny in driving species traits and investigated trade‐offs among them. We selected 15 globally important Sphagnum species, representing four sections (subgenera) and a range of peatland habitats. We measured rates of photosynthesis and decomposition in standard laboratory conditions as measures of innate growth and decay potential, and related this to realized growth, production, and decomposition in their natural habitats. In general, we found support for a trade‐off between measures of growth and decomposition. However, the relationships are not strong, with r ranging between 0.24 and 0.45 for different measures of growth versus decomposition. Using photosynthetic rate to predict decomposition in standard conditions yielded R2 = 0.20. Habitat and section (phylogeny) affected the traits and the trade‐offs. In a wet year, species from sections Cuspidata and Sphagnum had the highest production, but in a dry year, differences among species, sections, and habitats evened out. Cuspidata species in general produced easily decomposable litter, but their decay in the field was hampered, probably due to near‐surface anoxia in their wet habitats. In a principal components analysis, PCA, photosynthetic capacity, production, and laboratory decomposition acted in the same direction. The species were imperfectly clustered according to vegetation type and phylogeny, so that some species clustered with others in the same section, whereas others clustered more clearly with others from similar vegetation types. Our study includes a wider range of species and habitats than previous trait analyses in Sphagnum and shows that while the previously described growth–decay trade‐off exists, it is far from perfect. We therefore suggest that our species‐specific trait measures offer opportunities for improvements of peatland ecosystem models. Innate qualities measured in laboratory conditions translate differently to field responses. Most dramatically, fast‐growing species could only realize their potential in a wet year. The same species decompose fast in laboratory, but their decomposition was more retarded in the field than that of other species. These relationships are crucial for understanding the long‐term dynamics of peatland communities.  相似文献   

10.
Growth and decomposition of Sphagnum controls turnover of a large global store of soil organic carbon. We investigated variation in morphological and physiological traits of Sphagnum shoots, and related this variation to canopy variables relevant to peatland carbon cycling. We sampled Sphagnum along a bog plateau‐swamp forest gradient and measured a suite of shoot traits and canopy variables. Major axes of variation were identified using principal component analysis and correlated with canopy variables such as growth, biomass and decomposition. We also examined scaling of shoot traits with one another and with canopy variables. Two distinct tradeoffs in shoot traits emerged. From dry to wet habitats, individual metabolic rates and capitulum size increased while numerical density decreased, leading to faster growth and elongation on an individual basis. From treed to open habitats, photosynthetic efficiency decreased and photosynthetic biomass increased, driving faster growth on an area basis and slower litter mass loss. The tradeoffs identified have important implications for peatlands undergoing climate‐related changes in water and light availability. Sphagnum trait comparisons, combined with scaling analyses, offer a promising approach to understanding and predicting the effects of environmental change on peatland carbon cycling.  相似文献   

11.
In European peatlands which have been drained and cut-over in the past, re-vegetation often stagnates after the return of a species-poor Sphagnum community. Re-introduction of currently absent species may be a useful tool to restore a typical, and more diverse, Sphagnum vegetation and may ultimately improve the functioning of peatland ecosystems, regarding atmospheric carbon sequestration. Yet, the factors controlling the success of re-introduction are unclear. In Ireland and Estonia, we transplanted small and large aggregates of three Sphagnum species into existing vegetation. We recorded changes in cover over a 3-year period, at two water levels (?5 and ?20 cm).Performance of transplanted aggregates of Sphagnum was highly species specific. Hummock species profited at low water tables, whereas hollow species profited at high water tables. But our results indicate that performance and establishment of species was also promoted by increased aggregate size. This mechanism (positive self-association) has earlier been seen in other ecosystems, but our results are the first to show this mechanism in peatlands. Our results do not agree with present management, which is aimed at retaining water on the surface of peat remnants in order to restore a functional and diverse Sphagnum community. More than the water table, aggregate size of the reintroduced species is crucial for species performance, and ultimately for successful peatland restoration.  相似文献   

