首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Urig S  Lieske J  Fritz-Wolf K  Irmler A  Becker K 《FEBS letters》2006,580(15):3595-3600
The substrate spectrum of human thioredoxin reductase (hTrxR) is attributed to its C-terminal extension of 16 amino acids carrying a selenocysteine residue. The concept of an evolutionary link between thioredoxin reductase and glutathione reductase (GR) is presently discussed and supported by the fact that almost all residues at catalytic and substrate recognition sites are identical. Here, we addressed the question if a deletion of the C-terminal part of TrxR leads to recognition of glutathione disulfide (GSSG), the substrate of GR. We introduced mutations at the putative substrate binding site to enhance GSSG binding and turnover. However, none of these enzyme species accepted GSSG as substrate better than the full length cysteine mutant of TrxR, excluding a role of the C-terminal extension in preventing GSSG binding. Furthermore, we show that GSSG binding at the N-terminal active site of TrxR is electrostatically disfavoured.  相似文献   

2.
Tyrosine hydroxylase (TH), the initial and rate-limiting enzyme in the biosynthesis of the neurotransmitter dopamine, is inactivated by peroxynitrite. The sites of peroxynitrite-induced tyrosine nitration in TH have been identified by matrix-assisted laser desorption time-of-flight mass spectrometry and tyrosine-scanning mutagenesis. V8 proteolytic fragments of nitrated TH were analyzed by matrix-assisted laser desorption time-of-flight mass spectrometry. A peptide of 3135.4 daltons, corresponding to residues V410-E436 of TH, showed peroxynitrite-induced mass shifts of +45, +90, and +135 daltons, reflecting nitration of one, two, or three tyrosines, respectively. These modifications were not evident in untreated TH. The tyrosine residues (positions 423, 428, and 432) within this peptide were mutated to phenylalanine to confirm the site(s) of nitration and assess the effects of mutation on TH activity. Single mutants expressed wild-type levels of TH catalytic activity and were inactivated by peroxynitrite while showing reduced (30-60%) levels of nitration. The double mutants Y423F,Y428F, Y423F,Y432F, and Y428F,Y432F showed trace amounts of tyrosine nitration (7-30% of control) after exposure to peroxynitrite, and the triple mutant Y423F,Y428F,Y432F was not a substrate for nitration, yet peroxynitrite significantly reduced the activity of each. When all tyrosine mutants were probed with PEO-maleimide activated biotin, a thiol-reactive reagent that specifically labels reduced cysteine residues in proteins, it was evident that peroxynitrite resulted in cysteine oxidation. These studies identify residues Tyr(423), Tyr(428), and Tyr(432) as the sites of peroxynitrite-induced nitration in TH. No single tyrosine residue appears to be critical for TH catalytic function, and tyrosine nitration is neither necessary nor sufficient for peroxynitrite-induced inactivation. The loss of TH catalytic activity caused by peroxynitrite is associated instead with oxidation of cysteine residues.  相似文献   

3.
There is increasing evidence that protein function can be modified by nitration of tyrosine residue(s), a reaction catalyzed by proteins with peroxidase activity, or that occurs by interaction with peroxynitrite, a highly reactive oxidant formed by the reaction of nitric oxide with superoxide. Although there are numerous reports describing loss of function after treatment of proteins with peroxynitrite, we recently demonstrated that the microsomal glutathione S-transferase 1 is activated rather than inactivated by peroxynitrite and suggested that this could be attributed to nitration of tyrosine residues rather than to other effects of peroxynitrite. In this report, the nitrated tyrosine residues of peroxynitrite-treated microsomal glutathione S-transferase 1 were characterized by mass spectrometry and their functional significance determined. Of the seven tyrosine residues present in the protein, only those at positions 92 and 153 were nitrated after treatment with peroxynitrite. Three mutants (Y92F, Y153F, and Y92F, Y153F) were created using site-directed mutagenesis and expressed in LLC-PK1 cells. Treatment of the microsomal fractions of these cells with peroxynitrite resulted in an approximately 2-fold increase in enzyme activity in cells expressing the wild type microsomal glutathione S-transferase 1 or the Y153F mutant, whereas the enzyme activity of Y92F and double site mutant was unaffected. These results indicate that activation of microsomal glutathione S-transferase 1 by peroxynitrite is mediated by nitration of tyrosine residue 92 and represents one of the few examples in which a gain in function has been associated with nitration of a specific tyrosine residue.  相似文献   

