共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Two complete humeri of Aegyptopithecus zeuxis have been recovered from Oligocene deposits in the Fayum Province of Egypt. These new specimens support previous interpretations of the locomotor adaptations of this species and indicate that A. zeuxis was a robust, slowly moving arboreal quadruped. While the previously described distal articular region of the humerus is virtually identical with the same region in many extant ceboids and the Miocene hominoid Pliopithecus vindobonensis, the more proximal parts of the humerus show many primitive "prosimianlike" features not found the limbs of extant anthropoids. The primitive features include the absence of a distinct deltoid plane, a broad shallow bicipital groove, a large brachialis flange, and an entepicondylar foramen. In most features, the humerus of Aegyptopithecus zeuxis is more primitive than the hypothetical last common ancestor of extant cercopithecoids and hominoids based on neontological comparisons. This supports other lines of evidence indicating that the hominoids from the Egyptian Oligocene are morphologically ancestral to both Old World monkeys and apes. 相似文献
3.
Ralph L. Holloway 《American journal of physical anthropology》1981,55(3):385-393
Full brain endocast reconstructions of the Neandertals, Spy I and II, Djebel Ihroud I, and the Homo erectus specimen from Salè, Morocco have yielded accurate volumes. Spy I = 1,305 ml; Spy II = 1,553 ml; Djebel Ihroud I = 1,305 ml; Salè = 880 ml. While there are no remarkable gyral and sulcal patterns one can delineate, the brain endocasts do show evidence of left-occipital, right-frontal petalias, suggesting right-handedness, and possibly human cognitive specialization, involving symbol processing and visuospatial integration. Some speculations regarding Neandertal brain size are also offered, in which it is suggested that their possibly larger brain sizes were related to greater muscularity than in modern Homo sapiens. 相似文献
4.
P D Gingerich 《American journal of physical anthropology》1977,47(3):395-398
Second molar length and body weight are used to test the correlation between tooth size and body size in living Hominoidea. These variates are highly correlated (r= 0.942, p less than 0.001), indicating that tooth size can be used in dentally unspecialized fossil hominoids as one method of predicting the average body weight of species. Based on tooth size, the average body weight of Aegyptopithecus zeuxis is estimated to have been beteen 4.5 and 7.5 kg, which is corroborated by known cranial and postcranial elements. Using Radinsky's estimates of brain size, the encephalization quotient (EQ) for Aegyptopithecus was between 0.65 and 1.04. A similar analysis for Proconsul africanus yields a body weight between 16 and 34 kg, and an EQ between 1.19 and 1.96. 相似文献
5.
Dean Falk Charles Hildebolt Michael Vannier 《American journal of physical anthropology》1994,93(4):435-439
The relationship between the squamosal suture and asterion was quantified in 15 hemispheres of eight chimpanzee endocasts that were aligned in the conventional lateral view (i.e., with frontal pole [FP]–occipital pole [OP] horizontal). Using a three-dimensional digitizer, x, y, and z coordinates were collected for the highest and lowest points of the squamosal suture, and the most rostral point of the suture approximate to the coronal suture. Our results were compared to a similar study of the squamosal suture on the external surfaces of chimpanzee skulls that were oriented in the Frankfurt horizontal (Holloway and Shapiro, 1992). The relationship between the squamosal suture and asterion differs markedly between the outsides of skulls and endocasts. Whereas the squamosal suture is very rarely below asterion on the external skull, we found that most of the squamosal suture is located inferior to asterion on endocasts. We also found that the squamosal suture courses approximately 2.0 mm lower on the right side than the left. (An asymmetry of the same magnitude was reported for the external skull but, curiously, in the opposite direction.) It may be that a lowered right squamosal endosuture on chimpanzee endocasts is associated with earlier closure on that side. The discrepancy in results for the external skull versus endocast is partially attributable to orienting chimpanzee skulls in the Frankfurt horizontal, which usually results in the endocasts being tilted so that FP is above OP, i.e., FP-OP is not parallel with the Frankfurt horizontal. Falk's (1985) orientation of the early hominid endocast from Hadar (AL 162-28) is consistent with data determined from endocasts of chimpanzees. © 1994 Wiley-Liss, Inc. 相似文献
6.