12.
Hyalospheniids are among the most common and conspicuous testate amoebae in high‐latitude peatlands and forest humus. These testate amoebae were widely studied as bioindicators and are increasingly used as models in microbial biogeography. However, data on their diversity and ecology are still very unevenly distributed geographically: notably, data are lacking for low‐latitude peatlands. We describe here a new species, Nebela jiuhuensis, from peatlands near the Middle Yangtze River reach of south‐central China with characteristic morphology. The test (shell) has hollow horn‐like lateral extensions also found in N. saccifera, N. equicalceus (=N. hippocrepis), and N. ansata, three large species restricted mostly to Sphagnum peatlands of Eastern North America. Mitochondrial cytochrome oxidase (COI) data confirm that N. jiuhuensis is closely related to the morphologically very similar North American species N. saccifera and more distantly to N. ansata within the N. penardiana group. These species are all found in wet mosses growing in poor fens. Earlier reports of morphologically similar specimens found in South Korea peatlands suggest that N. jiuhuensis may be distributed in comparable peatlands in Eastern Asia (China and Korea). The discovery of such a conspicuous new species in Chinese peatlands suggests that many new testate amoebae species are yet to be discovered, including potential regional endemics. Furthermore, human activities (e.g., drainage, agriculture, and pollution) have reduced the known habitat of N. jiuhuensis, which can thus be considered as locally endangered. We, therefore, suggest that this very conspicuous micro‐organism with a probably limited geographical distribution and specific habitat requirement should be considered as a flagship species for microbial biogeography as well as local environmental conservation and management.  相似文献   

13.
Bu ZJ  Rydin H  Chen X 《Oecologia》2011,166(2):555-563
Ecosystem processes of northern peatlands are largely governed by the vitality and species composition in the bryophyte layer, and may be affected by global warming and eutrophication. In a factorial experiment in northeast China, we tested the effects of raised levels of nitrogen (0, 1 and 2 g m−2 year−1), phosphorus (0, 0.1 and 0.2 g m−2 year−1) and temperature (ambient and +3°C) on Polytrichum strictum, Sphagnum magellanicum and S. palustre, to see if the effects could be altered by inter-specific interactions. In all species, growth declined with nitrogen addition and increased with phosphorus addition, but only P. strictum responded to raised temperature with increased production of side-shoots (branching). In Sphagnum, growth and branching changed in the same direction, but in Polytrichum, the two responses were uncoupled: with nitrogen addition there was a decrease in growth (smaller than in Sphagnum) but an increase in branching; with phosphorus addition growth increased but branching was unaffected. There were no two-way interactions among the P, N and T treatments. With increasing temperature, our results indicate that S. palustre should decrease relative to P. strictum (Polytrichum increased its branching and had a negative neighbor effect on S. palustre). With a slight increase in phosphorus availability, the increase in length growth and production of side-shoots in P. strictum and S. magellanicum may give them a competitive superiority over S. palustre. The negative response in Sphagnum to nitrogen could favor the expansion of vascular plants, but P. strictum may endure thanks to its increased branching.  相似文献   

14.
Tropical alpine peatlands are important carbon reservoirs and are a critical component of local hydrological cycles. In high elevation peatlands slow decomposition rates result from a nutrient‐poor substrate resistant to decay. The responses of páramo peatland ecosystems to increased nutrient additions and physical disturbance due to agricultural activities are unknown. Here, we conducted a two‐year fertilization and physical disturbance experiment in a Sphagnum—dominated peatland in the Central Andes of Colombia. We hypothesized that fertilization and physical disturbance will diminish the ability of the peat to store organic matter by increasing decomposition and that vascular plants will displace Sphagnum as the dominant plant group. We simulated cattle activity by adding manure as a fertilizer and physical disturbance as a proxy for cattle trampling. Species composition varied in proportion to the intensity of disturbance. Sphagnum cover was reduced under any disturbance treatment. Non‐native grasses usually found in cattle pastures invaded treatments with fertilizer additions or physical disturbance. Overall aboveground plant biomass doubled in fertilized treatments, suggesting that plant biomass production was nutrient limited. Decomposition rates tripled in disturbed treatments as compared to controls. This reduces the ability of the peatland to store organic matter. Andean peatlands are prized ecological assets; however, our results show that the El Morro páramo peatland experienced increased decomposition rates over short time periods after small‐scale disturbances. This created profound consequences for the ecological services offered by these peatlands.  相似文献   

