首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cross-talk between integrin-mediated adhesion and growth factors has been described in many recent studies; however, the underlying mechanisms remain incompletely understood. We report here that detachment of cells from the extracellular matrix induced a decrease in both the autophosphorylation and protein levels of the platelet-derived growth factor receptor beta (PDGF-R beta), which was completely reversed upon replating cells on fibronectin. The effect occurred in all cells examined but to a greater extent in primary fibroblasts compared with established cell lines. Decreased PDGF-R levels in suspended cells correlated with ubiquitination of the PDGF-R and was blocked by treatment with inhibitors of the proteasome pathway. Unlike PDGF-induced down-regulation, detachment-induced degradation did not require receptor autophosphorylation, internalization, or tyrosine kinase activity. We conclude that cell detachment results in cellular desensitization to PDGF that is mediated by degradation of the PDGF-R via a novel ubiquitin-dependent pathway.  相似文献   

2.
Spatial and temporal separation of signal transduction pathways often determines the specificity in cellular responses. Recent advances have improved our understanding of how growth factor signalling is influenced by the formation of molecular complexes (signalosomes) in distinct cellular compartments. There has also been new insight into the mechanisms that determine the signalling competence of these complexes and their role in receptor endocytosis, retrograde trafficking in neurons and restricted protein biosynthesis, and many examples have been found where signalosome deregulation leads to disease.  相似文献   

3.
Epidermal growth factor (EGF) receptor (EGFR) signalling regulates diverse cellular functions, promoting cell proliferation, differentiation, migration, cell growth and survival. EGFR signalling is critical during embryogenesis, in particular in epithelial development, and disruption of the EGFR gene results in epithelial immaturity and perinatal death. EGFR signalling also functions during wound healing responses through accelerating wound re-epithelialisation, inducing cell migration, proliferation and angiogenesis. Upregulation of EGFR signalling is often observed in carcinomas and has been shown to promote uncontrolled cell proliferation and metastasis. Therefore aberrant EGFR signalling is a common target for anticancer therapies. Various reports indicate that EGFR signalling primarily occurs at the plasma membrane and EGFR degradation following endocytosis greatly attenuates signalling. Other studies argue that EGFR internalisation is essential for complete activation of downstream signalling cascades and that endosomes can serve as signalling platforms. The aim of this review is to discuss current understanding of intersection between EGFR signalling and trafficking.  相似文献   

4.
5.
6.
Caveolin is a major structural component of caveolae and has been implicated in the regulation of the function of several caveolae-associated signaling molecules. Platelet-derived growth factor (PDGF) receptors and caveolin were colocalized in the same subcellular fraction after sucrose density gradient fractionation of fibroblasts. Additionally, we found that the PDGF receptors interacted with caveolin in NIH3T3 fibroblast cells. We then examined whether caveolin directly binds to PDGF receptors and inhibits kinase activity using a recombinant PDGF receptor overexpressed in insect cells and peptides derived from the scaffolding domain of caveolin subtypes. We found the peptide from caveolin-1 and -3, but not -2, inhibited the autophosphorylation of PDGF receptors in a dose-dependent manner. Similarly, caveolin-1 and -3 peptides directly bound to PDGF receptors. Mutational analysis using a series of truncated caveolin-3 peptides (20-, 17-, 14-, and 11-mer peptides) revealed that at least 17 amino acid residues of the peptide were required to inhibit and directly bind to PDGF receptors. Thus, our findings suggest that PDGF receptors directly interact with caveolin subtypes, leading to the inhibition of kinase activity. Caveolin may be another regulating factor of PDGF-mediated tyrosine kinase signaling.  相似文献   

7.
Competition between 125I-labeled platelet-derived growth factor (PDGF) and unlabeled PDGF forms the basis of a specific "radio-receptor assay" for quantifying PDGF in clotted blood serum. Human clotted blood serum contains 15 ng/ml of PDGF by radio-receptor assay; this corresponds to a PDGF content of approximately 7.5 x 10(-5) pg per circulating platelet, a figure which is corroborated by purification data. Clotted blood sera from mammals, lower vertebrates and marine invertebrates were screened for homologues of human PDGF by radio-receptor assay. All tested specimens from phylum Chordata contain a mitogenic agent that competes with human PDGF for receptor binding. Sera from tunicates down on the chordate line of evolution and sera from all tested animals on the arthropod line of development were negative. The phylogenetic distribution of PDGF homologue does not correlate with platelet distribution since platelets and their precursor cell--the bone marrow megacaryocyte--are unique to the mammalian hematopoietic system. One anatomical feature appearing coordinately with PDGF on the vertebrate line of development is a pressurized circulatory system. The coincidental appearance of these features may lend support to the hypothesis that PDGF plays a role in maintenance and repair of the vascular lining in vivo.  相似文献   

