首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H T Cho  H Kende 《The Plant cell》1997,9(9):1661-1671
Expansins are a family of proteins that catalyze long-term extension of isolated cell walls. Previously, two expansin proteins have been isolated from internodes of deepwater rice, and three rice expansin genes, Os-EXP1, Os-EXP2, and Os-EXP3, have been identified. We report here on the identification of a fourth rice expansin gene, Os-EXP4, and on the expression pattern of the rice expansin gene family in deepwater rice. Rice expansin genes show organ-specific differential expression in the coleoptile, root, leaf, and internode. In these organs, there is increased expression of Os-EXP1, Os-EXP3, and Os-EXP4 in developmental regions where elongation occurs. This pattern of gene expression is also correlated with acid-induced in vitro cell wall extensibility. Submergence and treatment with gibberellin, both of which promote rapid internodal elongation, induced accumulation of Os-EXP4 mRNA before the rate of growth started to increase. Our results indicate that the expression of expansin genes in deepwater rice is differentially regulated by developmental, hormonal, and environmental signals and is correlated with cell elongation.  相似文献   

2.
We investigated the involvement of expansin action in determining the growth rate of internodes of floating rice (Oryza sativa L.). Floating rice stem segments in which rapid internodal elongation had been induced by submergence for 2 days were exposed to air or kept in submergence for 2 more days. Both treatments reduced the elongation rate of the internodes, and the degree of reduction was much greater in air-exposed stem segments than in continually submerged segments. These rates of internodal elongation were correlated with acid-induced cell wall extensibility and cell wall susceptibility to expansins in the cell elongation zone of the internodes, but not with extractable expansin activity. These results suggest that the reduced growth rate of internodes must be due, at least in part, to the decrease in acid-induced cell wall extensibility, which can be modulated through changes in the cell wall susceptibility to expansins rather than through expansin activity. Analysis of the cell wall composition of the internodes showed that the cellulosic and noncellulosic polysaccharide contents increased in response to exposure to air, but they remained almost constant under continued submergence although the cell wall susceptibility to expansins gradually declined even under continued submergence. The content of xylose in noncellulosic neutral sugars in the cell walls of internodes was closely and negatively correlated with changes in the susceptibility of the walls to expansins. These results suggest that the deposition of xylose-rich polysaccharides into the cell walls may be related to a decrease in acid-induced cell wall extensibility in floating rice internodes through the modulation of cell wall susceptibility to expansins.  相似文献   

3.
KUTSCHERA  U.; KENDE  H. 《Annals of botany》1989,63(3):385-388
Partial submergence induces rapid internodal growth in deepwaterrice (Oryza saliva L., cv. Habiganj Aman II). The infrastructureof the cell wall/plasmalemma interface of air-grown and submergedinternodes was investigated in the region where cell elongationtakes place. In submerged internodes, electron-dense particlesof about 100 nm diameter were found. These particles were detectableonly at the thick outer wall of the outer epidermis but notat the inner walls. In air-grown control plants, no such granuleswere visible. We suggest that these particles are related tothe process of cell wall growth. The wall weight per unit lengthwas 75% lower in the submerged internode as compared to thatof the air-grown control. This indicates that secondary wallformation is suppressed during submergence of the plant Oryza saliva, deepwater rice, intemodal growth, electron-dense particles  相似文献   

