首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MiRNAs are a class of non-coding small RNAs that play important roles in the regulation of gene expression. Although plant miRNAs have been extensively studied in model systems, less is known in other plants with limited genome sequence data, including eggplant (Solanum melongena L.). To identify miRNAs in eggplant and their response to Verticillium dahliae infection, a fungal pathogen for which clear understanding of infection mechanisms and effective cure methods are currently lacking, we deep-sequenced two small RNA (sRNA) libraries prepared from mock-infected and infected seedlings of eggplants. Specifically, 30,830,792 reads produced 7,716,328 unique miRNAs representing 99 known miRNA families that have been identified in other plant species. Two novel putative miRNAs were predicted with eggplant ESTs. The potential targets of the identified known and novel miRNAs were also predicted based on sequence homology search. It was observed that the length distribution of obtained sRNAs and the expression of 6 miRNA families were obviously different between the two libraries. These results provide a framework for further analysis of miRNAs and their role in regulating plant response to fungal infection and Verticillium wilt in particular.  相似文献   

2.
MicroRNAs (miRNAs) are short-nucleotide RNA molecules that function as negative regulators of gene expression in various organisms. However, miRNAs of Pinctada martensii have not been reported yet. P. martensii is one of the main species cultured for marine pearl production in China and Japan. In order to obtain the repertoire of miRNAs in P. martensii, we constructed and sequenced small RNA libraries prepared from P. martensii by Solexa deep sequencing technology and got a total of 27,479,838 reads representing 3,176,630 distinct sequences. After removing tRNAs, rRNAs, snRNAs, and snoRNAs, 10,596,306 miRNA reads representing 18,050 distinct miRNA reads were obtained. Based on sequence similarity and hairpin structure prediction, 258 P. martensii miRNAs (pm-miRNA) were identified. Among these pm-miRNAs, 205 were conserved across the species, whereas 53 were specific for P. martensii. The 3′ end sequence of U6 snRNA was obtained from P. martensii by 3′ rapid amplification of cDNA end PCR reaction and sequence-directed cloning. Eight conserved pm-miRNAs and two novel pm-miRNAs were validated by stem-loop quantitative real-time PCR with U6 snRNA as an internal reference gene. pm-miRNAs and the reported biomineralization-related genes were subjected to target analysis by using target prediction tools. Some of the pm-miRNAs, such as miR-2305 and miR-0046, were predicted to participate in biomineralization by regulating the biomineralization-related genes. Thus, this study demonstrated a large-scale characterization of pm-miRNAs and their potential function in biomineralization, providing a foundation to understand shell formation.  相似文献   

3.
4.
MicroRNAs (miRNAs) are a class of noncoding RNA molecules that function as negative regulators of gene expression and play important roles in a wide spectrum of biological processes, including in immune response. However, the physiological regulation function of Pinctada fucata miRNAs, specially their immunomodulation has not been explored yet. Here, two small RNA libraries from hemocytes of P. fucata with or without Vibrio alginolyticus infection were constructed and sequenced using the high-throughput Illumina deep sequencing technology. In total, 11,939,992 and 11,083,327 raw reads, corresponding to 10,993,546 and 9,988,179 clean reads, were respectively obtained in the control and infected libraries. A total of 276 miRNAs, including 225 known miRNAs and 51 putative novel miRNAs, were identified by bioinformatic analysis. By using pairwise comparison between two libraries, 93 miRNAs were found to be significantly differentially expressed, with 42 and 51 miRNAs exhibiting up-regulation and down-regulation, respectively. Thereinto, some known miRNAs were considered to be immune-related. Real-time PCR were implemented for 6 miRNAs co-expressed in the control and infected samples, and agreement was confirmed between the high-throughput sequencing and real-time PCR data. After miRNA targets were predicted, GO and KEGG pathway enrichment analysis were performed, and the results indicated that ten of the differentially expressed miRNAs were involved in immune-related pathways, and might participate in the host immune response to V. alginolyticus. These results of identification and comparative analysis of miRNAs might deepen our understanding of host-pathogen interactions and immune defense mechanisms in P. fucata.  相似文献   

5.
6.
7.
MicroRNAs (miRNAs) play an important role in responding to biotic and abiotic stresses in plants. Jujube witches’-broom a phytoplasma disease of Ziziphus jujuba is prevalent in China and is a serious problem to the industry. However, the molecular mechanism of the disease is poorly understood. In this study, genome-wide identification and analysis of microRNAs in response to witches’-broom was performed. A total of 85 conserved miRNA unique sequences belonging to 32 miRNA families and 24 novel miRNA unique sequences, including their complementary miRNA* strands were identified from small RNA libraries derived from a uninfected and witches’-broom infected Z. jujuba plant. Differentially expressed miRNAs associated with Jujube witches’-broom disease were investigated between the two libraries, and 12 up-regulated miRNAs and 10 down- regulated miRNAs identified with more than 2 fold changes. Additionally, 40 target genes of 85 conserved miRNAs and 49 target genes of 24 novel miRNAs were predicted and their putative functions assigned. Using the modified 5’-RACE method, we confirmed that SPL and MYB were cleaved by miR156 and miR159, respectively. Our results provide insight into the molecular mechanisms of witches’-broom disease in Z. jujuba.  相似文献   