8.
R? cells are 3T3-like cells derived from mouse embryos in which the insulin-like growth factor I (IGF-I) receptor (IGF-IR) genes have been disrupted by targeted homologous recombination. These cells cannot grow in serum-free medium supplemented by the growth factors that sustain the growth of other 3T3 cell lines, and cannot be transformed by oncogenes that easily transform wild type mouse embryo cells. We have used these cells to study the role of the IGF-IR in the growth and transformation of cells overexpressing the platelet-derived growth factor (PDGF)-b?b? receptor. We report that an overexpressed PDGF-b?b? receptor fails to induce mitogenesis or transformation in cells lacking the IGF-IR, while capable of doing so in cells expressing the IGF-IR. We conclude that the ability of the activated PDGF-b?b? receptor to stimulate cell proliferation and transformation requires a funcitional IGF-IR. © 1995 Wiley-Liss, Inc.  相似文献   

9.
Platelet derived growth factor receptor (PDGFR) became tyrosine autophosphorylated in rat mesangial cells shortly after platelet derived growth factor (PDGF) ligation in a tyrosine kinase inhibitor (tyrphostin AG 1296) sensitive manner. Ligand-independent, massive tyrosine PDGFR phosphorylation was achieved by diverse NO releasing compounds. Phosphorylation was slow compared to PDGF, revealed a concentration- and time-dependency, and was not mimicked by lipophilic cyclic-GMP analogues. Interleukin-1 beta/cAMP activated mesangial cells released NO and in turn showed PDGFR phosphorylation. A NO-synthase involvement was assured by L-NG-nitroarginine methyl ester inhibition. PDGFR phosphorylation was also achieved by the redox cycler 2,3-dimethoxy-1,4-naphthoquinone. NO- and O2(.-)-evoked PGDFR phosphorylation was N-acetylcysteine reversible. Cell free dephosphorylation assays revealed PDGFR dephosphorylation by tyrosine phosphatases. Receptor dephosphorylation by cytosolic phosphatases was completed within 30 min and was sensitive to the readdition of NO donors or orthovanadate. In addition, phosphatase activity determined in a direct dephosphorylation assay using the substrate para-nitrophenyl phosphate was attenuated by NO or vanadate. We conclude that cytosolic protein tyrosine phosphatases are targeted by exogenously supplied or endogenously generated NO in mesangial cells. Radical (NO. or O2.-) formation shifts the phosphorylation--dephosphorylation equilibrium towards phosphorylation, thus integrating redox-mediated responses into established signal transducing pathways.  相似文献   

10.
The receptor for hepatocyte growth factor, also known as scatter factor (HGF/SF), has recently been identified as the 190-kDa heterodimeric tyrosine kinase encoded by the MET proto-oncogene (p190MET). The signaling pathway(s) triggered by HGF/SF are unknown. In A549 cells, a lung epithelial cell line, nanomolar concentrations of HGF/SF induced tyrosine phosphorylation of the p190MET receptor. The autophosphorylated receptor coprecipitated with phosphatidylinositol 3-kinase (PI 3-kinase) activity. In GTL16 cells, a cell line derived from a gastric carcinoma, the p190MET receptor, overexpressed and constitutively phosphorylated on tyrosine, coprecipitated with PI 3-kinase activity and with the 85-kDa PI 3-kinase subunit. In these cells activation of protein kinase C or the increase of intracellular [Ca2+] inhibits tyrosine phosphorylation of the p190MET receptor as well as the association with both PI 3-kinase activity and the 85-kDa subunit of the enzyme. In an in vitro assay, tyrosine phosphorylation of the immobilized p190MET receptor was required for binding of PI 3-kinase from cell lysates. These data strongly suggest that the signaling pathway activated by the HGF/SF receptor includes generation of D-3-phosphorylated inositol phospholipids.  相似文献   