4.
Partial submergence induces rapid internodal elongation in deepwater rice (Oryza sativa L., cv Habiganj Aman II). We measured in vivo extensibility, tissue tension, hydraulic conductance and osmotic potential in the region of cell elongation in the uppermost internode. The in vivo extensibility of the internode, measured by stretching of living tissue with a custom-made constant stress extensiometer, rose rapidly following submergence of the plant. Both the elastic (Eel) and plastic (Epl) extensibility increased when growth of the internode was induced. The submerged internode displayed tissue tension (elastic outward bending of longitudinally split internode sections); in air-grown control internodes, no such bending occurred. The hydraulic conductance, estimated from the kinetics of tissue shrinkage in 0.5 molar mannitol and subsequent swelling in distilled water, was not changed by submergence. The osmotic potential, measured with a dew-point hygrometer using frozen-thawed tissue, was only 18% less negative in the submerged internode than in the air-grown control. This indicates that osmoregulation takes place in rapidly elongating rice internodes. We suggest that the rapid expansion of the newly formed internodal cells of submerged plants is controlled by the yielding properties (Epl) of the cell walls. Experiments with excised stem sections indicate that gibberellin is involved in increasing the Epl of the elongating cell walls.  相似文献   

5.
Submergence of the stem induces rapid internodal elongation in deepwater rice (Oryza sativa L. cv. Habiganj Aman II). A comparative anatomical study of internodes isolated from airgrown and partially submerged rice plants was undertaken to localize and characterize regions of growth and differentiation in rice stems. Longitudinal sections were examined by light and scanning-electron microscopy. Based on cell-size analysis, three zones of internodal development were recognized: a zone of cell division and elongation at the base of the internode, designated the intercalary meristem (IM); a zone of cell elongation without concomitant cell division; and a zone of cell differentiation where neither cell division nor elongation occur. The primary effects of submergence on internodal development were a threefold increase in the number of cells per cell file resulting from a decrease in the cell-cycle time from 24 to 7 h within the IM; an expansion of the cell-elongation zone from 5 to 15 mm leading to a threefold greater final cell length; and a suppression of tissue differentiation as indicated by reduced chlorophyll content and a lack of secondary wall formation in xylem and cortical sclerenchyma. These data indicate that growth of deepwater-rice internoes involves a balance between elongation and differentiation of the stem. Submergence shifts this balance in favor of growth.Abbreviations GA gibberellin - IM intercalary meristem  相似文献   

6.
Expansins in deepwater rice internodes.   总被引:17,自引:1,他引:16       下载免费PDF全文
H T Cho  H Kende 《Plant physiology》1997,113(4):1137-1143
Cell walls of deepwater rice (Oryza sativa L.) internodes undergo long-term extension (creep) when placed under tension in acidic buffers. This is indicative of the action of the cell wall-loosening protein expansin. Wall extension had a pH optimum of around 4.0 and was abolished by boiling. Acid-induced extension of boiled cell walls could be reconstituted by addition of salt-extracted rice or cucumber cell wall proteins. Cucumber expansin antibody recognized a single protein band of 24.5-kD apparent molecular mass on immunoblots of rice cell wall proteins. Expansins were partially purified by concanavalin A affinity chromatography and sulfopropyl (SP) cation-exchange chromatography. The latter yielded two peaks with extension activity (SP20 and SP29), and immunoblot analysis showed that both of these active fractions contained expansin of 24.5-kD molecular mass. The N-terminal amino acid sequence of SP20 expansin is identical to that deduced from the rice expansin cDNA Os-EXP1. The N-terminal amino acid sequence of SP29 expansin matches that deduced from the rice expansin cDNA Os-EXP2 in six of eight amino acids. Our results show that two expansins occur in the cell walls of rice internodes and that they may mediate acid-induced wall extension.  相似文献   

