首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Recent studies have demonstrated that D1-selective and D2-selective dopamine receptor agonists inhibit catecholamine secretion and Ca2+ uptake into bovine adrenal chromaffin cells by receptor subtypes that we have identified by PCR as D5, a member of the D1-like dopamine receptor subfamily, and D4, a member of the D2-like dopamine receptor subfamily. The purpose of this study was to determine whether activation of D5 or D4 receptors inhibits influx of Na+, which could explain inhibition of secretion and Ca2+ uptake by dopamine agonists. D1-selective agonists preferentially inhibited both dimethylphenylpiperazinium- (DMPP) and veratridine-stimulated 22Na+ influx into chromaffin cells. The D1-selective agonists chloro-APB hydrobromide (CI-APB; 100 µ M ) and SKF-38393 (100 µ M ) inhibited DMPP-stimulated Na+ uptake by 87.5 ± 2.3 and 59.7 ± 4.5%, respectively, whereas the D2-selective agonist bromocriptine (100 µ M ) inhibited Na+ uptake by only 22.9 ± 5.0%. Veratridine-stimulated Na+ uptake was inhibited 95.1 ± 3.2 and 25.7 ± 4.7% by 100 µ M CI-APB or bromocriptine, respectively. The effect of CI-APB was concentration dependent. A similar IC50 (∼18 µ M ) for inhibition of both DMPP- and veratridine-stimulated Na+ uptake was obtained. The addition of 8-bromo-cyclic AMP (1 m M ) had no effect on either DMPP- or veratridine-stimulated Na+ uptake. These observations suggest that D1-selective agonists are inhibiting secretagogue-stimulated Na+ uptake in a cyclic AMP-independent manner.  相似文献   

2.
The torque of the bacterial flagellar motor is generated by the rotor-stator interaction coupled with specific ion translocation through the stator channel. To produce a fully functional motor, multiple stator units must be properly incorporated around the rotor by an as yet unknown mechanism to engage the rotor-stator interactions. Here, we investigated stator assembly using a mutational approach of the Na+-driven polar flagellar motor of Vibrio alginolyticus, whose stator is localized at the flagellated cell pole. We mutated a rotor protein, FliG, which is located at the C ring of the basal body and closely participates in torque generation, and found that point mutation L259Q, L270R or L271P completely abolishes both motility and polar localization of the stator without affecting flagellation. Likewise, mutations V274E and L279P severely affected motility and stator assembly. Those residues are localized at the core of the globular C-terminal domain of FliG when mapped onto the crystal structure of FliG from Thermotoga maritima, which suggests that those mutations induce quite large structural alterations at the interface responsible for the rotor-stator interaction. These results show that the C-terminal domain of FliG is critical for the proper assembly of PomA/PomB stator complexes around the rotor and probably functions as the target of the stator at the rotor side.  相似文献   

3.
Effect of ion channel blockers on germination of Bacillus megaterium spores   总被引:1,自引:0,他引:1  
Abstract We surveyed 23 drugs that can interact with membrane components, such as ion channels, for their effect on spore germination. The results showed that triggering of spore germination was inhibited by specific calcium (Ca2+) potassium (K+) and sodium (Na+) channel blockers.  相似文献   

4.
Thomas Vorburger  Urs Ziegler  Julia Steuber 《BBA》2009,1787(10):1198-1204
The flagellar motor consists of a rotor and a stator and couples the flux of cations (H+ or Na+) to the generation of the torque necessary to drive flagellum rotation. The inner membrane proteins PomA and PomB are stator components of the Na+-driven flagellar motor from Vibrio cholerae. Affinity-tagged variants of PomA and PomB were co-expressed in trans in the non-motile V. cholerae pomAB deletion strain to study the role of the conserved D23 in the transmembrane helix of PomB. At pH 9, the D23E variant restored motility to 100% of that observed with wild type PomB, whereas the D23N variant resulted in a non-motile phenotype, indicating that a carboxylic group at position 23 in PomB is important for flagellum rotation. Motility tests at decreasing pH revealed a pronounced decline of flagellar function with a motor complex containing the PomB-D23E variant. It is suggested that the protonation state of the glutamate residue at position 23 determines the performance of the flagellar motor by altering the affinity of Na+ to PomB. The conserved aspartate residue in the transmembrane helix of PomB and its H+-dependent homologs might act as a ligand for the coupling cation in the flagellar motor.  相似文献   