11.
Receptor tyrosine kinases (RTKs) direct diverse cellular and developmental responses by stimulating a relatively small number of overlapping signaling pathways. Specificity may be determined by RTK expression patterns or by differential activation of individual signaling pathways. To address this issue we generated knock-in mice in which the extracellular domain of the mouse platelet-derived growth factor alpha receptor (PDGFalphaR) is fused to the cytosolic domain of Drosophila Torso (alpha(Tor)) or the mouse fibroblast growth factor receptor 1 (alpha(FR)). alpha(Tor) homozygous embryos exhibit significant rescue of neural crest and angiogenesis defects normally found in PDGFalphaR-null embryos yet fail to rescue skeletal or extraembryonic defects. This phenotype was associated with the ability of alpha(Tor) to stimulate the mitogen-activated protein (MAP) kinase pathway to near wild-type levels but failure to completely activate other pathways, such as phosphatidylinositol (PI) 3-kinase. The alpha(FR) chimeric receptor fails to rescue any aspect of the PDGFalphaR-null phenotype. Instead, alpha(FR) expression leads to a gain-of-function phenotype highlighted by ectopic bone development. The alpha(FR) phenotype was associated with a failure to limit MAP kinase signaling and to engage significant PI3-kinase response. These results suggest that precise regulation of divergent downstream signaling pathways is critical for specification of RTK function.  相似文献   

12.
Many recent evidences indicate that androgen-sensitive prostate cancer cells have a lower malignant phenotype that is in particular characterized by a reduced migration and invasion. We previously demonstrated that expression of androgen receptor (AR) by transfection of the androgen-independent prostate cancer cell line PC3 decreases invasion and adhesion of these cells (PC3-AR) through modulation of alpha6beta4 integrin expression. The treatment with the synthetic androgen R1881 further reduced invasion of the cells without, however, modifying alpha6beta4 expression on the cell surface, suggesting an interference with the invasion process in response to EGF. We investigated whether the presence of the AR could affect EGF receptor (EGFR)-mediated signaling in response to EGF by evaluating autotransphosphorylation of the receptor as well as activation of downstream signalling pathways. Immunoprecipitation studies demonstrated a reduction of EGF-induced tyrosine phosphorylation of EGFR in PC3-AR cells. In addition, EGF-stimulated PI3K activity, a key signalling pathway for invasion of these cells, was decreased in PC3-AR cells and further reduced by treatment with R1881, indicating decreased functionality of EGFR. An interaction between EGFR and AR has been demonstrated by immunoconfocal and co-immunoprecipitation analysis in PC3-AR cells, suggesting a possible interference of AR on EGFR signalling by interaction of the two proteins. In conclusion, our results suggest that the expression of AR by transfection in PC3 cells confers a less malignant phenotype by interfering with EGFR autophosphorylation and signalling in response to EGF leading to invasion through a mechanism involving an interaction between AR and EGFR.  相似文献   

13.
Platelet-derived growth factor (PDGF), one of the most potent mitogens in serum for non-transformed cells, shares many biological and physical properties with fibroblast-derived growth factor (FDGF), a polypeptide produced by BHK cells transformed by SV40. Thus FDGF and PDGF have biological activity which is recoverable from sodium dodecyl sulphate (SDS) polyacrylamide gel electrophoresis, at positions indicating similar molecular weights. Further, the biological activity of both factors is heat-stable but sensitive to mercaptoethanol. FDGF and PDGF have similar abilities to induce DNA synthesis synergistically in the presence of either insulin, epidermal growth factor (EGF), vasopressin or colchicine. In contrast to other growth factors, (i) either FDGF or PDGF can induce DNA synthesis in the absence of other mitogens in 3T3 cells maintained in serum-free medium and (ii) a transient exposure of cultures to FDGF or PDGF causes a persistent stimulation of DNA synthesis. Either FDGF or PDGF enhances colony formation of non-transformed cells cultured in suspension in the presence of EGF and serum. FDGF is not PDGF adsorbed by SV40-BHK cells from serum, since SV40-BHK cells plated and grown in the absence of serum still produce FDGF. In view of the similarities between PDGF and FDGF, we suggest that they may belong to the same family of growth factors.  相似文献   

