首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A de novo terminal del (7)(q35) was found in a 3-month-old girl referred because of a peculiar cry. This observation, with seven others from the literature permit the delineation of a syndrome characterized by severe microcephaly with a flattened occiput, a bulbous nose, a "double chin", and a broad thorax with widely spaced nipples, without internal organ malformations. Assays of Hageman factor (XII) revealed normal values. The proposita is heterozygous Jk (a + b +). The parents and the proposita are iny-1.  相似文献   

2.
The SLC14A1 gene, which encodes the important Kidd blood group antigens, has not been systematically?analyzed at the molecular level in Chinese individuals. In this study, SLC14A1 genetic polymorphism was examined in Chinese individuals with Jk(a+b-), Jk(a+b+), and Jk(a-b+) expression. The Kidd phenotype was determined for 146 specimens using monoclonal anti-Jka and -Jkb antibodies. From these, 87 specimens were Jk(a-b+), 21 were Jk(a+b-), and 38 were Jk(a+b+). According to the Kidd phenotype results, 20 specimens were randomly selected from each group, i.e., Jk(a-b+), Jk(a+b-), and Jk(a+b+), for the molecular analyses of exons 3 to 11 of the SLC14A1 gene. Novel alleles were detected in the SLC14A1 gene, including IVS3-106A, IVS3-99A, exon3 130G, IVS4-299G, IVS4-293G, IVS4+211C, IVS4 +230C, exon6 499A, exon6 588A, IVS7-68T, IVS9+244G, and IVS10-153T, indicating that the locus harbored significant polymorphism. We also showed that IVS4-299, IVS7-68, and IVS10-153 were novel SNPs absolutely associated with exon 8 nt. 838. The minor allele frequencies were all greater than 10% and all SNPs in the Chinese population showed Vel antigen expression on RBC membranes. We identified 12 SNPs in the SLC14A1 gene in the Chinese population, IVS3-106A, IVS3-99A, exon3 130G, IVS4-299G, IVS4-293G, IVS4+211C, IVS4 +230C, exon6 499A, exon6 588A, IVS7-68T, IVS9+244G, and IVS10-153T. Our results also indicated that three novel SNPs produced Jka and Jkb antigens in Chinese individuals.  相似文献   

3.
Analysis of genetic linkage to dyslexia was performed using 133,165 array‐based SNPs genotyped in 718 persons from 101 dyslexia‐affected families. Results showed five linkage peaks with lod scores >2.3 (4q13.1, 7q36.1‐q36.2, 7q36.3, 16p12.1, and 17q22). Of these five regions, three have been previously implicated in dyslexia (4q13.1, 16p12.1, and 17q22), three have been implicated in attention‐deficit hyperactivity disorder (ADHD, which highly co‐occurs with dyslexia; 4q13.1, 7q36.3, 16p12.1) and four have been implicated in autism (a condition characterized by language deficits; 7q36.1‐q36.2, 7q36.3, 16p12.1, and 17q22). These results highlight the reproducibility of dyslexia linkage signals, even without formally significant lod scores, and suggest dyslexia predisposing genes with relatively major effects and locus heterogeneity. The largest lod score (2.80) occurred at 17q22 within the MSI2 gene, involved in neuronal stem cell lineage proliferation. Interestingly, the 4q13.1 linkage peak (lod 2.34) occurred immediately upstream of the LPHN3 gene, recently reported both linked and associated with ADHD. Separate analyses of larger pedigrees revealed lods >2.3 at 1–3 regions per family; one family showed strong linkage (lod 2.9) to a known dyslexia locus (18p11) not detected in our overall data, demonstrating the value of analyzing single large pedigrees. Association analysis identified no SNPs with genome‐wide significance, although a borderline significant SNP (P = 6 × 10–7) occurred at 5q35.1 near FGF18, involved in laminar positioning of cortical neurons during development. We conclude that dyslexia genes with relatively major effects exist, are detectable by linkage analysis despite genetic heterogeneity, and show substantial overlapping predisposition with ADHD and autism.  相似文献   