7.
Submergence induces rapid elongation of rice coleoptiles (Oryza sativa L.) and of deepwater rice internodes. This adaptive feature helps rice to grow out of the water and to survive flooding. Earlier, we found that the growth response of submerged deepwater rice plants is mediated by ethylene and gibberellin (GA). Ethylene promotes growth, at least in part, by increasing the responsiveness of the internodal tissue to GA. In the present work, we examined the possibility that increased responsiveness to GA was based on a reduction in endogenous abscisic acid (ABA) levels. Submergence and treatment with ethylene led, within 3 hours, to a 75% reduction in the level of ABA in the intercalary meristem and the growing zone of deepwater rice internodes. The level of GA1 increased fourfold during the same time period. An interaction between GA and ABA could also be shown by application of the hormones. ABA inhibited growth of submerged internodes, and GA counteracted this inhibition. Our results indicate that the growth rate of deepwater rice internodes is determined by the ratio of an endogenous growth promoter (GA) and a growth inhibitor (ABA). We also investigated whether ABA is involved in regulating the growth of rice coleoptiles. Rice seedlings were grown on solutions containing fluridone, an inhibitor of carotenoid and, indirectly, of ABA biosynthesis. Treatment with fluridone reduced the level of ABA in coleoptiles and first leaves by more than 75% and promoted coleoptile growth by more than 60%. Little or no enhancement of growth by fluridone was observed in barley, oat, or wheat. The involvement of ABA in determining the growth rate of rice coleoptiles and deepwater rice internodes may be related to the semiaquatic growth habit of this plant.  相似文献   

8.
Partial submergence or treatment with either ethylene or gibberellicacid (GA3 induces rapid growth in deepwater rice (Oryza sativaL.). We correlated the synthesis of two cell wall componentswith two phases of internodal elongation, namely (13,14)-ß-glucanformation with cell elongation and lignification with differentiationof the secondary cell wall and cessation of growth. The contentof ß-glucan was highest in the zone of cell elongationin internodes of air-grown plants and plants that were inducedto grow rapidly by submergence. In the intercalary meristemand in the differentiation zone of the internode, ß-glucanlevels were ca. 70% lower than in the zone of cell elongation.The outer cell layers, enriched in epidermis, contained moreß-glucan in submerged, rapidly growing internodesthan in air-grown, control internodes. The ß-glucancontent of the inner, parenchymal tissue was unaffected or slightlylowered by submergence. The epidermis appears to be the growth-limitingstructure of rapidly growing rice internodes. We hypothesizethat elevated levels of ß-glucan contribute to elongationgrowth by increasing the extensibility of the cell wall. Lignificationwas monitored by measuring the content of lignin and the activitiesof two enzymes of the lignin biosynthetic pathway, coniferylalcohol dehydrogenase (CAD) and phenylalanine ammonia-lyase(PAL), in growing and non-growing regions of the internode.Using submerged whole plants and GA3-treated excised stem segments,we showed that lignin content and CAD activity were up to sixfoldlower in newly formed internodal tissue of rapidly growing ricethan in slowly growing tissue. No differences were observedin parts of the internode that had been formed prior to inductionof growth. PAL activity was reduced throughout the internodeof submerged plants. We conclude that lignification is one ofthe processes that is suppressed to permit rapid growth. 1 This work was supported by the National Science Foundationthrough grants No. DCB-8718873 and DCB-9103747 and by the Departmentof Energy through grant No. DE-FGO2-90ER20021. M.S. was therecipient of a fellowship from the Max Kade Foundation.  相似文献   

9.
10.
宋平  周燮 《植物学报》2000,17(1):46-51
淹水可促进深水稻节间快速伸长生长,其主要受内源赤霉素、乙烯、脱落酸等激素信号分子的调控。淹水能促进深水稻植株体内乙烯、赤霉素的生物合成、抑制脱落酸的生物合成,外源乙烯、赤霉素会加速深水稻节间伸长,而外源脱落酸抑制淹水节间的伸长,其中赤霉素是直接作用因子,乙烯能降低内源脱落酸水平、增加节间对赤霉素的敏感性;还与渗透调节、细胞壁组份如膨胀素等有关,淹水及赤霉素都大大增加了膨胀素基因的表达。并就深水稻的进一步研究进行了展望。  相似文献   

