首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of concanavalin A on proteoglycan synthesis by rabbit costal and articular chondrocytes was examined. Chondrocytes were seeded at low density and grown to confluency in medium supplemented with 10% fetal bovine serum, and then the serum concentration was reduced to 0.3%. At the low serum concentration, chondrocytes adopted a fibroblastic morphology. Addition of concanavalin A to the culture medium induced a morphologic alteration of the fibroblastic cells to spherical chondrocytes and increased by 3- to 4-fold incorporation of [35S]sulfate and [3H]glucosamine into large chondroitin sulfate proteoglycan that was characteristically found in cartilage. The stimulation of incorporation of labeled precursors reflected real increases in proteoglycan synthesis, as chemical analyses showed a 4-fold increase in the accumulation of macromolecules containing hexuronic acid in concanavalin A-maintained cultures. Furthermore, the effect of concanavalin A on [35S]sulfate incorporation into proteoglycans was greater than that of various growth factors or hormones. However, concanavalin A had smaller effects on [35S]sulfate incorporation into small proteoglycans and [3H]glucosamine incorporation into hyaluronic acid and chondroitinase AC-resistant glycosaminoglycans. Since other lectins tested, such as wheat germ agglutinin, lentil lectin, and phytohemagglutinin, had little effect on [35S]sulfate incorporation into proteoglycans, the concanavalin A action on chondrocytes seems specific. Although concanavalin A decreased [3H]thymidine incorporation in chondrocytes, the stimulation of proteoglycan synthesis could be observed in chondrocytes exposed to the inhibitor of DNA synthesis, cytosine arabinoside. These results indicate that concanavalin A is a potent modulator of proteoglycan synthesis by chondrocytes.  相似文献   

2.
Conditions were established for short-term primary suspension culture of chondrocytes from the Swarm rat chondrosarcoma. Proteoglycan and hyaluronate synthesis on Day 0 to Day 2 in culture was investigated and compared with that for plated cultures. Incorporation of [35S]sulfate into proteoglycans was the same for both suspension and plated cultures. 35S-Proteoglycan synthesis decreased by about 80% between Days 0 and 1 irrespective of culture conditions. Suspension culture chondrocytes synthesized proteoglycans which were very similar to those made in plated cultures, with respect to hydrodynamic size, glycosaminoglycan, chain length, and composition. [3H]Hyaluronate synthesis accounted for 18 and 23% of the total 3H-glycosaminoglycans synthesized from [3H]glucosamine by suspension and plated cultures, respectively. Suspension culture chondrocytes responded to exogenous hyaluronate (1 mg/ml) by reducing their 35S-proteoglycan synthesis by about 50%. [3H]Hyaluronate synthesis was inhibited by 13% under these conditions. The inhibition was dependent on the concentration of exogenous hyaluronate and reached a plateau level within 2 h. Plated chondrocyte cultures showed little or no response to hyaluronate. Suspension cultures of chondrocytes were prelabeled with [3H]lysine and lysed, and a heavy membrane fraction (12,000g) was extracted with the detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate. A Sepharose-hyaluronate affinity gel was used to show that the extract contained hyaluronate binding 3H-labeled proteins and evidence was obtained suggesting that these came from the external face of the plasma membrane.  相似文献   

3.
The effect of vanadate on proteoglycan synthesis by cultured rabbit costal chondrocytes was examined. Rabbit chondrocytes were seeded at low densities and grown to confluency in medium supplemented with 10% fetal bovine serum, and then the serum concentration was reduced to 0.3%. At the low serum concentration, chondrocytes adopted a fibroblastic morphology. Addition of 4 microM vanadate to the culture medium induced a morphologic differentiation of the fibroblastic cells to spherical chondrocytes, and increased by two- to threefold incorporation of [35S]sulfate and [3H]glucosamine into large, chondroitin sulfate proteoglycans. The stimulation of incorporation of labeled precursors reflected real increases in proteoglycan synthesis, in that chemical analyses showed increases in the accumulation of macromolecules containing hexuronic acid and hexosamine in vanadate-maintained cultures. However, vanadate had only a marginal effect on [35S]sulfate incorporation into small proteoglycans and [3H]glucosamine incorporation into hyaluronic acid and chondroitinase AC-resistant material. These results provide evidence that vanadate selectively stimulates the synthesis of proteoglycans characteristically found in cartilage by rabbit costal chondrocyte cultures.  相似文献   