4.
22q11 Deletion syndrome (22q11DS) is a common microdeletion syndrome with variable expression, including congenital and later onset conditions such as schizophrenia. Most studies indicate that expression does not appear to be related to length of the deletion but there is limited information on the endpoints of even the common deletion breakpoint regions in adults. We used a real-time quantitative PCR (qPCR) approach to fine map 22q11.2 deletions in 44 adults with 22q11DS, 22 with schizophrenia (SZ; 12 M, 10 F; mean age 35.7 SD 8.0 years) and 22 with no history of psychosis (NP; 8 M, 14 F; mean age 27.1 SD 8.6 years). QPCR data were consistent with clinical FISH results using the TUPLE1 or N25 probes. Two subjects (one SZ, one NP) negative for clinical FISH had atypical 22q11.2 deletions confirmed by FISH using the RP11-138C22 probe. Most (n = 34; 18 SZ, 16 NP) subjects shared a common 3 Mb hemizygous 22q11.2 deletion. However, eight subjects showed breakpoint variability: a more telomeric proximal breakpoint (n = 2), or more centromeric (n = 3) or more telomeric distal breakpoint (n = 3). One NP subject had a proximal nested 1.4 Mb deletion. COMT and TBX1 were deleted in all 44 subjects, and PRODH in 40 subjects (19 SZ, 21 NP). The results delineate proximal and distal breakpoint variants in 22q11DS. Neither deletion extent nor PRODH haploinsufficiency appeared to explain the clinical expression of schizophrenia in the present study. Further studies are needed to elucidate the molecular basis of schizophrenia and clinical heterogeneity in 22q11DS.  相似文献   

5.
Deletions in 22q11.2 human chromosome are known to be associated with psychiatric disorders, such as intellectual disability, schizophrenia, autism spectrum disorder, and anxiety disorders. This copy number variation includes a 3.0 Mb deletion and a nested proximal 1.5 Mb hemizygous deletion in the same region. Evidence indicates that the distal 22q11.2 region outside the nested 1.5 Mb deletion also might be contributory in humans. However, the precise genetic architecture within the distal region responsible for psychiatric disorders remains unclear, and this issue cannot be experimentally evaluated beyond the correlation in humans. As CRKL (CRK-like Proto-Oncogene, Adaptor Protein) is one of the genes encoded in the distal 22q11.2 segment and its homozygous deletion causes physical phenotypes of 22q11.2 hemizygous deletion, we tested the hypothesis that its murine homolog Crkl contributes to behavioral phenotypes relevant to psychiatric disorders in mice. Congenic Crkl heterozygosity reduced thigmotaxis, an anxiety-related behavior, in an inescapable open field, but had no apparent effect on social interaction, spontaneous alternation in a T-maze, anxiety-like behavior in an elevated plus maze, or motor activity in an open field. Our data indicate that the heterozygosity of murine Crkl does not recapitulate social deficits, working memory deficits, repetitive behavior traits or hyperactivity of human 22q11.2 hemizygous deletion. Moreover, while 22q11.2 hemizygous deletion is associated with high levels of phobia and anxiety in humans, our data suggest that Crkl heterozygosity rather acts as a protective factor for phobia-like behavior in an open field.  相似文献   

6.
Full-length coding sequences of two novel human cadherin cDNAs were obtained by sequence analysis of several EST clones and 5′ and 3′ rapid amplification of cDNA ends (RACE) products. Exons for a third cDNA sequence were identified in a public-domain human genomic sequence, and the coding sequence was completed by 3′ RACE. One of the sequences (CDH7L1, HGMW-approved gene symbol CDH7) is so similar to chicken cadherin-7 gene that we consider it to be the human orthologue. In contrast, the published partial sequence of human cadherin-7 is identical to our second cadherin sequence (CDH7L2), for which we propose CDH19 as the new name. The third sequence (CDH7L3, HGMW-approved gene symbol CDH20) is almost identical to the mouse “cadherin-7” cDNA. According to phylogenetic analysis, this mouse cadherin-7 and its here presented human homologue are most likely the orthologues of Xenopus F-cadherin. These novel human genes, CDH7, CDH19, and CDH20, are localized on chromosome 18q22–q23, distal of both the gene CDH2 (18q11) encoding N-cadherin and the locus of the six desmosomal cadherin genes (18q12). Based on genetic linkage maps, this genomic region is close to the region to which Paget's disease was linked. Interestingly, the expression patterns of these three closely related cadherins are strikingly different.  相似文献   