4.
Protection against peroxynitrite   总被引:11,自引:0,他引:11  
Arteel GE  Briviba K  Sies H 《FEBS letters》1999,445(2-3):226-230
Peroxynitrite formed in vivo from superoxide and nitric oxide can mediate oxidation, nitration, or nitrosation reactions, leading to impaired function, toxicity, and alterations in signaling pathways. Protection against peroxynitrite is important for defense of normal tissue, especially during inflammation. Biological protection against peroxynitrite is organized in three categories: prevention, interception, and repair. Prevention is the control of the formation of peroxynitrite precursors, nitric oxide and superoxide. Interception is by direct reaction with peroxynitrite, leading to non-toxic products. In this regard, organoselenium compounds, metalloporphyrin derivatives, and peroxidases (e.g. glutathione peroxidase and myeloperoxidase) exhibit high second-order rate constants with peroxynitrite. Ebselen, like glutathione peroxidase, protects in a catalytic fashion utilizing glutathione as reductant in the peroxynitrite reductase reaction. Protection by metalloporphyrins can be maintained through glutathione or ascorbate. Repair processes remove damaged products and restitute intact biomolecules.  相似文献   

5.
Peroxynitrite and nitrogen dioxide (NO2) are reactive nitrogen species that have been implicated as causal factors in neurodegenerative conditions. Peroxynitrite-induced nitration of tyrosine residues in tyrosine hydroxylase (TH) may even be one of the earliest biochemical events associated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced damage to dopamine neurons. Exposure of TH to peroxynitrite or NO2 results in nitration of tyrosine residues and modification of cysteines in the enzyme as well as inactivation of catalytic activity. Dopamine (DA), its precursor 3,4-dihydroxyphenylalanine, and metabolite 3,4-dihydroxyphenylacetic acid completely block the nitrating effects of peroxynitrite and NO2 on TH but do not relieve the enzyme from inhibition. o-Quinones formed in the reaction of catechols with either peroxynitrite or NO2 react with cysteine residues in TH and inhibit catalytic function. Using direct, real-time evaluation of tyrosine nitration with a green fluorescent protein-TH fusion protein stably expressed in intact cells (also stably expressing the human DA transporter), DA was also found to prevent NO2-induced nitration while leaving TH activity inhibited. These results show that peroxynitrite and NO2 react with DA to form quinones at the expense of tyrosine nitration. Endogenous DA may therefore play an important role in determining how DA neurons are affected by reactive nitrogen species by shifting the balance of their effects away from tyrosine nitration and toward o-quinone formation.  相似文献   

