首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Autoantibodies directed against dsDNA are found in patients with systemic lupus erythematosus as well as in mice functionally deficient in either Fas or Fas ligand (FasL) (lpr/lpr or gld/gld mice). Previously, an IgH chain transgene has been used to track anti-dsDNA B cells in both nonautoimmune BALB/c mice, in which autoreactive B cells are held in check, and MRL-lpr/lpr mice, in which autoantibodies are produced. In this study, we have isolated the Fas/FasL mutations away from the autoimmune-prone MRL background, and we show that anti-dsDNA B cells in Fas/FasL-deficient BALB/c mice are no longer follicularly excluded, and they produce autoantibodies. Strikingly, this is accompanied by alterations in the frequency and localization of dendritic cells as well as a global increase in CD4 T cell activation. Notably, as opposed to MRL-lpr/lpr mice, BALB-lpr/lpr mice show no appreciable kidney pathology. Thus, while some aspects of autoimmune pathology (e.g., nephritis) rely on the interaction of the MRL background with the lpr mutation, mutations in Fas/FasL alone are sufficient to alter the fate of anti-dsDNA B cells, dendritic cells, and T cells.  相似文献   

2.
Huber S  Shi C  Budd RC 《Journal of virology》2002,76(13):6487-6494
Fas/Fas ligand (FasL) interactions regulate disease outcome in coxsackievirus B3 (CVB3)-induced myocarditis. MRL(+/+) mice infected with CVB3 develop severe myocarditis, a dominant CD4(+) Th1 (gamma interferon [IFN-gamma(+)]) response to the virus, and a predominance of gammadelta T cells in the myocardial infiltrates. MRL lpr/lpr and MRL gld/gld mice, which lack normal expression of Fas and express a mutated FasL, respectively, have minimal myocarditis and show a dominant CD4(+) Th2 (interleukin-4 [IL-4(+)]) phenotype to CVB3. Spleen cells from virus-infected wild-type, lpr, and gld animals proliferate equally to virus in vitro. Adoptive transfer of gammadelta T cells from hearts of CVB3-infected MRL(+/+) mice (FasL(+)) into infected MRL gld/gld recipients (FasL(-)/Fas(+)) restores both disease susceptibility and Th1 cell phenotype. However, transfer of these cells into MRL lpr/lpr recipients (FasL(+)/Fas(-)) did not promote myocarditis and the viral response remained Th2 biased. This paralleled the expression of very high surface levels of FasL by myocardial gammadelta T cells, as well as their propensity to selectively lyse Th2 virus-specific CD4(+) T cells. These results demonstrate that Fas/FasL interactions conferred by gammadelta T cells on lymphocyte subpopulations may regulate the cytokine response to CVB3 infection and pathogenicity.  相似文献   

3.
Activation-induced cell death is a process by which overactivated T cells are eliminated, thus preventing potential autoimmune attacks. Two known mediators of activation-induced cell death are Fas(CD95) ligand (FasL) and APO2 ligand (APO2L)/TNF-related apoptosis-inducing ligand (TRAIL). We show here that upon mitogenic stimulation, bioactive FasL and APO2L are released from the T cell leukemia Jurkat and from normal human T cell blasts as intact, nonproteolyzed proteins associated with a particulate, ultracentrifugable fraction. We have characterized this fraction as microvesicles of 100-200 nm in diameter. These microvesicles are released from Jurkat and T cell blasts shortly (相似文献   

4.
Programmed death-1 ligand 1 (PD-L1) is a coinhibitory molecule that negatively regulates multiple tolerance checkpoints. In the NOD mouse model, PD-L1 regulates the development of diabetes. PD-L1 has two binding partners, programmed death-1 and B7-1, but the significance of the PD-L1:B7-1 interaction in regulating self-reactive T cell responses is not yet clear. To investigate this issue in NOD mice, we have compared the effects of two anti-PD-L1 Abs that have different blocking activities. Anti-PD-L1 mAb 10F.2H11 sterically and functionally blocks only PD-L1:B7-1 interactions, whereas anti-PD-L1 mAb 10F.9G2 blocks both PD-L1:B7-1 and PD-L1:programmed death-1 interactions. Both Abs had potent, yet distinct effects in accelerating diabetes in NOD mice: the single-blocker 10F.2H11 mAb was more effective at precipitating diabetes in older (13-wk-old) than in younger (6- to 7-wk-old) mice, whereas the dual-blocker 10F.9G2 mAb rapidly induced diabetes in NOD mice of both ages. Similarly, 10F.2H11 accelerated diabetes in recipients of T cells from diabetic, but not prediabetic mice, whereas 10F.9G2 was effective in both settings. Both anti-PD-L1 mAbs precipitated diabetes in adoptive transfer models of CD4(+) and CD8(+) T cell-driven diabetes. Taken together, these data demonstrate that the PD-L1:B7-1 pathway inhibits potentially pathogenic self-reactive effector CD4(+) and CD8(+) T cell responses in vivo, and suggest that the immunoinhibitory functions of this pathway may be particularly important during the later phases of diabetogenesis.  相似文献   