5.
Intracellular concentrations of Na+ and K+ were similar (∼75 mmol l−1) in rainbow trout Oncorhynchus mykiss hepatocytes directly following isolation by collagenase digestion, but partial recovery occurred over 6 h with K+ levels increasing to 110 mmol l−1 and Na+ levels decreasing to 42 mmol l−1. Black bullhead Ameiurus melas hepatocytes exhibited higher intracellular concentrations of K+ (90 mmol l−1) than Na+ (55 mmol l−1) with no recovery occurring over 6 h following cell isolation. Concentrations of Na+, K+ and Cl in eel Anguilla rostrata hepatocytes were similar (∼ 55 mmol l−1) following isolation, with no recovery occurring over time. Erythrocytes from all species apparently did not experience an intracellular ion imbalance following isolation as indicated by high K+ levels (<140 mmol l−1) and low Na+ levels (<40 mmol l−1) during the entire 24-h monitoring period. Although hepatocytes from all species exhibited an ion imbalance post-isolation, comparison of their in vitro intracellular Na+ and K+ concentrations with those in plasma demonstrated that directionally correct ion gradients still exist across the cell membrane, albeit differing from those that would be found in the tissue in vivo .  相似文献   

6.
The polar flagellar motor of Vibrio alginolyticus rotates using Na(+) influx through the stator, which is composed of 2 subunits, PomA and PomB. About a dozen stators dynamically assemble around the rotor, depending on the Na(+) concentration in the surrounding environment. The motor torque is generated by the interaction between the cytoplasmic domain of PomA and the C-terminal region of FliG, a component of the rotor. We had shown previously that mutations of FliG affected the stator assembly around the rotor, which suggested that the PomA-FliG interaction is required for the assembly. In this study, we examined the effects of various mutations mainly in the cytoplasmic domain of PomA on that assembly. All mutant stators examined, which resulted in the loss of motor function, assembled at a lower level than did the wild-type PomA. A His tag pulldown assay showed that some mutations in PomA reduced the PomA-PomB interaction, but other mutations did not. Next, we examined the ion conductivity of the mutants using a mutant stator that lacks the plug domain, PomA/PomB(ΔL)(Δ41-120), which impairs cell growth by overproduction, presumably because a large amount of Na(+) is conducted into the cells. Some PomA mutations suppressed this growth inhibition, suggesting that such mutations reduce Na(+) conductivity, so that the stators could not assemble around the rotor. Only the mutation H136Y did not impair the stator formation and ion conductivity through the stator. We speculate that this particular mutation may affect the PomA-FliG interaction and prevent activation of the stator assembly around the rotor.  相似文献   

7.
Abstract: The Na+/Ca2+ exchanger is an important element in the maintenance of calcium homeostasis in bovine chromaffin cells. The Na+/Ca2+ exchanger from other cell types has been extensively studied, but little is known about its regulation in the cell. We have investigated the role of reversible protein phosphorylation in the activity of the Na+/Ca2+ exchanger of these cells. Cells treated with 1 m M dibutyryl cyclic AMP (dbcAMP), 1 µ M phorbol 12,13-dibutyrate, 1 µ M okadaic acid, or 100 n M calyculin A showed lowered Na+/Ca2+ exchange activity and prolonged cytosolic Ca2+ transients caused by depolarization. A combination of 10 n M okadaic acid and 1 µ M dbcAMP synergistically inhibited Na+/Ca2+ exchange activity. Conversely, 50 µ M 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine, a protein kinase inhibitor, enhanced Na+/Ca2+ exchange activity. Moreover, we used cyclic AMP-dependent protein kinase and calcium phospholipid-dependent protein kinase catalytic subunits to phosphorylate isolated membrane vesicles and found that the Na+/Ca2+ exchange activity was inhibited by this treatment. These results indicate that reversible protein phosphorylation modulates the activity of the Na+/Ca2+ exchanger and suggest that modulation of the exchanger may play a role in the regulation of secretion.  相似文献   