4.
The synthesis and distribution of hyaluronate and proteoglycan were studied in bovine articular cartilage in short-term explant culture with [3H]acetate and H2(35)SO4 as precursors. The incorporation of [3H]acetate into hyaluronate and sulphated glycosaminoglycans was linear with time, except that hyaluronate synthesis showed a marked lag at the beginning of the incubation. [3H]Hyaluronate represented 4-7% of the total [3H]glycosaminoglycans synthesized over a 6 h period. However, the distributions of [3H]hyaluronate and 3H-labelled sulphated glycosaminoglycans were different: about 50% of the newly synthesized [3H]hyaluronate appeared in the medium, compared with less than 5% of the 3H-labelled sulphated proteoglycans. A pulse-chase experiment revealed that the release of newly synthesized [3H]hyaluronate from cartilage was rapid. No difference was observed in the distribution of [3H]hyaluronate between medium and tissue by cartilage from either the superficial layer or the deep layer of articular cartilage. When articular cartilage was incubated with 0.4 mM-cycloheximide, proteoglycan synthesis was markedly inhibited, whereas the synthesis of hyaluronate was only partially inhibited and resulted in more of the newly synthesized hyaluronate being released into the medium. Analysis of the hydrodynamic size of [3H]hyaluronate isolated from cartilage on Sephacryl-1000 revealed one population that was eluted as a broad peak (Kav. less than 0.7), compared with two populations (Kav. greater than 0.5 and less than 0.5) appearing in the medium of cultures. These data suggest that hyaluronate is synthesized in excess of proteoglycan synthesis and that the hyaluronate that is not complexed with proteoglycans is rapidly lost from the tissue.  相似文献   

5.
The effect of tunicamycin (TM) on the synthesis and secretion of sulfated proteoglycans and hyaluronate was examined in chick embryo fibroblasts and chondrocytes. The incorporation of the precursors [3H]glucosamine, [3H]mannose and [35S]sulfate into glycoconjugates in both the cell layer and medium of cultures was determined. In the chick embryo fibroblast, but not in the chondrocyte, synthesis of sulfated proteoglycan was inhibited 60–75% by TM (5 × 10−8 M), while synthesis of hyaluronate and protein was only inhibited slightly. The inhibition of sulfate incorporation into glycosaminoglycans of the chick embryo fibroblast was overcome to a great extent by addition of β-xyloside, which provides an exogenous initiator for chondroitin sulfate synthesis. TM treatment also altered cell shape and surface morphology in chick embryo fibroblasts, as observed by phase contrast and scanning electron microscopy (SEM). Cells treated with TM became rounded, and increased numbers of microvilli and blebs appeared on the cell surface. These alterations in cell morphology were reversed by removal of TM, but not by exogenous addition of xyloside, chondroitin sulfate or the adhesive cell surface glycoprotein fibronectin. These results demonstrate that TM inhibits synthesis of sulfated proteoglycans in the chick embryo fibroblast and causes a dramatic alteration in cell shape and surface morphology.  相似文献   