6.
Mitochondria are the primary locus for the generation of reactive nitrogen species including peroxynitrite and subsequent protein tyrosine nitration. Protein tyrosine nitration may have important functional and biological consequences such as alteration of enzyme catalytic activity. In the present study, mouse liver mitochondria were incubated with peroxynitrite, and the mitochondrial proteins were separated by 1D and 2D gel electrophoresis. Nitrotyrosinylated proteins were detected with an anti-nitrotyrosine antibody. One of the major proteins nitrated by peroxynitrite was carbamoyl phosphate synthetase 1 (CPS1) as identified by LC-MS protein analysis and Western blotting. The band intensity of nitration normalized to CPS1 was increased in a peroxynitrite concentration-dependent manner. In addition, CPS1 activity was decreased by treatment with peroxynitrite in a peroxynitrite concentration- and time-dependent manner. The decreased CPS1 activity was not recovered by treatment with reduced glutathione, suggesting that the decrease of the CPS1 activity is due to tyrosine nitration rather than cysteine oxidation. LC-MS analysis of in-gel digested samples, and a Popitam-based modification search located 5 out of 36 tyrosine residues in CPS1 that were nitrated. Taken together with previous findings regarding CPS1 structure and function, homology modeling of mouse CPS1 suggested that nitration at Y1450 in an α-helix of allosteric domain prevents activation of CPS1 by its activator, N-acetyl-l-glutamate. In conclusion, this study demonstrated the tyrosine nitration of CPS1 by peroxynitrite and its functional consequence. Since CPS1 is responsible for ammonia removal in the urea cycle, nitration of CPS1 with attenuated function might be involved in some diseases and drug-induced toxicities associated with mitochondrial dysfunction.  相似文献   

7.
Tryptophan hydroxylase, the initial and rate-limiting enzyme in serotonin biosynthesis, is inactivated by peroxynitrite in a concentration-dependent manner. This effect is prevented by molecules that react directly with peroxynitrite such as dithiothreitol, cysteine, glutathione, methionine, tryptophan, and uric acid but not by scavengers of superoxide (superoxide dismutase), hydroxyl radical (Me(2)SO, mannitol), and hydrogen peroxide (catalase). Assuming simple competition kinetics between peroxynitrite scavengers and the enzyme, a second-order rate constant of 3.4 x 10(4) M(-1) s(-1) at 25 degrees C and pH 7.4 was estimated. The peroxynitrite-induced loss of enzyme activity was accompanied by a concentration-dependent oxidation of protein sulfhydryl groups. Peroxynitrite-modified tryptophan hydroxylase was resistant to reduction by arsenite, borohydride, and dithiothreitol, suggesting that sulfhydryls were oxidized beyond sulfenic acid. Peroxynitrite also caused the nitration of tyrosyl residues in tryptophan hydroxylase, with a maximal modification of 3.8 tyrosines/monomer. Sodium bicarbonate protected tryptophan hydroxylase from peroxynitrite-induced inactivation and lessened the extent of sulfhydryl oxidation while causing a 2-fold increase in tyrosine nitration. Tetranitromethane, which oxidizes sulfhydryls at pH 6 or 8, but which nitrates tyrosyl residues at pH 8 only, inhibited tryptophan hydroxylase equally at either pH. Acetylation of tyrosyl residues with N-acetylimidazole did not alter tryptophan hydroxylase activity. These data suggest that peroxynitrite inactivates tryptophan hydroxylase via sulfhydryl oxidation. Modification of tyrosyl residues by peroxynitrite plays a relatively minor role in the inhibition of tryptophan hydroxylase catalytic activity.  相似文献   

8.
We have shown that peroxynitrite (ONOO-) inhibits streptokinase-induced conversion of plasminogen to plasmin in a concentration-dependent manner and reduces both amidolytic (IC5o approximately 280 microM at 10 microM concentration of enzyme) and proteolytic activity of plasmin. Spectrophotometric and immunoblot analysis of peroxynitrite-treated plasminogen demonstrates a concentration-dependent increase in its nitrotyrosine residues that correlates with a decreased generation of active plasmin. Peroxynitrite (1 mM) causes the nitration of 2.9 tyrosines per plasminogen molecule. Glutathione, like deferoxamine, partially protects plasminogen from peroxynitrite-induced inactivation and reduces the extent of tyrosine nitration. These data suggest that nitration of plasminogen tyrosine residues by peroxynitrite might play an important role in the inhibition of plasmin catalytic activity.  相似文献   