8.
Na+ influx and efflux in Neurospora crassa RL21a can be studied separately to calculate net Na+ movements. In the absence of external K+, Na+ influx was independent of the K+ content of the cells, but when K+ was present, the inhibition of Na+ influx by external K+ was higher the higher the K+ content. Efflux depended on the K+ and Na+ content, and on the history of the cells. Efflux was higher the higher the Na+ and K+ contents, and, in low-K+ cells, the efflux was also higher in cells grown in the presence of Na+ than when Na+ was given to cells grown in the absence of Na+. Addition of K+ to cells in steady state with external Na+ resulted in a net Na+-loss. In cells grown without Na+ this loss was a consequence of the inhibition of Na+ influx. In Na+-grown cells, addition of K+ inhibited Na+ influx and increased Na+ efflux.  相似文献   

9.
Abstract A Na+/H+ antiporter catalyses coupled Na+ extrusion and H+ uptake across the membranes of extremely alkalophilic bacilli. This exchange is electrogenic, with H+ translocated inward > Na+ extruded. It is energized by the Δψ 2 component of the ΔμH+ that is established during primary proton pumping by the alkalophile respiratory chain complexes. These complexes abound in the membranes of extreme alkalophiles. Combined activity of the respiratory chain, the antiporter, and solute transport systems that are coupled to Na+ re-entry, allow the alkalophiles to maintain a cytoplasmic pH that is several pH units more acidic than optimal external pH values for growth. There is no compelling evidence for a specific and necessary role for any ion other than sodium in pH homeostasis, and although there is very high cytoplasmic buffering capacity in the alkaline range, active mechanisms for pH homeostasis are crucial. Energization of the antiporter as well as the proton translocating F 1 F 0-ATPase that catalyses ATP synthesis in the extreme alkalophiles must accommodate the problem of the low net ΔμH+ and the very low concentrations of protons, per se, in the external medium. This problem is by-passed by other bioenergetic work functions, such as solute uptake or motility, that utilize sodium ions for energy-coupling in the place of protons.  相似文献   

10.
Abstract: The Na+ and K+ concentrations in isolated Torpedo marmorata synaptosomes were determined. Synaptosomes made according to the method of Israël et al. have high internal Na+ (290 MM) and low internal K+ (30 mM) concentrations. Modification of the homogenisation media permitted the isolation of synaptosomes which could maintain transmembrane ion gradients (internal Na+, 96 mM; K+, 81 mM); 0.1 mM-ouabain abolished these gradients. The trans-membrane Na+ gradient started to dissipate after 15 min at 20°C. Inclusion of ATP in the homogenisation medium enabled the synaptosomes to maintain the Na+ gradient for about 90 min. The presence of these transmembrane ion gradients stimulated choline uptake sevenfold. It is concluded that (a) by selecting the isolation media, Torpedo synaptosomes can be prepared with transmembrane ion gradients; (b) these gradients are ouabain-sensitive and stimulate choline uptake: (c) the synaptosomes require additional ATP to maintain the ion gradients.  相似文献   

11.
This paper studies the relative importance of endogenous ABA and ion toxicity in the leaf growth inhibition caused by NaCl in salt-adapted and unadapted bush beans. Adaptation to salt-stress was achieved by germination of seeds in 75 m M NaCl, while unadapted plants were germinated in tap water. The adaptation process caused a transitory increase in leaf ABA, Na+ and Cl concentrations, while leaf expansion was inhibited. However, when grown for 8 or 13 days in 75 m M NaCl-containing nutrient solution, primary and first trifoliolate leaves of salt-adapted plants had greater areas than those of unadapted plants. Concentrations of ABA, Na+ and Cl in these leaves were lower in adapted plants, and a strong negative correlation between leaf expansion growth and either leaf Na+, Cl or ABA concentrations could be established. However, in the second trifoliolate leaves only the ABA, but not the Na+ or Cl, concentrations were significantly correlated with leaf expansion. Our results suggest that salt-induced inhibition of leaf expansion growth in bush beans is mediated by ABA rather than Na+ or Cl toxicity. Moreover, the increase of ABA, induced by the salt-pretreatment, seems to play an important role in limiting the accumulation of Na+ and Cl in the leaves, leading to adaptation of bush beans to salt-stress.  相似文献   