6.
Rat ovarian granulosa cells, isolated from immature female rats 48 h after stimulation with 5 IU of pregnant mare's serum gonadotropin, were maintained in culture. The effects of monensin, a monovalent cationic ionophore, on various aspects of proteoglycan metabolism were studied by metabolically labeling cultures with [35S]sulfate, [3H]glucosamine, or [3H]glucose. Monensin inhibited post-translational modification of both heparan sulfate (HS) proteoglycans and dermatan sulfate (DS) proteoglycans, resulting in decreased synthesis of completed proteoglycans [( 35S]sulfate incorporation decreased to 10% of control by 30 microM monensin, with an ED50 approximately 1 microM). Proteoglycans synthesized in the presence of monensin showed undersulfation of both DS and HS glycosaminoglycans and altered N-linked and O-linked oligosaccharides, suggesting that the processing of all sugar moieties is closely associated. Monensin caused a decrease in the endogenous sugar supply to the UDP-N-acetylhexosamine pool as indicated by an increased 3H incorporation into DS chains [( 3H]glucosamine as precursor) in spite of the decrease in glycosaminoglycan synthesis. Monensin reduced and delayed transport of both secretory and membrane-associated proteoglycans from the Golgi complex to the cell surface. It took 2-4 min for newly labeled proteoglycans to reach the main transport process inhibited by monensin. Monensin at 30 microM did not prevent internalization of cell surface 35S-labeled proteoglycans but almost completely inhibited their intracellular degradation to free [35S]sulfate (ED50 approximately 1 microM), resulting in intracellular accumulation of both DS and HS proteoglycans. Pulse-chase experiments demonstrated that one of the intracellular degradation pathways involving proteolysis of both DS and HS proteoglycans and limited endoglycosidic cleavage of HS continued to operate in the presence of monensin. These results suggest that the intracellular degradation of proteoglycans involve both acidic and nonacidic compartments with monensin inhibiting those processes that normally occur in such acidic compartments as endosomes or lysosomes by raising their pH.  相似文献   

7.
Tunicamycin (5-100 micrograms/ml) inhibits total [3H]hyaluronate synthesis in cultures of Swarm rat chondrosarcoma chondrocytes by approx. 15%. In agreement with previous results (Lohmander, L.S., Fellini, S.K., Kimura, J.H., Stevens, R.L. and Hascall, V.C. (1983) J. Biol. Chem. 258, 12280-12286) the relative decrease in [3H]hyaluronate radioactivity in the culture medium was greater than in the cell layer. Treated cultures show a concentration-related decrease in the proportion of medium 35S-labelled proteoglycans forming 'natural aggregates'. Pulse-chase experiments in cultures pretreated with tunicamycin (100 micrograms/ml, 13 h) showed that 30-40% of the total [3H]hyaluronate synthesized is released more slowly from these chondrocytes than from control culture chondrocytes. Release of some hyaluronate molecules may be delayed by 6 h or more. After a 24 h chase period almost all the [3H]hyaluronate is released from the cells. The proportion of 35S-labelled proteoglycans present as aggregates in the 24 h chase medium (57%) remained depressed compared to controls (81%), although the monomers could form aggregates if exogenous hyaluronate was added. Hyaluronate synthesized in the presence of tunicamycin has the same hydrodynamic size as control culture hyaluronate, as assessed by its sedimentation profile in CsSO4 gradients and its chromatographic profile on a dissociative Sephacryl S-1000 column.  相似文献   

8.
Previously, we showed that fetal bovine cartilage contains a polypeptide that stimulates the incorporation of [35S]sulfate into proteoglycans synthesized by rat and rabbit costal chondrocytes in culture. In this paper, we report that the cartilage-derived factor (CDF) increases not only [35S]sulfate incorporation but also [3H]thymidine incorporation into rabbit chondrocytes in monolayer culture. The dose-response curve of CDF stimulation of DNA synthesis was similar in profile to that of CDF stimulation of proteoglycan synthesis. In addition, CDF markedly enhanced [3H]uridine incorporation into rabbit chondrocytes and significantly enhanced [3H]serine incorporation into total protein. These findings indicate that fetal bovine cartilage contains a factor that shows somatomedin-like activity in monolayer cultures of rabbit chondrocytes.  相似文献   