9.
Twelve substituted metalloporphyrins (MPs), some of which have been previously characterized with respect to superoxide dismutase and peroxynitrite decomposing activities, were evaluated for their ability to scavenge peroxynitrite in vitro at 37 degrees C. Because the overall effectiveness of MPs as catalytic peroxynitrite scavengers is a function of (1) how fast they react with peroxynitrite, (2) how fast they cycle back to the starting compound, and (3) how well they contain or quench the reactive intermediates generated, all of these properties were evaluated and compared directly under the same conditions. Of the various MPs tested, only the iron and manganese porphyrins showed significant reactivity with peroxynitrite. The Mn(IV) intermediates resulting from oxidation by peroxynitrite were relatively stable and rereduction to the Mn(III) forms was rate-limiting to catalytic decomposition of peroxynitrite. However, in the presence of oxidizeable substrates like phenolics, rereduction of Mn(IV) forms occurred very rapidly and both the Mn- and Fe-porphyrins catalyzed nitration and oxidation by peroxynitrite. Mn- and Fe-porphyrins enhanced the yield of nitrated phenolics by peroxynitrite as much as 5-fold at pH 7.4 and up to 12-fold at pH 9. 1, while total oxidative yield was more than doubled. Nitration enhancement by MPs was effectively inhibited by ascorbate, glutathione, or serum, although much higher concentrations of ascorbate were required to inhibit nitration catalyzed by either Mn or Fe tetramethylpyridyl porphyrin. Catalysis of peroxynitrite nitration by MPs appears to proceed via a radical-mediated reaction mechanism whereby the phenolic substrate rapidly reduces Mn(IV) = O or Fe[IV] = O to the +3 state to yield phenoxyl radical which then combines with the other primary product, nitrogen dioxide. Based on the rate constants and the proposed reaction mechanism, it is reasonable to suggest that Mn and Fe porphyrins could detoxify peroxynitrite in vivo by efficiently trapping the relatively unreactive peroxynitrite anion and, in effect, channeling it into a single reaction pathway which could then be more effectively scavenged by cellular reductants like ascorbate.  相似文献   

10.
The substrate specificity of the human enzyme glutathione reductase was changed from its natural substrate glutathione to trypanothione [N1,N8-bis(glutathionyl)spermidine] by site-directed mutagenesis of two residues. The glutathione analogue, trypanothione, is the natural substrate for trypanothione reductase, an enzyme found in trypanosomatids and leishmanias, the causative agents of diseases such as African sleeping sickness, Chagas disease, and Oriental sore. The rational bases for our mutational experiments were the availability of a high-resolution X-ray structure for human glutathione reductase with bound substrates, the active site sequence comparisons of human glutathione reductase and the trypanothione reductases from Trypanosoma congolense and Trypanosoma cruzi, a complementary set of mutants in T. congolense trypanothione reductase, and the properties of substrate analogues of trypanothione. Mutation of two residues, A34----E34 and R37----W37, in the glutathione-binding site of human glutathione reductase switches human glutathione reductase into a trypanothione reductase with a preference for trypanothione over glutathione by a factor of 700 using kcat/Km as a criterion.  相似文献   

11.
New drugs against malaria are urgently and continuously needed. Plasmodium parasites are exposed to higher fluxes of reactive oxygen species and need high activities of intracellular antioxidant systems. A most important antioxidative system consists of (di)thiols which are recycled by disulfide reductases (DR), namely both glutathione reductases (GR) of the malarial parasite Plasmodium falciparum and man, and the thioredoxin reductase (TrxR) of P. falciparum. The aim of our interdisciplinary research is to substantiate DR inhibitors as antimalarial agents. Such compounds are active per se but, in addition, they can reverse thiol-based resistance against other drugs in parasites. Reversal of drug resistance by DR inhibitors is currently investigated for the commonly used antimalarial drug chloroquine (CQ). Our recent strategy is based on the synthesis of inhibitors of the glutathione reductases from parasite and host erythrocyte. With the expectation of a synergistic or additive effect, double-headed prodrugs were designed to be directed against two different and essential functions of the malarial parasite P. falciparum, namely glutathione regeneration and heme detoxification. The prodrugs were prepared by linking bioreversibly a GR inhibitor to a 4-aminoquinoline moiety which is known to concentrate in the acidic food vacuole of parasites. Drug-enzyme interaction was correlated with antiparasitic action in vitro on strains resistant towards CQ and in vivo in Plasmodium berghei-infected mice as well as absence of cytotoxicity towards human cells. Because TrxR of P. falciparum was recently shown to be responsible for the residual glutathione disulfide-reducing capacity observed after GR inhibition in P. falciparum, future development of antimalarial drug-candidates that act by perturbing the redox equilibrium of parasites is based on the design of new double-drugs based on TrxR inhibitors as potential antimalarial drug candidates.  相似文献   