15.
The purpose of this study was to consider the relative importance of several habitat variables in explaining the patterns in the structure of macroinvertebrate assemblages in open-water habitats, in relatively intact bogs and fens, which should inform conservation strategies. It was hypothesised that variables relating to the size of the water body would differentiate the communities and that some species would be unique to certain conditions. The macroinvertebrate communities from pools >100 m2, 10.1–100 m2 and Sphagnum hollows were characterised using sweep sampling for eight intact peatland sites across four bog types, and related to habitat variables including pool size, Sphagnum cover and hydrochemistry. Results showed community composition and structure differed significantly between deep, permanent pools and shallow, drought-sensitive Sphagnum hollows, with larger invertebrates, such as Odonates and Dytiscinae, rarely found in the hollows. Sphagnum cover accounted for a substantial amount of the variation in community composition. An examination of life-history strategies found species dependent on predictable conditions for juvenile development to be more abundant in pools. In contrast, taxa that could delay juvenile development until conditions were favourable were more abundant in Sphagnum hollows. These results highlight the importance of habitat heterogeneity in maintaining macroinvertebrate diversity in peatlands.  相似文献   

16.
A large proportion of northern peatlands consists of Sphagnum-dominated ombrotrophic bogs. In these bogs, peat mosses (Sphagnum) and vascular plants occur in an apparent stable equilibrium, thereby sustaining the carbon sink function of the bog ecosystem. How global warming and increased nitrogen (N) deposition will affect the species composition in bog vegetation is still unclear. We performed a transplantation experiment in which mesocosms with intact vegetation were transplanted southward from north Sweden to north-east Germany along a transect of four bog sites, in which both temperature and N deposition increased. In addition, we monitored undisturbed vegetation in control plots at the four sites of the latitudinal gradient. Four growing seasons after transplantation, ericaceous dwarf shrubs had become much more abundant when transplanted to the warmest site which also had highest N deposition. As a result ericoid aboveground biomass in the transplanted mesocosms increased most at the southernmost site, this site also had highest ericoid biomass in the undisturbed vegetation. The two dominant Sphagnum species showed opposing responses when transplanted southward; Sphagnum balticum height increment decreased, whereas S. fuscum height increment increased when transplanted southward. Sphagnum production did not differ significantly among the transplanted mesocosms, but was lowest in the southernmost control plots. The dwarf shrub expansion and increased N concentrations in plant tissues we observed, point in the direction of a positive feedback toward vascular plant-dominance suppressing peat-forming Sphagnum in the long term. However, our data also indicate that precipitation and phosphorus availability influence the competitive balance between Sphagnum, dwarf shrubs and graminoids.  相似文献   

17.
Sphagnum mosses are keystone components of peatland ecosystems. They facilitate the accumulation of carbon in peat deposits, but climate change is predicted to expose peatland ecosystem to sustained and unprecedented warming leading to a significant release of carbon to the atmosphere. Sphagnum responses to climate change, and their interaction with other components of the ecosystem, will determine the future trajectory of carbon fluxes in peatlands. We measured the growth and productivity of Sphagnum in an ombrotrophic bog in northern Minnesota, where ten 12.8‐m‐diameter plots were exposed to a range of whole‐ecosystem (air and soil) warming treatments (+0 to +9°C) in ambient or elevated (+500 ppm) CO2. The experiment is unique in its spatial and temporal scale, a focus on response surface analysis encompassing the range of elevated temperature predicted to occur this century, and consideration of an effect of co‐occurring CO2 altering the temperature response surface. In the second year of warming, dry matter increment of Sphagnum increased with modest warming to a maximum at 5°C above ambient and decreased with additional warming. Sphagnum cover declined from close to 100% of the ground area to <50% in the warmest enclosures. After three years of warming, annual Sphagnum productivity declined linearly with increasing temperature (13–29 g C/m2 per °C warming) due to widespread desiccation and loss of Sphagnum. Productivity was less in elevated CO2 enclosures, which we attribute to increased shading by shrubs. Sphagnum desiccation and growth responses were associated with the effects of warming on hydrology. The rapid decline of the Sphagnum community with sustained warming, which appears to be irreversible, can be expected to have many follow‐on consequences to the structure and function of this and similar ecosystems, with significant feedbacks to the global carbon cycle and climate change.  相似文献   