8.
9.
10.
11.
12.
MicroRNAs (miRNAs) as small non-coding RNAs play important roles in many biological processes such as development, cell signaling and immune response. Small RNA deep sequencing technology provided an opportunity for a thorough survey of miRNAs in a global key pest Plutella xylostella as well as comparative analysis of miRNA expression profile of the insect in association with parasitization by Diadegma semiclausum. Combining the deep sequencing data and bioinformatics, 235 miRNAs were identified from P. xylostella. Differential expression of host cellular miRNAs in response to parasitism was examined by making small RNA libraries from parasitized and naive second instar larvae of P. xylostella. Bantam, miR-276*, miR-10, miR-31 and miR-184 were detected as five most abundant miRNAs in both libraries and 96 miRNAs were identified that were differentially expressed after parasitization. Bantam*, miR-184 and miR-281* were significantly down-regulated and two miRNAs miR-279b and miR-2944b* were highly induced in parasitized larvae. Interestingly, high copy numbers and differential expression of several miRNA passenger strands (miRNA*) suggest their potential roles in host-parasitoid interaction. In conclusion, expression profiling of miRNAs provided insights into their possible involvement in insect immune response to parasitism and offer an important resource for further studies.  相似文献   

13.
Li SC  Liao YL  Chan WC  Ho MR  Tsai KW  Hu LY  Lai CH  Hsu CN  Lin WC 《Genomics》2011,(6):453-459
Rabbit (Oryctolagus cuniculus) is the only lagomorph animal of which the genome has been sequenced. Establishing a rabbit miRNA resource will benefit subsequent functional genomic studies in mammals. We have generated small RNA sequence reads with SOLiD and Solexa platforms to identify rabbit miRNAs, where we identified 464 pre-miRNAs and 886 mature miRNAs. The brain and heart miRNA libraries were used for further in-depth analysis of isomiR distributions. There are several intriguing findings. First, several rabbit pre-miRNAs form highly conserved clusters. Second, there is a preference in selecting one strand as mature miRNA, resulting in an arm selection preference. Third, we analyzed the isomiR expression and validated the expression of isomiR types in different rabbit tissues. Moreover, we further performed additional small RNA libraries and defined miRNAs differentially expressed between brain and heart. We conclude also that isomiR distribution profiles could vary between brain and heart tissues.  相似文献   

14.
Skotomorphogenic development is the process by which seedlings adapt to a stressful dark environment. Such metabolic responses to abiotic stresses in plants are known to be regulated in part by microRNAs (miRNAs); however, little is known about the involvement of miRNAs in the regulation of skotomorphogenesis. To identify miRNAs at the genome-wide level in skotomorphogenic seedlings of turnip (Brassica rapa subsp. rapa), an important worldwide root vegetable, we used Solexa sequencing to sequence a small RNA library from seedlings grown in the dark for 4 days. Deep sequencing showed that the small RNAs (sRNAs) were predominantly 21 to 24 nucleotides long. Specifically, 13,319,035 reads produced 359,531 unique sRNAs including rRNA, tRNA, miRNA, small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), and unannotated sRNAs. Sequence analysis identified 96 conserved miRNAs belonging to 36 miRNA families and 576 novel miRNAs. qRT-PCR confirmed that the miRNAs were expressed during skotomorphogenesis similar to the trends shown by the Solexa sequencing results. A total of 2013 potential targets were predicted, and the targets of BrmiR157, BrmiR159 and BrmiR160 were proved to be regulated by miRNA-guided cleavage. These results show that specific regulatory miRNAs are present in skotomorphogenic seedlings of turnip and may play important roles in growth, development, and response to dark environment.  相似文献   