7.
Malignant rhabdoid tumors are highly aggressive neoplasms found primarily in infants and young children. The majority of rhabdoid tumors arise as a result of homozygous inactivating deletions or mutations of the INI1 gene located in chromosome band 22q11.2. Germline mutations of INI1 predispose to the development of rhabdoid tumors of the brain, kidney and extra-renal tissues, consistent with its function as a tumor suppressor gene. We now describe five patients with germline deletions in chromosome band 22q11.2 that included the INI1 gene locus, leading to the development of rhabdoid tumors. Two patients had phenotypic findings that were suggestive but not diagnostic for DiGeorge/Velocardiofacial syndrome (DGS/VCFS). The other three infants had highly aggressive disease with multiple tumors at the time of presentation. The extent of the deletions was determined by fluorescence in situ hybridization and high-density oligonucleotide based single nucleotide polymorphism arrays. The deletions in the two patients with features of DGS/VCFS were distal to the region typically deleted in patients with this genetic disorder. The three infants with multiple primary tumors had smaller but overlapping deletions, primarily involving INI1. The data suggest that the mechanisms underlying the deletions in these patients may be similar to those that lead to DGS/VCFS, as they also appear to be mediated by related, low copy repeats (LCRs) in 22q11.2. These are the first reported cases in which an association has been established between recurrent, interstitial deletions mediated by LCRs in 22q11.2 and a predisposition to cancer. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Summary A genomic probe homologous to 5.4 kb of the c-ets-1 gene was hybridized in situ to chromosomes expressing fra(11)(q23). This probe hybridized distal to the fragile site, which is just distal to the midpoint of band 11q23.3. This result localizes ETS1 from the FRA11B locus to 11q24. The result also distinguishes the FRA11B locus from the site of translocation at 11q23-q24 in the Ewing sarcoma- and peripheral neuroepithelioma-specific t(11;22), indicating that the chromosomes of a previously reported patient heterozygous for fra(11)(q23) did not rearrange at this fragile site to give rise to Ewing sarcoma. This adds to the mounting evidence against individuals with fragile sites being predisposed to developing cancer.  相似文献   

9.
G Russo  M Isobe  L Pegoraro  J Finan  P C Nowell  C M Croce 《Cell》1988,53(1):137-144
Molecular analysis of somatic cell hybrids derived from T cells carrying a t(7;14)(q35;q32) chromosomal translocation from a patient with ataxia telangiectasia and T cell leukemia indicates that the breakpoint on chromosome 14 is proximal to the IgH locus and to the D14S1 locus, while the breakpoint on chromosome 7 involves the T cell receptor beta chain locus immediately 5' to J beta 1.5 on chromosome 7. The separation of V beta and C beta observed in somatic cell hybrids defined the orientation of the T cell receptor beta chain locus on chromosome 7 where the V beta genes are centromeric and the C beta genes are telomeric. A novel chromosomal alteration, undetected cytogenetically, was revealed as being an inversion with duplication of the distal band of chromosome 14q32. The importance of the 14q32 region in the leukemogenic process is discussed.  相似文献   