11.
深水稻节间伸长生长的机制   总被引:9,自引:1,他引:8  
宋平  周燮 《植物学通报》2000,17(1):46-51
淹水可促进深水稻节间快速伸长生长,其主要受内源赤霉素、乙烯、脱落酸等激素信号分子的调控。淹水能促进深水稻植物株体内乙烯、赤霉素的生物合成、抑制脱落酸的生物合成,外源乙烯、赤霉素会加速深水稻节间伸长,而外源脱落酸抑制淹水节间的伸长,其中赤霉素是直接作用因子,乙烯能降低内源脱落酸水平、增加节地赤霉素的敏感性;还与渗透调节、细胞壁组份如膨胀素等有关,淹水及赤霉素都大大增加了膨胀素基因的表达。并就深水稻的  相似文献   

12.
In excised stem segments of floating rice (Oryza sativa L.), as well as in intact plants, submergence greatly stimulates the elongation of internodes. The differences in the composition of cell wall polysaccharides along the highest internodes of submerged and air-grown stem segments were examined. The newly elongated parts of internodes that had been submerged for two days contained considerably less cellulosic and noncellulosic polysaccharides than air-grown internodes, an indication that the cell walls of the newly elongated parts of submerged internodes are extremely thin. In the young parts of both air-grown and submerged internodes, the relative amounts of noncellulosic polysaccharides were equal to those of -cellulose, whereas the relative amounts of -cellulose were higher than those of noncellulosic polysaccharides in the upper, old parts. In the cell-elongation zones of both air-grown and submerged internodes, glucose was predominant among the noncellulosic neutral sugars of cell wall. The relative amount of glucose in noncellulosic neutral sugars decreased toward the upper, old parts of internodes, whereas that of xylose increased.  相似文献   

13.
Excised stem sections of deepwater rice (Oryza sativa L.) containing the highest internode were used to study the induction of rapid internodal elongation by gibberellin (GA). It has been shown before that this growth response is based on enhanced cell division in the intercalary meristem and on increased cell elongation. In both GA-treated and control stem sections, the basal 5-mm region of the highest internode grows at the fastest rate. During 24 h of GA treatment, the internodal elongation zone expands from 15 to 35 mm. Gibberellin does not promote elongation of internodes from which the intercalary meristem has been excised. The orientation of cellulose microfibrils (CMFs) is a determining factor in cell growth. Elongation is favored when CMFs are oriented transversely to the direction of growth while elongation is limited when CMFs are oriented in the oblique or longitudinal direction. The orientation of CMFs in parenchymal cells of GA-treated and control internodes is transverse throughout the internode, indicating that CMFs do not restrict elongation of these cells. Changes in CMF orientation were observed in epidermal cells, however. In the basal 5-mm zone of the internode, which includes the intercalary meristem, CMFs of the epidermal cell walls are transversely oriented in both GA-treated and control stem sections. In slowly growing control internodes, CMF orientation changes to the oblique as cells are displaced from this basal 5-mm zone to the region above it. In GA-treated rapidly growing internodes, the reorientation of CMFs from the transverse to the oblique is more gradual and extends over the 35-mm length of the elongation zone. The CMFs of older epidermal cells are obliquely oriented in control and GA-treated internodes. The orientation of the CMFs parallels that of the cortical microtubules. This is consistent with the hypothesis that cortical microtubules determine the direction of CMF deposition. We conclude that GA acts on cells that have transversely oriented CMFs but does not promote growth of cells whose CMFs are already obliquely oriented at the start of GA treatment.  相似文献   