12.
13.
Li N  Kojima S  Homma M 《Journal of bacteriology》2011,193(15):3773-3784
The stator proteins PomA and PomB form a complex that couples Na+ influx to torque generation in the polar flagellar motor of Vibrio alginolyticus. This stator complex is anchored to an appropriate place around the rotor through a putative peptidoglycan-binding (PGB) domain in the periplasmic region of PomB (PomBC). To investigate the function of PomBC, a series of N-terminally-truncated and in-frame mutants with deletions between the transmembrane (TM) segment and the PGB domain of PomB was constructed. A PomBC fragment consisting of residues 135 to 315 (PomBC5) formed a stable homodimer and significantly inhibited the motility of wild-type cells when overexpressed in the periplasm. A fragment with an in-frame deletion (PomBΔL) of up to 80 residues retained function, and its overexpression with PomA impaired cell growth. This inhibitory effect was suppressed by a mutation at the functionally critical Asp (D24N) in the TM segment of PomB, suggesting that a high level of Na+ influx through the mutant stator causes the growth impairment. The overproduction of functional PomA/PomBΔL stators also reduced the motile fractions of the cells. That effect could be slightly relieved by a mutation (L168P) in the putative N-terminal α-helix that connects to the PGB domain without affecting the growth inhibition, suggesting that a conformational change of the region including the PGB domain affects stator assembly. Our results reveal common features of the periplasmic region of PomB/MotB and demonstrate that a flexible linker that contains a “plug” segment is important for the control of Na+ influx through the stator complex as well as for stator assembly.  相似文献   

14.
When 1 m M spermidine or spermine was included in an absorption solution which contained 20 m M Na+ and 1 m M Rb+, Na+ influx into excised maize roots ( Zea mays L. cv. Golden Cross Bantam) was reduced. Rb+ influx was reduced in the presence of spermidine and uneffected in the presence of spermine when compared with control solutions. When 1 m M Ca2+ replaced the polyamines, Na+ influx was strongly reduced and Rb+ influx was promoted. Rb+ influx from 1 m M Rb+ solutions which did not contain Na+ was also promoted by 1 m M Ca2+, but was inhibited by 1 m M spermidine. This Ca2+ promotion of Rb+ influx could be reversed by 10 times greater concentration of spermidine in the absorption solution. H+ efflux from excised roots was inhibited by spermidine when compared with Ca2+ or control solutions, however, the plasma membrane ATPase was not inhibited by spermidine. It is concluded that external Ca2+ plays two separate roles in membrane function, only one of which can be substituted for by polyamines. The first role, maintenance of membrane integrity, can be substituted for by spermidine or spermine. The second function, maintenance of the Rb+ transport mechanism, is Ca2+ specific and cannot be substituted for by spermidine or spermine. The results of this study are discussed in terms of electrostatic interactions between the plasma membrane and the Ca2+ or polyamines.  相似文献   

15.
Abstract: In primary cultures of cerebellar neurons glutamate neurotoxicity is mainly mediated by activation of the NMDA receptor, which allows the entry of Ca2+ and Na+ into the neuron. To maintain Na+ homeostasis, the excess Na+ entering through the ion channel should be removed by Na+,K+-ATPase. It is shown that incubation of primary cultured cerebellar neurons with glutamate resulted in activation of the Na+,K+-ATPase. The effect was rapid, peaking between 5 and 15 min (85% activation), and was maintained for at least 2 h. Glutamate-induced activation of Na+,K+-ATPase was dose dependent: It was appreciable (37%) at 0.1 µ M and peaked (85%) at 100 µ M . The increase in Na+,K+-ATPase activity by glutamate was prevented by MK-801, indicating that it is mediated by activation of the NMDA receptor. Activation of the ATPase was reversed by phorbol 12-myristate 13-acetate, an activator of protein kinase C, indicating that activation of Na+,K+-ATPase is due to decreased phosphorylation by protein kinase C. W-7 or cyclosporin, both inhibitors of calcineurin, prevented the activation of Na+,K+-ATPase by glutamate. These results suggest that activation of NMDA receptors leads to activation of calcineurin, which dephosphorylates an amino acid residue of the Na+,K+-ATPase that was previously phosphorylated by protein kinase C. This dephosphorylation leads to activation of Na+,K+-ATPase.  相似文献   