18.
Peatlands exhibit highly characteristic ecological traits and are unique complex ecosystems. Nevertheless, knowledge about southern South American peatlands is very limited. In this study, we analyzed species composition of bryophytes and lichens of Southern Hemisphere peatlands, specifically from eight peatlands of Isla Grande de Chiloé (Chiloé Island) in southern Chile (42°–43°S and 75°–73°W). Two kinds of Sphagnum peatlands were studied: natural and anthropogenic peatlands. Our results indicate the existence of clear environmental gradients affecting the structure of bryo-lichenic communities in the Sphagnum peatlands of Chiloé. Canonical correspondence analysis suggests that variation in bryophyte and lichen species composition mainly follows ombrotrophic–minerotrophic and lithotrophic-thalassotrophic gradients. Surface-water chemistry is the most significant factor accounting for changes in floristic composition among our study sites. In contrast to our expectations, bog origin (natural or anthropic) was not the most significant factor accounting for changes in floristic composition among peatlands. Other elements, such as the water source supplying peatlands or the influence of sea spray, were more relevant in the bryo-lichenic flora species occurrence in the peatlands of Chiloé. We also observed clear differences in ecological niches among species in general additive model response curves. Therefore, our results show that despite the origin, the ecology of peatlands follows common rules with peatlands from the Northern Hemisphere.  相似文献   

19.
  • Dry/wet cycling driven by water level fluctuation in wetlands may strongly influence the destiny of seeds. However, how dry/wet cycling affects spore survival and germinability in peatland bryophytes is poorly understood.
  • Six peatland bryophytes, three hummock- and three hollow-dwelling Sphagnum species, were chosen as study species. We tested the effects of dry (60% air RH)/wet (waterlogging) cycle frequency (once per 12, 8 or 4 days for low, medium or high, respectively) and ratio (3:1, 1:1 or 1:3 dry:wet time per cycle) on spore germinability, viability, dormancy percentage and protonema development.
  • Dry/wet cycling significantly reduced spore germination percentage and viability and slowed protonema development in all Sphagnum species, being more pronounced with higher dry/wet cycling frequencies. The hummock species S. capillifolium and S. fuscum had higher spore germination percentage after the continuous dry treatment, while the hollow species S. angustifolium, S. squarrosum and S. subsecundum showed the opposite response, compared to the continuously wet treatment. Except for S. squarrosum, spore viability was higher after the dry than after the wet treatment. Spore viability and dormancy percentage were higher after a dry/wet ratio of 1:3 than after ratios of 3:1 and 1:1.
  • Our study shows that both germinability and viability of bryophyte spores are reduced by dry/wet cycling (especially when frequent) in peatlands. This emphasizes the need to ensure constant water levels and low frequencies of water level fluctuation, which are relevant in connection with wetland restoration, to promote Sphagnum spore survival and establishment in peatlands after disturbances.
  相似文献   

20.
Sphagnum mosses form a major component of northern peatlands, which are expected to experience substantially higher increases in temperature and winter precipitation than the global average. Sphagnum may play an important role in the responses of the global carbon cycle to climate change. We investigated the responses of summer length growth, carpet structure and production in Sphagnum fuscum to experimentally induced changes in climate in a sub‐arctic bog. Thereto, we used open‐top chambers (OTCs) to create six climate scenarios including changes in summer temperatures, and changes in winter snow cover and spring temperatures. In winter, the OTCs doubled the snow thickness, resulting in 0.5–2.8°C higher average air temperatures. Spring air temperatures in OTCs increased by 1.0°C. Summer warming had a maximum effect of 0.9°C, while vapor pressure deficit was not affected. The climate manipulations had strong effects on S. fuscum. Summer warming enhanced the length increment by 42–62%, whereas bulk density decreased. This resulted in a trend (P<0.10) of enhanced biomass production. Winter snow addition enhanced dry matter production by 33%, despite the fact that the length growth and bulk density did not change significantly. The addition of spring warming to snow addition alone did not significantly enhance this effect, but we may have missed part of the early spring growth. There were no interactions between the manipulations in summer and those in winter/spring, indicating that the effects were additive. Summer warming may in the long term negatively affect productivity through the adverse effects of changes in Sphagnum structure on moisture holding and transporting capacity. Moreover, the strong length growth enhancement may affect interactions with other mosses and vascular plants. Because winter snow addition enhanced the production of S. fuscum without affecting its structure, it may increase the carbon balance of northern peatlands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号