9.
Proteoglycans synthesized by rat chondrosarcoma cells in culture are secreted into the culture medium through a pericellular matrix. The appearance of [35S]sulphate in secreted proteoglycan after a 5 min pulse was rapid (half-time, t 1/2 less than 10 min), but that of [3H]serine into proteoglycan measured after a 15 min pulse was much slower (t 1/2 120 min). The incorporation of [3H]serine into secreted protein was immediately inhibited by 1 mM-cycloheximide, but the incorporation of [35S]sulphate into proteoglycans was only inhibited gradually(t 1/2 79 min), suggesting the presence of a large intracellular pool of proteoglycan that did not carry sulphated glycosaminoglycans. Cultures were pulsed with [3H]serine and [35S]sulphate and chased for up to 6 h in the presence of 1 mM-cycloheximide. Analysis showed that cycloheximide-chased cells secreted less than 50% of the [3H]serine in proteoglycan of control cultures and the rate of incorporation into secreted proteoglycan was decreased (from t 1/2 120 min to t 1/2 80 min). Under these conditions cycloheximide interfered with the flow of proteoglycan protein core along the route of intracellular synthesis leading to secretion, as well as inhibiting further protein core synthesis. The results suggested that the newly synthesized protein core of proteoglycan passes through an intracellular pool for about 70-90 min before the chondroitin sulphate chains are synthesized on it, and it is then rapidly secreted from the cell. Proteoglycan produced by cultures incubated in the presence of cycloheximide and labelled with [35S]sulphate showed an increase with time of both the average proteoglycan size and the length of the constituent chondroitin sulphate chain. However, the proportion of synthesized proteoglycans able to form stable aggregates did not alter.  相似文献   

10.
The effects of tunicamycin, an inhibitor of N-linked oligosaccharide biosynthesis, on the synthesis and turnover of proteoglycans were investigated in rat ovarian granulosa cell cultures. The synthesis of proteoglycans was inhibited (40% of the control at 1.6 micrograms/ml tunicamycin) disproportionately to that of general protein synthesis measured by [3H]serine incorporation (80% of control). Proteoglycans synthesized in the presence of tunicamycin lacked N-linked oligosaccharides but contained apparently normal O-linked oligosaccharides. The dermatan sulfate and heparan sulfate chains of the proteoglycans had the same hydrodynamic size as control when analyzed by Sepharose 6B chromatography. However, the disulfated disaccharide content of the dermatan sulfate chains was reduced by tunicamycin in a dose-dependent manner, implying that the N-linked oligosaccharides may be involved in the function of a sulfotransferase which is responsible for sulfation of the iduronic acid residues. When [35S]sulfate and [3H]glucosamine were used as labeling precursors, the ratio of 35S/3H in chondroitin 4-sulfate was reduced to approximately 50% of the control by tunicamycin, indicating that the drug reduced the supply of endogenous sugar to the UDP-N-acetylhexosamine pool. Neither transport of proteoglycans from Golgi to the cell surface nor their turnover from the cell surface (release into the medium, or internalization and subsequent intracellular degradation) was affected by the drug. Addition of mannose 6-phosphate to the culture medium did not alter the proteoglycan turnover. When granulosa cells were treated with cycloheximide, completion of proteoglycan diminished with a t1/2 of approximately 12 min, indicating the time required for depleting the core protein precursor pool. The glycosaminoglycan synthesizing capacity measured by the addition of p-nitrophenyl-beta-xyloside, however, lasted longer (t1/2 of approximately 40 min). Tunicamycin decreased the core protein precursor pool size in parallel to decreased proteoglycan synthesis, both of which were significantly greater than the inhibition of general protein synthesis. This suggests two possibilities: tunicamycin specifically inhibited the synthesis of proteoglycan core protein, or more likely a proportion of the synthesized core protein precursor (approximately 50%) did not become accessible for post-translational modifications, and was possibly routed for premature degradation.  相似文献   