5.
6.
7.
Fas ligand costimulates the in vivo proliferation of CD8+ T cells   总被引:5,自引:0,他引:5  
Fas ligand (FasL/CD95L/APO-1L) is one of a growing number of TNF family members whose triggering costimulates maximal proliferation of activated T cells. In this study we show that maximal Ag-dependent accumulation of transferred TCR-transgenic CD8(+) T cells requires Fas (CD95/APO-1) expression by the adoptive hosts. Additionally, adoptively transferred FasL(+) CD8(+) T cells demonstrate a 2-fold advantage in Ag-driven expansion over their FasL(-)counterparts. This study illustrates the in vivo role of TCR-dependent FasL costimulation in the Ag-specific proliferation of both heterogeneous and homogeneous populations of primary CD8(+) T cells and long-term CTL lines. Thus, cross-linking FasL on naive and Ag-experienced CD8(+) T cells whose Ag-specific TCRs are engaged is required to drive maximal cellular proliferation in vivo.  相似文献   

8.
9.
Recently, it has been shown that Fas ligand (FasL) interacts with the extracellular matrix (ECM) protein fibronectin (FN), and that the bound FasL retains its cytotoxic efficacy. Herein, we examined the ramifications of FasL-ECM protein interactions throughout a specific time period, in the absence or presence of additional activating molecules, assuming that these complexed interactions occur during inflammation. We found that exposure of purified human T cells to FN-associated recombinant FasL for as brief as 5-10 min at 0.1-100 ng/ml induced their adhesion in beta(1) integrin- and FasR-dependent manners while activating the intracellular protein kinase, Pyk-2. The FN-associated FasL stops the CXCL12 (stromal cell-derived factor 1alpha)-induced chemotaxis of T cells by inhibiting the chemokine-induced extracellular signal-regulated kinase signaling and cytoskeletal rearrangement. This short term exposure of T cells to the FN-bound FasL (1 ng/ml), which was followed by T cell activation via the CD3 complex, resulted in 1) increased secretion of IFN-gamma (measured after 24 h), and 2) enhanced T cell apoptosis (measured after 72 h). Thus, in the context of inflamed ECM and depending on the time after FasL activation, its concentration, and the nature of other contextual mediators, FasL initially retains effector T cells at sites of inflammation and, later, induces T cell apoptosis and return to homeostasis.  相似文献   

10.
11.
The adoptive transfer of tumor-specific effector T cells can result in complete regression and cure mice with systemic melanoma, but the mechanisms responsible for regression are not well characterized. Perforin- and Fas ligand (APO-1/CD95 ligand)-mediated cytotoxicity have been proposed as mechanisms for T cell-mediated tumor destruction. To determine the role of perforin and Fas ligand (FasL) in T cell-mediated tumor regression in a murine melanoma model, B16BL6-D5 (D5), we generated D5-specific effector T cells from tumor vaccine-draining lymph nodes of wild type (wt), perforin knock out (PKO), or FasL mutant (gld) mice and treated established D5 metastases in mice with the same genotype. Effector T cells from wt, PKO and gld mice induced complete regression of pulmonary metastases and significantly prolonged survival of the treated animals regardless of their genotype. Complete tumor regression induced by PKO effector T cells was also observed in a sarcoma model (MCA-310). Furthermore, adoptive transfer of PKO and wt effector T cells provided long-term immunity to D5. Therapeutic T cells from wt, PKO, or gld mice exhibit a tumor-specific type 1 cytokine profile; they secrete IFN-gamma, but not IL-4. In these models, T cell-mediated tumor regression and long-term antitumor immunity are perforin and FasL independent.  相似文献   

12.
NKT cells are a versatile population whose immunoregulatory functions are modulated by their microenvironment. We demonstrate herein that in addition to their IFN-gamma production, NKT lymphocytes stimulated with IL-12 plus IL-18 in vitro underwent activation in terms of CD69 expression, blast transformation, and proliferation. Yet they were unable to survive in culture because, once activated, they were rapidly eliminated by apoptosis, even in the presence of their survival factor IL-7. This process was preceded by up-regulation of Fas (CD95) and Fas ligand expression in response to IL-12 plus IL-18 and was blocked by zVAD, a large spectrum caspase inhibitor, as well as by anti-Fas ligand mAb, suggesting the involvement of the Fas pathway. In accordance with this idea, NKT cells from Fas-deficient C57BL/6-lpr/lpr mice did not die in these conditions, although they shared the same features of cell activation as their wild-type counterpart. Activation-induced cell death occurred also after TCR engagement in vivo, since NKT cells became apoptotic after injection of their cognate ligand, alpha-galactosylceramide, in wild-type, but not in Fas-deficient, mice. Taken together, our data provide the first evidence for a new Fas-dependent mechanism allowing the elimination of TCR-dependent or -independent activated NKT cells, which are potentially dangerous to the organism.  相似文献   