16.
PomA and PomB are transmembrane proteins that form the stator complex in the sodium-driven flagellar motor of Vibrio alginolyticus and are believed to surround the rotor part of the flagellar motor. We constructed and observed green fluorescent protein (GFP) fusions of the stator proteins PomA and PomB in living cells to clarify how stator proteins are assembled and installed into the flagellar motor. We were able to demonstrate that GFP-PomA and GFP-PomB localized to a cell pole dependent on the presence of the polar flagellum. Localization of the GFP-fused stator proteins required their partner subunit, PomA or PomB, and the C-terminal domain of PomB, which has a peptidoglycan-binding motif. Each of the GFP-fused stator proteins was co-isolated with its partner subunit from detergent-solubilized membrane. From these lines of evidence, we have demonstrated that the stator proteins are incorporated into the flagellar motor as a PomA/PomB complex and are fixed to the cell wall via the C-terminal domain of PomB.  相似文献   

17.
Abstract. Nitellopsis cells grown in fresh water have a relatively low cytoplasmic Na+ (11 mol m−3) and high cytoplasmic K+ (90 mol m−3) content. A 30-min treatment with 100 mol m−3 external NaCl resulted in a high [Na+]c (90 mol m−3) and a low [K+]c (33 mol m−3), Subsequent addition of external Ca2+ (10 mol m−3) prevented Na+ influx and then [Na+]c decreased slowly. Changes in [K+]c were opposite to [Na+]c. During the recovery time vacuolar Na+ increased, while vacuolar K+ decreased. Since all these processes proceeded also under ice-cold conditions, the restoration of original cytoplasmic ion compositions is suggested to be a passive nature. The notion that the passive movement of ions across the tonoplast can act as an effective and economic mechanism of salt tolerance under transient or under mild salt stress conditions is discussed.  相似文献   

18.
Abstract— Saxitoxin and tetrodotoxin at low concentrations (10−7-10−8 M) exerted similar inhibitory effects on the increase in lactate production and the redistrjbution of Na+ and K+ that normally accompany electrical stimulation of rat cerebral cortical slices. In contrast, the toxins exerted dissimilar effects on the production of lactate in response to low concentrations of Ca2+ in the medium. Inhibition by tetrodotoxin occurred at a higher concentration of Ca2+ and was significantly greater than that produced by saxitoxin at concentrations of Ca2+ below 0.75 mM. These differences were not related to differential effects on the redistribution of Na+ and K+ under such conditions. The toxins had different effects on Ca2+ influx. Tetrodotoxin, but not saxitoxin, inhibited the influx of Ca2+ in the absence of electrical stimulation. The influx of Ca2+ increased when electrical pulses were applied and tetrodotoxin inhibited this increase, whereas saxitoxin potentiated influx of Ca2+ during stimulation. Our results suggest that metabolic responses to conditions that increase excitability are not governed solely by changes in the distribution of Na+ and K+. The differential effects of the toxins on Ca2+ fluxes suggest that one site of Ca2+ entry during electrical stimulation may be functionally independent of Na+ entry.  相似文献   

19.
Rotation of the bacterial flagellar motor exploits the electrochemical potential of the coupling ion (H+ or Na+) as its energy source. In the marine bacterium Vibrio alginolyticus, the stator complex is composed of PomA and PomB, and conducts Na+ across the cytoplasmic membrane to generate rotation. The transmembrane (TM) region of PomB, which forms the Na+-conduction pathway together with TM3 and TM4 of PomA, has a highly conserved aspartate residue (Asp24) that is essential for flagellar rotation. This residue contributes to the Na+-binding site. However, it is not clear whether residues other than Asp24 are involved in binding the coupling ion. We examined the possibility that loss of the negative charge of Asp24 can be suppressed by introduction of negatively charged residues in TM3 or TM4 of PomA. The motility defect associated with the D24N substitution in PomB could be rescued only by a N194D substitution in PomA. This result suggests that there must be a negatively charged ion-binding pocket in the stator complex but that the presence of a negatively charged residue at position 24 of PomB is not essential. A tandemly fused PomA dimer containing the N194D mutation either in its N-terminal or C-terminal half with PomB-D24N was functional, suggesting that PomB-D24N can form an ion-binding pocket with either subunit of PomA dimer. The findings obtained in this study provide important clues to the mechanism of ion binding in the stator complex.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号