10.
Loss of heterozygosity (LOH) on chromosome 9q is the most frequent genetic alteration in transitional cell carcinoma (TCC) of the bladder, indicating the presence of one or more relevant tumor suppressor genes. We previously mapped one of these putative tumor suppressor loci to 9q32–q33 and localized the candidate region within a single YAC 840 kb in size. This locus has been designatedDBC1(for deleted in bladder cancer gene 1). We have identified a novel gene,DBCCR1,in this candidate region by searching for expressed sequence tags (ESTs) that map to YACs spanning the region. Database searching using the entireDBCCR1cDNA sequence identified several human ESTs and a few homologous mouse ESTs. However, the predicted 761-amino-acid sequence had no significant homology to known protein sequences. Mutation analysis of the coding region and Southern blot analysis detected neither somatic mutations nor gross genetic alterations in primary TCCs. AlthoughDBCCR1was expressed in multiple normal human tissues including urothelium, mRNA expression was absent in 5 of 10 (50%) bladder cancer cell lines. Methylation analysis of the CpG island at the 5′ region of the gene and the induction ofde novoexpression by a demethylating agent indicated that this island might be a frequent target for hypermethylation and that hypermethylation-based silencing of the gene occurs in TCC. These findings makeDBCCR1a good candidate forDBC1.  相似文献   

11.
A two-year-old girl has the following features of the cri du chat syndrome: microcephaly, hypertelorism, downward slanting of the palpebral fissures, psychomotor retardation and a cat-like cry. She is only of five patients having the cat cry syndrome with 45 chromosomes. Her karyotype is 45,XX, -5, -14, +t(5; 14)(5qter leads to 5p11: : 14q11 leads to 14qter) with the translocation inherited from her mother and maternal grandmother, each of whom is the carrier of a balanced translocation 46,XX,t(5;14)(p11q11). Normal plasma activity for hexosaminidase B suggests the locus for this enzyme is not located in the delected segment of 5 p.  相似文献   

12.
We report on a 6-year-old male patient with de novo 7q36 deletion and 8q24.3 duplication diagnosed by combining traditional G-banding and FISH studies. His clinical history was remarkable for pre- and postnatal growth retardation, neonatal feeding problems and developmental/mental retardation with non-verbal communication. He presented microcephaly, large ears, narrow palpebral fissures with blepharoptosis, epicanthic folds, large depressed nasal bridge, bulbous nasal tip, right cryptorchidism and delayed bone age on X-rays. There was no evidence of holoprosencephaly (HPE) or sacral agenesis sequence. By using in FISH analysis a series of YACs linearly ordered along the 7q36 region, the precise breakpoint on 7q36 was found to be within the target region of the YAC 742G8, a YAC that appeared to be only partially deleted. Clinical and chromosomal findings in this patient are compared to those previously recorded in similarly investigated patients from the literature with terminal 7q deletion.  相似文献   

13.
Homologous recombination between poorly characterized regions flanking the NF1 locus causes the constitutional loss of approximately 1.5 Mb from 17q11.2 covering > or =11 genes in 5%-20% of patients with neurofibromatosis type 1 (NF1). To elucidate the extent of microheterogeneity at the deletion boundaries, we used single-copy DNA fragments from the extreme ends of the deleted segment to perform FISH on metaphase chromosomes from eight patients with NF1 who had large deletions. In six patients, these probes were deleted, suggesting that breakage and fusions occurred within the adjacent highly homologous sequences. Reexamination of the deleted region revealed two novel functional genes FLJ12735 (AK022797) and KIAA0653-related (WI-12393 and AJ314647), the latter of which is located closest to the distal boundary and is partially duplicated. We defined the complete reading frames for these genes and two expressed-sequence tag (EST) clusters that were reported elsewhere and are associated with the markers SHGC-2390 and WI-9521. Hybrid cell lines carrying only the deleted chromosome 17 were generated from two patients and used to identify the fusion sequences by junction-specific PCRs. The proximal breakpoints were found between positions 125279 and 125479 in one patient and within 4 kb of position 143000 on BAC R-271K11 (AC005562) in three patients, and the distal breakpoints were found at the precise homologous position on R-640N20 (AC023278). The interstitial 17q11.2 microdeletion arises from unequal crossover between two highly homologous WI-12393-derived 60-kb duplicons separated by approximately 1.5 Mb. Since patients with the NF1 large-deletion syndrome have a significantly increased risk of neurofibroma development and mental retardation, hemizygosity for genes from the deleted region around the neurofibromin locus (CYTOR4, FLJ12735, FLJ22729, HSA272195 (centaurin-alpha2), NF1, OMGP, EVI2A, EVI2B, WI-9521, HSA272196, HCA66, KIAA0160, and WI-12393) may contribute to the severe phenotype of these patients.  相似文献   