14.
Submergence induces rapid elongation of deepwater rice (Oryza sativa L.) internodes. This adaptive feature allows deepwater rice to grow out of the water and to survive flooding. The growth response of submerged deepwater rice plants is, ultimately, elicited by gibberellin (GA). Little attention has been given to the synthesis and role of the cuticle during plant growth. We investigated two questions regarding the cuticle in rapidly elongating deepwater rice internodes: (a) how does cuticle formation keep pace with internodal growth, which can reach rates of up to 5 mm/h; and (b) does the cuticle contribute to tissue stress in rice internodes? Treatment with GA for 48 h caused an up to 60-fold increase in the incorporation of [14C]palmitic acid and an up to 6-fold increase in the incorporation of [14C]oleic acid into the cuticle of growing internodes. GA also caused a qualitative change in the incorporation pattern of palmitic acid into several cutin monomers, the most prominent of which was tentatively identified by thin-layer chromatography as a derivative of dihydroxyhexadecanoic acid. Rapidly growing plant organs exhibit longitudinal tissue stress: the epidermal cell layer is under tension with a tendency to contract, whereas the internal cells are under compression with a tendency to expand. As a result of tissue stress, longitudinally sliced sections of elongating internodes bend outward upon isolation from the plant. Treating rapidly growing rice internodes with cutinase reduced such outward bending, indicating that the cuticle contributes to tissue stress. Based on these results, we propose that rapidly elongating structures such as deepwater rice internodes constitute an excellent system to study cuticle formation at the biochemical and cellular level.  相似文献   

15.
We have shown previously that ethylene, which accumulates in the air spaces of submerged stem sections of rice (Oryza sativa L. cv “Habiganj Aman II”), is involved in regulating the growth response caused by submergence. The role of gibberellins in the submergence response was studied using tetcyclacis (TCY), a new plant growth retardant, which inhibits gibberellin biosynthesis. Stem sections excised from plants that had been watered with a solution of 1 micromolar TCY for 7 to 10 days did not elongate when submerged in the same solution or when exposed to 1 microliter per liter ethylene in air. Gibberellic acid (GA3) at 0.3 micromolar overcame the effect of TCY and restored the rapid internodal elongation in submerged and ethylene-treated sections to the levels observed in control sections that had not been treated with TCY. The effect of 0.01 to 0.2 micromolar GA3 on internodal elongation was enhanced two- to eight-fold when 1 microliter per liter ethylene was added to the air passing through the chamber in which the sections were incubated. GA3 and ethylene caused a similar increase in cell division and cell elongation in rice internodes. Thus, ethylene may cause internodal elongation in rice by increasing the activity of endogenous GAs. In internodes from which the leaf sheath had been peeled off, growth in response to submergence, ethylene and GA3 was severely inhibited by light.  相似文献   

16.
Twelve cultivars of rice (Oryza sativa L.), representing deepwater, short-statured, and semidwarf types, were tested for their response to submergence. The magnitude of the response varied between cultivars; however, all cultivars responded to submergence by rapid growth once internodal elongation had started. Three of these cultivars were tested for elongation capacity at four ages. The deepwater rice was capable of rapid internodal elongation in response to submergence at 4 weeks of age. Growth of the short-statured and semidwarf cultivars was not stimulated by submergence until about 10 weeks of age. In air, the internodes of deepwater rice grew slower than did those of the short-statured and semidwarf cultivars. We also investigated the elongation response of stem sections of all 12 cultivars to an atmosphere containing 3% O2, 6% CO2, 91% N2 (all by volume), and 1 microliter per liter ethylene. We found that the response of each of the non-deepwater cultivars was qualitatively and quantitatively similar to that of the deepwater rice.  相似文献   

17.
Previous work on the growth biophysics of maize (Zea mays L.) primary roots suggested that cell walls in the apical 5 mm of the elongation zone increased their yielding ability as an adaptive response to low turgor and water potential (psi w). To test this hypothesis more directly, we measured the acid-induced extension of isolated walls from roots grown at high (-0.03 MPa) or low (-1.6 MPa) psi w using an extensometer. Acid-induced extension was greatly increased in the apical 5 mm and was largely eliminated in the 5- to 10-mm region of roots grown at low psi w. This pattern is consistent with the maintenance of elongation toward the apex and the shortening of the elongation zone in these roots. Wall proteins extracted from the elongation zone possessed expansin activity, which increased substantially in roots grown at low psi w. Western blots likewise indicated higher expansin abundance in the roots at low psi w. Additionally, the susceptibility of walls to expansin action was higher in the apical 5 mm of roots at low psi w than in roots at high psi w. The basal region of the elongation zone (5-10 mm) did not extend in response to expansins, indicating that loss of susceptibility to expansins was associated with growth cessation in this region. Our results indicate that both the increase in expansin activity and the increase in cell-wall susceptibility to expansins play a role in enhancing cell-wall yielding and, therefore, in maintaining elongation in the apical region of maize primary roots at low psi w.  相似文献   