11.
Turnover of proteoglycans in cultures of bovine articular cartilage   总被引:8,自引:0,他引:8  
Proteoglycans in cultures of adult bovine articular cartilage labeled with [35S]sulfate after 5 days in culture and maintained in medium containing 20% fetal calf X serum had longer half-lives (average 11 days) compared with those of the same tissue maintained in medium alone (average 6 days). The half-lives of proteoglycans in cultures of calf cartilage labeled after 5 days in culture and maintained in medium with serum were considerably longer (average 21 days) compared to adult cartilage. If 0.5 mM cycloheximide was added to the medium of cultures of adult cartilage, or the tissue was maintained at 4 degrees C after labeling, the half-lives of the proteoglycans were greater, 24 and greater than 300 days, respectively. Analyses of the radiolabeled proteoglycans remaining in the matrix of the tissue immediately after labeling the tissue and at various times in culture revealed two main populations of proteoglycans; a large species eluting with Kav of 0.21-0.24 on Sepharose CL-2B, of high bouyant density and able to form aggregates with hyaluronate, and a small species eluting with a Kav of 0.63-0.70 on Sepharose CL-2B, of low buoyant density, containing only chondroitin sulfate chains, and unable to form aggregates with hyaluronate. The larger proteoglycan had shorter half-lives than the smaller proteoglycan; in cartilage maintained with serum, the half-lives were 9.8 and 14.5 days, respectively. Labeling cartilage with both [3H]leucine and [35S]sulfate showed the small proteoglycan to be a separate synthetic product. The size distribution of 35S-labeled proteoglycans lost into the medium was shown to be polydisperse on Sepharose CL-2B, the majority eluting with a Kav of 0.27 to 0.35, of high buoyant density, and unable to aggregate with hyaluronate. The size distribution of glycosaminoglycans from 35S-labeled proteoglycans appearing in the medium did not differ from that associated with labeled proteoglycans remaining in the matrix.  相似文献   

12.
Proteoglycan synthesis by cultured chondrocytes from the Swarm rat chondrosarcoma was examined after treatment with 0.1 mg/ml of cycloheximide which inhibited [3H]serine incorporation into total protein by greater than 90%. Incorporation of [35S]sulfate into proteoglycans decreased with nearly first order kinetics (t 1/2 = 96 +/- 6 min) with an accompanying increase in the size of the proteoglycan molecules, primary due to an increase in chondroitin sulfate chain sizes. After 5 h of cycloheximide treatment, when [35S]sulfate incorporation was inhibited by about 90%, addition of 1 mM beta-D-xyloside restored 76% of the incorporation into chondroitin sulfate observed in cultures treated only with xyloside. This suggests that the biochemical pathways for the affected by cycloheximide treatment. Cultures were prelabeled for 15 min with either [3H]serine or [35S]-methionine, and then cycloheximide was added to block further protein synthesis. Both precursors appeared in completed proteoglycan molecules with nearly first order kinetics with t 1/2 values of 92 +/- 8 and 101 +/- 11 min for [3H]serine and [35S]methionine, respectively, values in close agreement with the t 1/2 from the [35S]sulfate data. These results suggest that after cycloheximide treatment, the rate of [35S]sulfate incorporation into proteoglycan, after a correction for increases in chondroitin sulfate chain size, was directly proportional to the size of the intracellular pool of core protein. From the steady state rate of proteoglycan synthesis (estimated to be about 80 ng/min/10(6) cells in separate experiments) and a corrected t 1/2 value of 60 min, the amount of precursor core protein can be calculated to be about 500 ng/10(6) cells in these experiments.  相似文献   

13.
We studied the effect of the depletion of glutathione on the synthesis of proteoglycan and collagen in cultured chick chondrocytes. When the cultured chondrocytes were incubated with 1 mM buthionine sulfoximine (BSO), a specific inhibitor of gamma-glutamyl-cysteine synthetase, the intracellular glutathione level markedly dropped within 12 h with no loss of cell viability. Incorporation of 35SO2-4 into proteoglycan was lowered in the presence of BSO. When the 35S-labeled proteoglycans were separated into two fractions by glycerol density gradient centrifugation, the inhibitory effect of BSO on the synthesis of proteoglycan was greater in the fast-sedimenting proteoglycan fraction, which consisted mainly of cartilage specific large proteoglycan (PG-H), than in the slowly sedimenting proteoglycan fraction. The inhibition by BSO of the synthesis of core protein-free glycosaminoglycan chains primed by p-nitrophenyl-beta-D-xyloside was smaller than the inhibition of the synthesis of proteoglycan. Analysis of glycosaminoglycans labeled with [3H]glucosamine indicated that the treatment of chondrocytes with BSO resulted in a small increase in the proportion of synthesis of hyaluronic acid to the synthesis of total glycosaminoglycan. The incorporation of [3H]proline into collagen was also inhibited by BSO. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of the 3H-labeled collagen showed that, in the presence of BSO, processing of Type II collagen appeared to slow down and the proportion of Type X collagen synthesis was reduced.  相似文献   