14.
15.
Sphingosine-1-phosphate (S1P), a bioactive sphingolipid metabolite, is the ligand for five specific G protein-coupled receptors, named S1P(1) to S1P(5). In this study, we found that cross-communication between platelet-derived growth factor receptor and S1P(2) serves as a negative damper of PDGF functions. Deletion of the S1P(2) receptor dramatically increased migration of mouse embryonic fibroblasts toward S1P, serum, and PDGF but not fibronectin. This enhanced migration was dependent on expression of S1P(1) and sphingosine kinase 1 (SphK1), the enzyme that produces S1P, as revealed by downregulation of their expression with antisense RNA and small interfering RNA, respectively. Although S1P(2) deletion had no significant effect on tyrosine phosphorylation of the PDGF receptors or activation of extracellular signal-regulated kinase 1/2 or Akt induced by PDGF, it reduced sustained PDGF-dependent p38 phosphorylation and markedly enhanced Rac activation. Surprisingly, S1P(2)-null cells not only exhibited enhanced proliferation but also markedly increased SphK1 expression and activity. Conversely, reintroduction of S1P(2) reduced DNA synthesis and expression of SphK1. Thus, S1P(2) serves as a negative regulator of PDGF-induced migration and proliferation as well as SphK1 expression. Our results suggest that a complex interplay between PDGFR and S1P receptors determines their functions.  相似文献   

16.
Epidermal growth factor receptor: mechanisms of activation and signalling   总被引:19,自引:0,他引:19  
The epidermal growth factor (EGF) receptor (EGFR) is one of four homologous transmembrane proteins that mediate the actions of a family of growth factors including EGF, transforming growth factor-alpha, and the neuregulins. We review the structure and function of the EGFR, from ligand binding to the initiation of intracellular signalling pathways that lead to changes in the biochemical state of the cell. The recent crystal structures of different domains from several members of the EGFR family have challenged our concepts of these processes.  相似文献   

17.
Many of the biological activities of IFN-gamma are mediated through the IFN-gammaR3-linked Jak-Stat1alpha pathway. However, regulation of IFN-gamma signaling is not fully understood, and not all responses to IFN-gamma are Stat1alpha dependent. To identify novel elements involved in IFN-gamma cell regulation, the cytoplasmic domain of the R2 subunit of the human IFN-gammaR was used as bait in a yeast two-hybrid screen of a human monocyte cDNA library. This identified annexin A5 (AxV) as a putative IFN-gammaR binding protein. The interaction was confirmed in pull-down experiments in which a GST-R2 cytoplasmic domain fusion protein was incubated with macrophage lysates. Furthermore, immunoprecipitation using anti-IFN-gammaR2 Abs showed that AxV interacted with IFN-gammaR2 to form a stable complex following incubation of cells with IFN-gamma. In 293T cells with reduced expression of AxV, brought about by small interfering RNA targeting, activation of Jak2 and Stat1alpha in response to IFN-gamma was enhanced. Inhibition of cell proliferation, a hallmark of the IFN-gamma response, also was potentiated in HeLa cells treated with small interfering RNA directed at AxV. Taken together, these results suggest that through an inducible association with the R2 subunit of the IFN-gammaR, AxV modulates cellular responses to IFN-gamma by modulating signaling through the Jak-Stat1 pathway.  相似文献   

18.
19.
The ligand-induced phosphorylation of the platelet-derived growth factor (PDGF) receptor was followed at 37 degrees C by a rapid dephosphorylation which was roughly parallel to the down regulation of the 125I-PDGF binding sites. At 4 degrees C, when the ligand-receptor complexes remain associated with the cell surface, the phosphorylated form of the receptor was more stable. However if the ligand was dissociated from the receptor by means of a mild acid wash or a treatment with suramin, the dephosphorylation of the receptor also occurred at a low temperature. These data suggest that, due to the dissociation of the ligand, the kinase activity of the receptor is switched off so that the phosphotyrosine-containing receptors remain exposed to the action of phosphatases that rapidly dephosphorylate them.  相似文献   

20.
PDGF is one of the most potent serum mitogens, and the signalling mechanism by way of its receptor tyrosine-kinase has been extensively studied since its first purification in 1979. The identification of homology between the simian sarcoma virus oncogene, v-sis, and the B-chain of PDGF, as well as the frequent over-expression of both the ligands and receptors in various tumours and stroma led to the proposal of the PDGF-mediated autocrine and paracrine hypothesis. Consistent with the important roles of PDGF in the growth and survival of cells, the expression and activity of PDGF receptors are tightly controlled by both positive and negative feedback mechanisms at different levels. The deregulation of the control system can result in serious pathological conditions such as chronic inflammation and tumours. Understanding the molecular mechanisms for the regulatory system and the signalling pathway of PDGF is essential in order to find effective therapies in the diseases where PDGF is involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号