18.
The enhancement of internodal elongation in floating or deepwater rice (Oryza sativa L. cv. Habiganj Aman II) by treatment with ethylene or gibberellic acid (GA3) at high relative humidity (RH) is inhibited by abscisic acid (ABA). Here, we examined the interactive effects of ethylene, gibberellin (GA) and ABA at low RH on internodal elongation of deepwater rice stem segments. Although ethylene alone hardly promoted internodal elongation of stem sections at 30% RH, it enhanced the internodal elongation induced by GA3. Application of ABA alone to stem segments had no effect on internodal elongation. However, in the presence of ethylene and GA3 at 30% RH, ABA further promoted internodal elongation. This promotive effect of ABA was not found in the internodes of stem segments treated either with ethylene or with GA3 at 30% RH or in the internodes of stem segments treated with ethylene and/or GA3 at 100% RH.  相似文献   

19.
Ethylene decreases the content of endogenous abscisic acid (ABA) and increases the level of bioactive gibberellin A1 (GA1) in the submerged internodes of deepwater rice. During partial submergence, internodes of deepwater rice undergo rapid elongation as a result of ethylene accumulation in the internodal lacunae. In anin vitro experiment using stem sections from deepwater rice, treatment with 5 μL L-1 ethylene promoted stem growth by up to 3.2-foId times over air treatment. Expression patterns were analyzed for genes that encode GA- and ABA-biosynthesis enzymes to determine any possible molecular basis for the changes observed in GA1 and ABA contents as a result of ethylene action. Expression of theOsGA20ox2 andOsGA20ox4 genes, which encode GA 20-oxidase, and of theOsGA3ox2 gene, which encodes the enzyme that converts GA20 to CA1, was up-regulated, whereas that of three ABA-biosynthetic genes —OsNCED1, OsNCED2, andOsNCEDS-was down-regulated in the presence of ethylene. These results indicate that GA and ABA contribute equally to the submergence-or ethylene-induced stem elongation of deepwater rice via the coordinated and opposite regulation of biosynthesis.  相似文献   

20.
In the growing culm of C. alternifolius, surgical removal of parts indicated that the stimulus for the prolonged activity of the internodal intercalary meristem (IM) came from the matured leaves and upper internode and that buds were not involved in maintaining internodal growth. Decapitation of the culm resulted in cessation of internodal extension. Various growth regulators were applied to the decapitated internode, and both the total extension and growth rates were analyzed statistically. Gibberellin A3 (GA) and benzyladenine (BA) substituted for the excised parts in their effect on internodal extension. Indoleacetic acid (IAA) had little effect. (2-chloroethyl) trimethylammonium chloride (CCC) inhibited internodal growth, and its effects were reversed by GA. IAA was antagonistic to BA but not to GA. BA and GA were somewhat antagonistic. The quantitative effects of growth regulators on epidermal and ground parenchyma cell length and number of interstomatal cells were examined. Extension induced by GA was due to both cell division and cell elongation in the IM. Cells were longer, and fewer stomates differentiated than in the control. In internodes induced to extend by GA + BA cell division, cell length, and stomate differentiation were similar to the control. The results indicate that prolonged internodal IM activity is maintained by cytokinins and gibberellins coming from the matured upper portions of the culm. Changes in the levels of these regulators during growth presumably result in the histological gradient in the internode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号