12.
Prabhakar R  Morokuma K  Musaev DG 《Biochemistry》2006,45(22):6967-6977
The peroxynitrite reductase activity of selenoprotein glutathione peroxidase (GPx) has been investigated using density functional theory calculations for peroxynitrite/peroxynitrous acid (ONOO-/ONOOH) substrates through two different "oxidation" and "nitration" pathways. In the oxidation pathway for ONOO-, the oxidation of GPx and the subsequent formation of the selenenic acid (E-Se-OH) occur through a concerted mechanism with an energy barrier of 4.7 (3.7) kcal/mol, which is in good agreement with the computed value of 7.1 kcal/mol for the drug ebselen and the experimentally measured barrier of 8.8 kcal/mol for both ebselen and GPx. For ONOOH, the formation of the E-Se-OH prefers a stepwise mechanism with an overall barrier of 6.9 (11.3) kcal/mol, which is 10.2 (11.2) kcal/mol lower than that for hydrogen peroxide (H2O2), indicating that ONOOH is a more efficient substrate for GPx oxidation. It has been demonstrated that the active site Gln83 residue plays a critical role during the oxidation process, which is consistent with the experimental suggestions. The nitration of GPx by ONOOH produces a nitro (E-Se-NO2) product via either of two different mechanisms, isomerization and direct, having almost the same barrier heights. A comparison between the rate-determining barriers of the oxidation and nitration pathways suggests that the oxidation of GPx by ONOOH is more preferable than its nitration. It was also shown that the rate-determining barriers remain the same, 21.5 (25.5) kcal/mol, in the peroxynitrite reductase and peroxidase activities of GPx.  相似文献   

13.
The homodimeric flavoenzyme glutathione reductase (GR) maintains high intracellular concentrations of the antioxidant glutathione (GSSG + NADPH + H(+) <--> 2 GSH + NADP(+)). Due to its central function in cellular redox metabolism, inhibition of GR from the malarial parasite Plasmodium falciparum represents an important approach to antimalarial drug development; therefore, the catalytic mechanism of GR from P. falciparum has been analyzed and compared with the human host enzyme. The reductive half-reaction is similar to the analogous reaction with GR from other species. The oxidative half-reaction is biphasic, reflecting formation and breakdown of a mixed disulfide between the interchange thiol and GSH. The equilibrium between the E(ox)-EH(2) and GSSG-GSH couples has been modeled showing that the Michaelis complex, mixed disulfide-GSH, is the predominant enzyme form as the oxidative half-reaction progresses; rate constants used in modeling allow calculation of an K(eq) from the Haldane relationship, 0.075, very similar to the K(eq) of the same reaction for the yeast enzyme (0.085) (Arscott, L. D., Veine, D. M., and Williams, C. H., Jr. (2000) Biochemistry 39, 4711-4721). Enzyme-monitored turnover indicates that E(FADH(-))(S-S). NADP(+) and E(FAD)(SH)(2).NADPH are dominant enzyme species in turnover. Since the individual forms of the enzyme differ in their susceptibility to inhibitors, the prevailing states of GR in the cell are of practical relevance.  相似文献   