14.
Confluent cultures of mouse aortic endothelial (END-D) were incubated with either [35S]methionine or 35SO4 2-, and the radiolabelled proteoglycans in media and cell layers were analysed for their hyaluronate-binding activity. The proteoglycan subfraction which bound to hyaluronate accounted for about 18% (media) and 10% (cell layers) of the total 35S radioactivity of each proteoglycan fraction. The bound proteoglycan molecules could be dissociated from the aggregates either by digestion with hyaluronate lyase or by treatment with hyaluronate decasaccharides. Digestion of [methionine-35S]proteoglycans with chondroitinase and/or heparitinase, followed by SDS/polyacrylamide-gel electrophoresis, indicated that the medium and cell layer contain at least three chondroitin sulphate proteoglycans, one dermatan sulphate proteoglycan, and two heparan sulphate proteoglycans which differ from one another in the size of core molecules. Among these, only the hydrodynamically large chondroitin sulphate species with an Mr 550,000 core molecule was shown to bind to hyaluronate. A very similar chondroitin sulphate proteoglycan capable of binding to hyaluronate was also found in cultures of calf pulmonary arterial endothelial cells (A.T.C.C. CCL 209). These observations, together with the known effects of hyaluronate on various cellular activities, suggest the existence of possible specialized functions of this proteoglycan subspecies in cellular processes characteristic of vascular development and diseases.  相似文献   

15.
The effects of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3), an active form of vitamin D3, on the metabolism of proteoglycans by an osteoblastic cell line MC3T3-E1 were studied. Cells metabolically labeled with [35S]sulfate and/or [3H]glucosamine synthesized large and small dermatan sulfate proteoglycans and heparan sulfate proteoglycan. The incorporation of [35S]sulfate into proteoglycans for 1 h was reduced by 1,25-(OH)2D3 in a dose-dependent manner with a maximum reduction of 40% obtained at 10(-8)M 1,25-(OH)2D3. This effect was observed for all the proteoglycans with the decrease for the large dermatan sulfate proteoglycan most prominent. Treatment with 1,25-(OH)2D3 did not influence the degree of sulfation nor the molecular size of the glycosaminoglycan chains. Thus, the change in the incorporation of [35S] sulfate reflects net change in the synthesis of proteoglycans. When cells were treated with beta-D-xyloside, 1,25-(OH)2D3 also inhibited net synthesis of dermatan sulfate glycosaminoglycan chains on this exogenous substrate suggesting that it decreases the capacity of the cells for glycosaminoglycan synthesis. The incorporation of [3H]glucosamine into hyaluronic acid was also inhibited up to 70% by 10(-8) M 1,25-(OH)2D3. Treatment with 24,25-dihydroxyvitamin D3 did not cause significant changes in the proteoglycan synthesis. Degradation of proteoglycans associated with the cell layer was enhanced by treatment with 1,25-(OH)2D3 at 10(-8) M. Proteoglycans exogenously added to the culture were also degraded with a cell-mediated process which was stimulated by treatment with 10(-8) M 1,25-(OH)2D3. These results demonstrate that 1,25-(OH)2D3 reduces the synthesis and stimulates the degradation of proteoglycans in osteoblastic cells in culture.  相似文献   