14.
Chromosome 14 is often involved in chromosome rearrangements, although pericentric inversions are rare. Here we report a mother carrying a pericentric inversion of chromosome 14, and her daughter with recombinant chromosome characterized by a partial distal 14q trisomy. Principal clinical findings of the child include facial anomalies, microcephaly, developmental delay, hypotonia and cardiac malformation. Her final karyotype was 46,XX,rec(14)dup(14q)inv(14)(p12q31)mat[20], arr 14q31.3qter(85,427,839–106,356,482)x3. This report brings new data about clinical features of partial 14q trisomy and molecular analysis enables the visualization of genes involved in the segment duplicated.  相似文献   

15.

Background  

Chromosomal abnormalities affecting human chromosome 15q11-q13 underlie multiple genomic disorders caused by deletion, duplication and triplication of intervals in this region. These events are mediated by highly homologous segments of DNA, or duplicons, that facilitate mispairing and unequal cross-over in meiosis. The gene encoding an amyloid precursor protein-binding protein (APBA2) was previously mapped to the distal portion of the interval commonly deleted in Prader-Willi and Angelman syndromes and duplicated in cases of autism.  相似文献   

16.
Genomic disorders are human diseases caused by meiotic chromosomal rearrangements of unstable regions flanked by Low Copy Repeats (LCRs). LCRs act as substrates for Non-Allelic Homologous Recombination (NAHR) leading to deletions and duplications. The aim of this study was to assess the basal frequency of deletions and duplications of the 7q11.23, 15q11-q13 and 22q11.2 regions in spermatozoa from control donors to check differences in the susceptibility to generate anomalies and to assess the contribution of intra- and inter-chromatid NAHR events. Semen samples from ten control donors were processed by FISH. A customized combination of probes was used to discriminate among normal, deleted and duplicated sperm genotypes. A minimum of 10,000 sperm were assessed per sample and region. There were no differences in the mean frequency of deletions and duplications (del + dup) among the 7q11.23, 15q11-q13 and 22q11.2 regions (frequency ± SEM, 0.37 ± 0.02; 0.46 ± 0.07 and 0.27 ± 0.07%, respectively) (P = 0.122). Nevertheless, hierarchical cluster analysis reveals interindividual differences suggesting that particular haplotypes could be the main source of variability in NAHR rates. The mean frequency of deletions was not different from the mean frequency of duplications in the 7q11.23 (P = 0.202) and 15q11-q13 (P = 0.609) regions, indicating a predominant inter-chromatid NAHR. By contrast, in the 22q11.2 region the frequency of deletions slightly exceed duplications (P = 0.032), although at the individual level any donor showed differences. Altogether, our results support the inter-chromatid NAHR as the predominant mechanism involved in the generation of sperm deletions and duplications.  相似文献   