14.
African trypanosomes contain a cyclic derivative of oxidized glutathione, N1,N8-bis(glutathionyl)spermidine, termed trypanothione. This is the substrate for the parasite enzyme trypanothione reductase, a key enzyme in disulfide/dithiol redox balance and a target enzyme for trypanocidal therapy. Trypanothione reductase from these and related trypanosomatid parasites is structurally homologous to host glutathione reductase but the two enzymes show mutually exclusive substrate specificities. To assess the basis of host vs parasite enzyme recognition for their disulfide substrates, the interaction of bound glutathione with active-site residues in human red cell glutathione reductase as defined by prior X-ray analysis was used as the starting point for mutagenesis of three residues in trypanothione reductase from Trypanosoma congolense, a cattle parasite. Mutation of three residues radically alters enzyme specificity and permits acquisition of glutathione reductase activity at levels 10(4) higher than in wild-type trypanothione reductase.  相似文献   

15.
Summary The rational design of ligands for the substrate-binding site of a homology-modelled trypanothione reductase (TR) was performed. Peptides were designed to be selective for TR over human glutathione reductase (GR). The design process capitalized on the proposed differences between the activesites of TR and human GR, subsequently confirmed by the TR crystal structure. Enzyme kinetics confirmed that forT. cruzi TR benzoyl-Leu-Arg-Arg-ß-naphthylamide was an inhibitor (Ki 13.8µM) linearly competitive with the native substrate, trypanothione disulphide, and did not inhibit glutathione reductase.  相似文献   

16.
Experiments were carried out to establish the role of glutathione reductase (GR), if any, in the metabolic conversion of disulfiram (DS) to diethyldithiocarbamate (DDC). It was observed that, under standard assay conditions, whereas DS was incorporated as a substrate instead of oxidised glutathione (GSSG), the enzymes from both human liver extract and yeast sources failed to reduce the parent compound, implying that glutathione reductase perse do not reduce disulfiram. However, the incorporation of disulfiram into an assay system comprising of GSSG, NADPH and reductase resulted in DS reduction to DDC. Further, the observation, that the GR assay system devoid of either GSSG or NADPH was found to lack DS reducing ability, implies that GSH as a reaction product of GR system is responsible for the reduction of DS to DDC. The results of in-vitro experiments indicated that GSH perse could reduce DS to DDC nonenzymatically, with a stoichiometric relationship of 2:1. Thus it is inferred that GR perse do not reduce DS, whereas GSH, as an intermediary metabolite of GR system, brings about non-enzymatic reduction of DS via a sulfhydral group exchange reaction.  相似文献   

17.
Biochemical and clinical evidence indicates that monomethylated selenium compounds are crucial for the tumor preventive effects of the trace element selenium and that methylselenol (CH(3)SeH) is a key metabolite. As suggested by Ganther (Ganther, H. E. (1999) Carcinogenesis 20, 1657-1666), methylselenol and its precursor methylseleninate might exert their effects by inhibition of the selenoenzyme thioredoxin reductase via the irreversible formation of a diselenide bridge. Here we report that methylseleninate does not act as an inhibitor of mammalian thioredoxin reductase but is in fact an excellent substrate (K(m) of 18 microm, k(cat) of 23 s(-1)), which is reduced by the enzyme according to the equation 2 NADPH + 2 H(+) + CH(3)SeO(2)H --> 2 NADP(+) + 2 H(2)O + CH(3)SeH. The selenium-containing product of this reaction was identified by mass spectrometry. Nascent methylselenol was found to efficiently reduce both H(2)O(2) and glutathione disulfide. The implications of these findings for the antitumor activity of selenium are discussed. Methylseleninate was a poor substrate not only for human glutathione reductase but also for the non-selenium thioredoxin reductases enzymes from Drosophila melanogaster and Plasmodium falciparum. This suggests that the catalytic selenocysteine residue of mammalian thioredoxin reductase is essential for methylseleninate reduction.  相似文献   