16.
17.
Proteoglycan monomer and link protein isolated from the Swarm rat chondrosarcoma both contain glycosylamine-linked oligosaccharides. In monomer, these N-linked oligosaccharides are concentrated in a region of the protein core which interacts specifically with both hyaluronate and link protein to form proteoglycan aggregates present in cartilage matrix. Chondrocyte cultures were treated with tunicamycin to inhibit synthesis of the N-linked oligosaccharides, and the ability of the deficient proteoglycan and link protein to form aggregates was studied. Cultures were pretreated with tunicamycin for 3 h and then labeled with either [3H]mannose, [3H]glucosamine, [3H]serine, or with [35S]sulfate for 6 h in the presence of tunicamycin. Formation of link protein-stabilized proteoglycan aggregates in the culture medium was inhibited by up to 40% when the cells were treated with 3 micrograms of tunicamycin/ml, a concentration which inhibited 3H incorporation with mannose as a precursor by about 90%, but by only 15% with glucosamine as a precursor. When exogenous proteoglycan aggregate was added to the culture medium, however, it was found that both endogenous monomer and link protein synthesized in the presence of tunicamycin were fully able to form link-stabilized aggregates. This suggests that glycosylamine-linked oligosaccharides on monomer and on link protein are not necessary for their specific interactions with hyaluronate and with each other. Further, although tunicamycin did not inhibit net synthesis of hyaluronate, transfer of hyaluronate from the cell layer to the culture medium was retarded. This phenomenon accounted for most if not all of the decrease in the amount of proteoglycan which formed aggregates in the medium of cultures treated with tunicamycin.  相似文献   

18.
观察了ConA对培养软骨细胞PG合成代谢的影响。证实ConA能够使培养的软骨细胞高分子硫酸化PG的合成增加3~4倍,其分子量、硫酸化部位和硫酸化程度与对照组相比无明显差异,是具有正常结构的软骨型PG。ConA对低分子型PG的合成未见明显的影响。ConA促进PG合成的作用可由MeMan完全解除,比具有同样效应的激素、生长因子都强,并有明显的凝集素特异性。推测ConA的作用可能与软骨细胞膜或细胞内的分化诱导因子的受体或软骨中存在的ConA软骨细胞分化因子有关。  相似文献   

19.
The present study examined the effects of high doses of vanadate on glycosaminoglycan (GAG) synthesis and tyrosine phosphorylation in rabbit chondrocytes in confluent cultures. Although 6 microM vanadate increased the incorporation of [3H]glucosamine into chondroitin sulfate proteoglycans twofold, 40-60 microM vanadate suppressed this incorporation fourfold. Although 6 microM vanadate had little effect on [3H]glucosamine incorporation into hyaluronate, 40-60 microM vanadate increased this incorporation threefold. Chemical analyses confirmed that the increase in [3H]glucosamine incorporation into hyaluronate and the decrease in the incorporation into chondroitin sulfate proteoglycan correlated with increased hyaluronate content and decreased chondroitin sulfate content in the cell layers of vanadate-transformed cells. Chondrocytes exposed to 40-60 microM vanadate became typically transformed spindlelike cells. Furthermore, vanadate, at 6 and 60 microM, increased the overall level of phosphotyrosine by 8- and 31-fold, respectively, and 60 microM vanadate enhanced phosphorylation of many phosphotyrosine-containing proteins. These observations suggest that vanadate induces transformation-associated changes in the pattern of GAG synthesis when it induces excess phosphorylation on tyrosine in chondrocyte proteins.  相似文献   

20.
Incorporation of [3H]glucosamine into hyaluronate synthesized by chondrocyte cultures was dependent on the concentration of foetal calf serum in the culture medium. [3H]Hyaluronate levels in cultures supplemented with 2% serum, or maintained without serum, were about 60 and 43%, respectively, of that in cultures maintained with 15% serum. Addition of insulin to cultures maintained with 15% serum had no significant effect on [3H]hyaluronate synthesis. Addition of the hormone to cultures maintained with 2% serum increased [3H]hyaluronate synthesis to levels either the same (1 ng insulin/ml), or greater than (100 ng insulin/ml) that in cultures maintained with 15% serum. The [3H]hyaluronate synthesized by the cultures was of very high molecular weight irrespective of the level of synthesis. [3H]Hyaluronate formed about 12% of the total [3H]glycosaminoglycan synthesized under all culture conditions. Synthesis of 35S, 3H-labelled proteoglycan was reduced, or increased, by the same relative amounts as [3H]hyaluronate, under the different culture conditions. Incorporation of [3H]glucosamine into hyaluronate by near confluent cultures of fibroblasts derived from the Swarm rat chondrosarcoma was reduced by 50% in cultures treated with 2% foetal calf serum compared to those maintained with 15% serum. [3H]Hyaluronate synthesis by fibroblast cultures treated with 2% serum was not stimulated by addition of insulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号