17.
Atopy is a predisposition to hyperproduction of immunoglobulin E (IgE) against common environmental allergens. It is often associated with development of allergic diseases such as asthma, rhinitis, and dermatitis. Production of IgE is influenced by genetic and environmental factors. In spite of progress in the study of heredity of atopy, the genetic mechanisms of IgE regulation have not yet been completely elucidated. The analysis of complex traits can benefit considerably from integration of human and mouse genetics. Previously, we mapped a mouse IgE-controlling locus Lmr9 on chromosome 4 to a segment of <9 Mb. In this study, we tested levels of total IgE and 25 specific IgEs against inhalant and food allergens in 67 Czech atopic families. In the position homologous to Lmr9 on chromosome 8q12 marked by D8S285, we demonstrated a novel human IgE-controlling locus exhibiting suggestive linkage to composite inhalant allergic sensitization (limit of detection, LOD = 2.11, P = 0.0009) and to nine specific IgEs, with maximum LOD (LOD = 2.42, P = 0.0004) to plantain. We also tested 16 markers at previously reported chromosomal regions of atopy. Linkage to plant allergens exceeding the LOD > 2.0 was detected at 5q33 (D5S1507, LOD = 2.11, P = 0.0009) and 13q14 (D13S165, LOD = 2.74, P = 0.0002). The significant association with plant allergens (quantitative and discrete traits) was found at 7p14 (D7S2250, corrected P = 0.026) and 12q13 (D12S1298, corrected P = 0.043). Thus, the finding of linkage on chromosome 8q12 shows precision and predictive power of mouse models in the investigation of complex traits in humans. Our results also confirm the role of loci at 5q33, 7p14, 12q14, and 13q13 in control of IgE. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
A cDNA clone encoding the complete coding sequence for porcine alpha-1-antitrypsin (or α1-protease inhibitor, PI) was isolated and its DNA sequence determined. The cDNA is assumed to encode alpha-1-antitrypsin on the basis of its sequence similarity to the corresponding cDNAs for human, baboon, rat, mouse, sheep and cow. The porcine cDNA clone was used in conjunction with BamHI, KpnI, MspI, SacI, TuqI and XbaI to develop restriction fragment length polymorphism-based genetic markers for linkage mapping in pigs. The cDNA has also been used to map the porcine PI locus to chromosome 7q2.4- > q2.6 by radioactive in situ hybridization. Thus, the PI locus has been added to the developing physical and genetic maps of the porcine genome.  相似文献   

19.
Summary Retinoblastoma (Rb) occurs in hereditary, non-hereditary, and chromosomal deletion forms and the locus for the Rb gene (Rb-1) is closely linked to the locus for esterase D (ESD) assigned to the chromosome 13q14.11. We describe a patient who was predicted to have Rb from the genetic analysis of the chromosome and ESD phenotype. Furthermore, the gene for lymphocyte cytosol polypeptide with molecular weight of 64,000 (LCP1: McKusick catalogue No. 15343, 1983) was assigned to chromosome 13 by deletion mapping. A 3-month-old female had many characteristics of chromosome 13q-syndrome, including dolichocephaly, epicanthus, ptosis, depressed nasal bridge, micrognathia, short webbed neck, and short fifth fingers with clinodactyly and single crease. The karyotype of the patient was 46,XX,del(13) (q14.1–q32), though both the parents had normal karyotypes. As expected, the phenotype of ESD derived from one of the parents, the father in this case, was not detected in peripheral blood lymphocytes by two-dimensional gel electrophoresis (two-DE), indicating that ESD from the father was deleted in the abnormal chromosome 13. The possibility of paternity was calculated to be 0.996 based on the data using 22 genetic markers. Bilateral retinoblastomas could be diagnosed by ophthalmologic examinations before the manifestation of any clinical signs of the tumor and immediately intensive care was taken. In addition, the phenotype of LCP1 derived from the father was not expressed in the lymphocyte proteins from the patient. These data indicate that the gene for LCP1 (LCP1) is located in the region q14.1–q32 of chromosome 13 and may be a useful genetic marker for preclinical diagnosis of Rb.  相似文献   

20.
Cat eye syndrome (CES) is associated with a duplication of a segment of human chromosome 22q11.2. Only one gene,ATP6E, has been previously mapped to this duplicated region. We now report the mapping of the human homologue of the apoptotic agonistBidto human chromosome 22 near locus D22S57 in the CES region. Dosage analysis demonstrated thatBIDis located just distal to the CES region critical for the majority of malformations associated with the syndrome (CESCR), as previously defined by a single patient with an unusual supernumerary chromosome. However,BIDremains a good candidate for involvement in CES-related mental impairment, and its overexpression may subtly add to the phenotype of CES patients. Our mapping of murineBidconfirms that the synteny of the CESCR and the 22q11 deletion syndrome critical region immediately telomeric on human chromosome 22 is not conserved in mice.Bidand adjacent geneAtp6ewere found to map to mousechromosome 6, while the region homologous to the DGSCR is known to map to mouse chromosome 16.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号