18.
The malarial parasite Plasmodium falciparum is known to be sensitive to oxidative stress, and thus the antioxidant enzyme glutathione reductase (GR; NADPH+GSSG+H(+) <==> NADP(+)+2 GSH) has become an attractive drug target for antimalarial drug development. Here, we report the 2.6A resolution crystal structure of P.falciparum GR. The homodimeric flavoenzyme is compared to the related human GR with focus on structural aspects relevant for drug design. The most pronounced differences between the two enzymes concern the shape and electrostatics of a large (450A(3)) cavity at the dimer interface. This cavity binds numerous non-competitive inhibitors and is a target for selective drug design. A 34-residue insertion specific for the GRs of malarial parasites shows no density, implying that it is disordered. The precise location of this insertion along the sequence allows us to explain the deleterious effects of a mutant in this region and suggests new functional studies. To complement the structural comparisons, we report the relative susceptibility of human and plasmodial GRs to a series of tricyclic inhibitors as well as to peptides designed to interfere with protein folding and dimerization. Enzyme-kinetic studies on GRs from chloroquine-resistant and chloroquine-sensitive parasite strains were performed and indicate that the structure reported here represents GR of P.falciparum strains in general and thus is a highly relevant target for drug development.  相似文献   

19.
Cumulative oxidative damage to proteins coupled with a decrease in repair has been implicated in the pathology of several neurodegenerative diseases. Herein we report that peroxynitrite-induced disulfides in porcine brain tubulin are repaired by the thioredoxin reductase system composed of rat liver thioredoxin reductase, human or Escherichia coli thioredoxin, and NADPH. Disulfide bonds between the alpha-tubulin and the beta-tubulin subunits were repaired by thioredoxin reductase as determined by Western blot under nonreducing conditions. Total disulfide repair by thioredoxin reductase was assessed using a sulfhydryl-specific labeling reagent, 5-iodoacetamido-fluorescein. Treatment of tubulin with 1.0 mM peroxynitrite anion decreased 5-iodoacetamido-fluorescein labeling by 48%; repair of peroxynitrite-damaged tubulin with thioredoxin reductase restored sulfhydryl labeling to control levels. Tubulin disulfide reduction by thioredoxin reductase restored tubulin polymerization activity that was lost after peroxynitrite was added. The extent of activity restored by thioredoxin reductase and by the nonspecific disulfide-reducing agent tris(2-carboxyethyl)phosphine hydrochloride was identical; however, activity was not restored to control levels. Tyrosine nitration of tubulin was detected at all concentrations of peroxynitrite tested; thus, tubulin nitration may be responsible for the fraction of activity that could not be restored. Thiol-disulfide exchange between tubulin and thioredoxin was detected by Western blot, thereby providing further support for our observations that optimal repair of tubulin disulfides required thioredoxin.  相似文献   

20.
Fully and partially reduced forms of isolated bovine cytochrome c oxidase undergo a two-electron oxidation-reduction process with added peroxynitrite, leading to catalytic oxidation of ferrocytochrome c to ferricytochrome c. The other major reaction product is nitrite ion, 86% of the added peroxynitrite being measurably converted to this species. The reaction is inhibited in the presence of cyanide, implicating the heme a(3)-Cu(B) binuclear pair as the active site. Moreover, provided peroxynitrite is not added to excess, the reductase activity of the enzyme toward this oxidant efficiently protects other protein and detergent molecules in vitro from nitration of tyrosine residues and oxidative damage. If the enzyme is exposed to approximately 10(2)-fold excesses of peroxynitrite, then significant irreversible loss of electron transfer activity results, and the heme a(3)-Cu(B) binuclear pair no longer undergo a characteristic carbon monoxide-driven reduction. The accompanying rather small changes in the observed electronic absorption spectrum are suggestive of a modification in the vicinity of one or both hemes but probably not to the cofactors themselves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号