13.
14.
Individuals with systemic lupus erythematosus show evidence of a significant increase in monocyte apoptosis. This process is mediated, at least in part, by an autoreactive T cell subset that kills autologous monocytes in the absence of nominal Ag. We have investigated the apoptotic pathways involved in this T cell-mediated process. Expression of the apoptotic ligands TRAIL, TNF-like weak inducer of apoptosis (TWEAK), and Fas ligand on lupus T cells was determined, and the role of these molecules in the monocyte apoptotic response was examined. We report that these apoptotic ligands mediate the autologous monocyte death induced by lupus T cells and that this cytotoxicity is associated with increased expression of these molecules on activated T cells, rather than with an increased susceptibility of lupus monocytes to apoptosis induced by these ligands. These results define novel mechanisms that contribute to increased monocyte apoptosis characterizing patients with lupus. We propose that this mechanism could provide a source of potentially antigenic material for the autoimmune response and interfere with normal clearing mechanisms.  相似文献   

15.
Fas ligand (FasL) has been implicated in cytotoxic T lymphocyte (CTL)- and natural killer (NK) cell-mediated cytotoxicity. In the present study, we investigated the localization of FasL in murine CTL and NK cells. Immunocytochemical staining showed that FasL was stored in cytoplasmic granules of CD8+ CTL clones and in vivo activated CTL and NK cells, where perforin and granzyme A also resided. Immunoelectron microscopy revealed that FasL was localized on outer membrane of the cytoplasmic granules, while perforin was localized in internal vesicles. Western blot analysis showed that the membrane-type FasL of 40 kDa was stored in CD8+ CTL clones but not in CD4+ CTL clones. By utilizing a granule exocytosis inhibitor (TN16), we demonstrated that FasL translocated onto cell surface upon degranulation of anti-CD3-stimulated CD8+ CTL clones. Moreover, TN16 markedly inhibited the FasL-mediated cytotoxicity by CD8+ T cell clones and NK cells. These results suggested a substantial contribution of FasL to granule exocytosis-mediated target cell lysis by CD8+ CTL and NK cells.  相似文献   

16.
17.
Oligomerization of Fas receptor by its ligand, FasL, activates a signaling cascade that leads to apoptosis of Fas bearing cells. Interestingly, many epithelia coexpress Fas and FasL, yet FasL does not trigger Fas present on the same or neighboring cells to induce spontaneous apoptosis. Here, we show that Fas and FasL are segregated from each other to different cellular compartments in kidney epithelial MDCK cells. While Fas is restricted to the basolateral surface, FasL is sequestered to an intracellular compartment and, a lesser extent, the apical surface. This spatial segregation of Fas and FasL may explain how epithelial cells can constitutively express a functional Fas pathway but avoid auto- or paracrine cell death. Compromising this spatial segregation in physiological or pathological situations may play a so far underestimated role in initiating apoptosis of epithelial cells.  相似文献   

18.
Apoptosis (programmed cell death) has been shown to play a major role in development and in the pathogenesis of numerous diseases. A principal mechanism of apoptosis is molecular interaction between surface molecules known as the "death receptors" and their ligands. Perhaps the best-studied death receptor and ligand system is the Fas/Fas ligand (FasL) system, in which FasL, a member of the tumor necrosis factor (TNF) family of death-inducing ligands, signals death through the death receptor Fas, thereby resulting in the apoptotic death of the cell. Numerous cells in the liver and gastrointestinal tract have been shown to express Fas/FasL, and there is a growing body of evidence that the Fas/FasL system plays a major role in the pathogenesis of many liver and gastrointestinal diseases, such as inflammatory bowel disease, graft vs. host disease, and hepatitis. Here we review the Fas/FasL system and the evidence that it is involved in the pathogenesis of liver and gastrointestinal diseases.  相似文献   

19.
20.
Virulence factors secreted by Listeria monocytogenes are known to interfere with host cellular signalling pathways. We investigated whether L. monocytogenes modulates T-cell receptor signalling by examining surface expression of proteins known to be upregulated on activated T cells. In vitro culture of murine splenocytes with L. monocytogenes resulted in a specific and dose-dependent upregulation of Fas ligand (FasL). Induction of FasL expression was also observed for pathogenic Listeria ivanovii but not for non-pathogenic Listeria innocua, indicating involvement of Listeria virulence protein(s). Examination of L. monocytogenes strains deficient in different virulence genes demonstrated that FasL upregulation was dependent on the expression of two secreted proteins: listeriolysin O (LLO) and phosphatidylcholine-preferring phospholipase C (PC-PLC). Treatment of cells with purified proteins demonstrated that LLO was sufficient for inducing FasL, while PC-PLC synergized with LLO for the induction of FasL expression. FasL-expressing cells induced by L. monocytogenes were capable of killing Fas-expressing target cells. Furthermore, L. monocytogenes infection results in upregulation of FasL on T cells in mice. These results describe a novel function for LLO and PC-PLC and suggest that L. monocytogenes may use these virulence factors to modulate the host immune response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号