15.
Ou J  Meng Q  Li Y  Xiu Y  Du J  Gu W  Wu T  Li W  Ding Z  Wang W 《Fish & shellfish immunology》2012,32(2):345-352
The Chinese mitten crab Eriocheir sinensis is one of the most important freshwater aquaculture crustacean species in China. MicroRNAs (miRNAs) are small non-coding RNAs that are important effectors in the intricate host-pathogen interaction network. To increase the repertoire of miRNAs characterized in crustaceans and to examine the relationship between host miRNA expression and pathogen infection, we used the Illumina/Solexa deep sequencing technology to sequence two small RNA libraries prepared from haemocytes of E. sinensis under normal conditions and during infection with Spiroplasma eriocheiris. The high-throughput sequencing resulted in approximately 30,975,151 and 30,826,277 raw reads corresponding to 12,077,088 and 16,271,545 high-quality mappable reads for the normal and infected haemocyte samples, respectively. Bioinformatic analyses identified 735 unique miRNAs, including 36 that are conserved in crustaceans, 134 that are novel to crabs but are present in other arthropods (PN-type), and 565 that are completely new (PC-type). Two hundred twenty-eight unique miRNAs displayed significant differential expression between the normal and infected haemocyte samples (p < 0.0001). Of these, 133 (58%) were significantly up-regulated and 95 (42%) were significantly down-regulated upon challenge with S. eriocheiris. Real-time quantitative PCR (RT-qPCR) experiments were preformed for 10 miRNAs of the two samples, and agreement was found between the sequencing and RT-qPCR data. To our knowledge, this is the first report of comprehensive identification of E. sinensis miRNAs and of expression analysis of E. sinensis miRNAs after exposure to S. eriocheiris. Many miRNAs were differentially regulated when exposed to the pathogen, and these findings support the hypothesis that certain miRNAs might be essential in host-pathogen interactions. Our results suggest that elucidation of the molecular mechanisms responsible for miRNA regulation of the host’s innate immune system should help with the development of new control strategies to prevent or treat S. eriocheiris infections in crustaceans.  相似文献   

16.
17.
18.
MicroRNAs (miRNAs) present in tissues and biofluids are emerging as sensitive and specific safety biomarkers. MiRNAs have not been thoroughly described in M. fascicularis, an animal model used in pharmaceutical industry especially in drug safety evaluation. Here we investigated the miRNAs in M. fascicularis. For Macaca mulatta, a closely related species of M. fascicularis, 619 stem-loop precursor miRNAs (pre-miRNAs) and 914 mature miRNAs are available in miRBase version 21. Using M. mulatta miRNAs as a reference list and homology search tools, we identified 604 pre-miRNAs and 913 mature miRNAs in the genome of M. fascicularis. In order to validate the miRNAs identified by homology search we attempted to sequence miRNAs expressed in kidney cortex from M. fascicularis. MiRNAs expressed in kidney cortex may indeed be released in urine upon kidney cortex damage and be potentially used to monitor drug induced kidney injury. Hence small RNA sequencing libraries were prepared using kidney cortex tissues obtained from three naive M. fascicularis and sequenced. Analysis of sequencing data indicated that 432 out of 913 mature miRNAs were expressed in kidney cortex tissues. Assigning these 432 miRNAs to pre-miRNAs revealed that 273 were expressed from both the -5p and -3p arms of 150 pre-miRNAs and 159 miRNAs expressed from either the -5p or -3p arm of 176 pre-miRNAs. Mapping sequencing reads to pre-miRNAs also facilitated the detection of twenty-two new miRNAs. To substantiate miRNAs identified by small RNA sequencing, 313 miRNAs were examined by RT-qPCR. Expression of 262 miRNAs in kidney cortex tissues ware confirmed by TaqMan microRNA RT-qPCR assays. Analysis of kidney cortex miRNA targeted genes suggested that they play important role in kidney development and function. Data presented in this study may serve as a valuable resource to assess the renal safety biomarker potential of miRNAs in Cynomolgus monkeys.  相似文献   

19.

Background

The wild grass Brachypodium distachyon has emerged as a model system for temperate grasses and biofuel plants. However, the global analysis of miRNAs, molecules known to be key for eukaryotic gene regulation, has been limited in B. distachyon to studies examining a few samples or that rely on computational predictions. Similarly an in-depth global analysis of miRNA-mediated target cleavage using parallel analysis of RNA ends (PARE) data is lacking in B. distachyon.

Results

B. distachyon small RNAs were cloned and deeply sequenced from 17 libraries that represent different tissues and stresses. Using a computational pipeline, we identified 116 miRNAs including not only conserved miRNAs that have not been reported in B. distachyon, but also non-conserved miRNAs that were not found in other plants. To investigate miRNA-mediated cleavage function, four PARE libraries were constructed from key tissues and sequenced to a total depth of approximately 70 million sequences. The roughly 5 million distinct genome-matched sequences that resulted represent an extensive dataset for analyzing small RNA-guided cleavage events. Analysis of the PARE and miRNA data provided experimental evidence for miRNA-mediated cleavage of 264 sites in predicted miRNA targets. In addition, PARE analysis revealed that differentially expressed miRNAs in the same family guide specific target RNA cleavage in a correspondingly tissue-preferential manner.

Conclusions

B. distachyon miRNAs and target RNAs were experimentally identified and analyzed. Knowledge gained from this study should provide insights into the roles of miRNAs and the regulation of their targets in B. distachyon and related plants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号