Ralph L. Holloway 《American journal of physical anthropology》1981,55(4):503-521
New brain endocast reconstructions of Homo erectus discoveries from Indonesia since 1963 (H. erectus VI, 1963; VII, 1965; VIII, 1969) have been made and their volumes determined. In addition, older discoveries (H. erectus I, 1891; II, 1937; IV, 1937–38) have been reendocast and reconstructed, and have yielded volumes considerably different from those previously published. This is particularly so in the case of Dubois's original discovery, which yields a volume of 940 ml rather than the widely quoted volume of 750 ml. In addition, a number of morphological observations regarding hemispheric asymmetries (petalias) are provided, which suggest a condition similar to modern Homo sapiens. 相似文献
7.
D Falk 《American journal of physical anthropology》1979,50(4):610-614
A newly discovered right parietal/temporal/frontal fragment from an australopithecine natural endocast is described and compared to other australopithecine endocasts. This specimen shows that the central sulcus was arched, rather than straight as previously believed, and reveals frontal lobe convolutions not preserved in other australopithecine endocasts. 相似文献
8.
D Falk 《American journal of physical anthropology》1983,60(4):479-489
Indices of rostrality (ir, ir') are developed to assess the extent to which the medial end of the lunate sulcus (L) is rostrally positioned in photographs and figures of lateral views of primate brains and endocasts, and indices are determined for chimpanzees, SK 1585 and the Taung endocast. Ir quantifies the extent of rostrality as it has traditionally been viewed (in A-P projections) while ir' takes dorsal curvature into account. The ir of the feature that I have identified as the lunate sulcus of Taung is within one standard deviation of the mean ir for Pan and its ir' is within 1.5 standard deviations from the mean ir' for Pan. Both findings are compatible with my earlier statement that the medial end of the lunate sulcus of the Taung endocast is in a pongid-like position. Use of stereoplotting to transfer the position of L from chimpanzee endocasts and brains to australopithecine endocasts is critically assessed: Holloway stereoplotted five chimpanzee brains and then transferred their mean coordinates that describe the lunate sulcus to the Taung endocast. If stereoplotting successfully transfers the extent to which L is rostrally located, one would expect the mean L of Pan and its transferred counterpart in Taung to have identical index values of rostrality. However, the ir of the lunate sulcus that Holloway located on Taung is over two standard deviations lower than the mean ir for the five chimpanzees he stereoplotted to determine its angular coordinates, and Holloway's ir' for Taung is one standard deviation lower than the five chimpanzees' mean ir'. These discrepancies are shown to be due to shape differences, and it is concluded that stereoplotting should not be used to transfer sulci between differently shaped endocasts without correcting for these differences. I also reply to Holloway's criticisms of my use of L/H indices, palpation, techniques for sampling endocasts, and illustration of the Taung endocast. It is shown that there is room on the Taung specimen for the lateral end of L, and the pongid-like sulcal pattern of Taung is reaffirmed. Thus, we do not yet know when human-like sulcal patterns first appeared in the hominid fossil record. 相似文献
9.
Ralph L. Holloway 《American journal of physical anthropology》1972,37(2):173-185
The new SK 1585 endocast, found by Dr. Brain at Swartkrans, 1966, is that of a robust australopithecine, matching the endocast of the Olduvai Hominid 5 in volume, and being almost identical to it in morphology. Aside from Olduvai Hominid 5 it is the only robust australopithecine endocast complete enough to permit easy reconstruction, as only a small portion of the frontal lobe is missing. While the gyral and sulcal patterns are not clear, there are a number of features indicating that the brain is not that of a pongid, but that is has been reorganized to a hominid pattern, particularly the occipital, parietal, and temporal lobes. 相似文献
10.
Early hominid brain evolution: a new look at old endocasts 总被引:4,自引:0,他引:4
Falk D Redmond JC Guyer J Conroy C Recheis W Weber GW Seidler H 《Journal of human evolution》2000,38(5):695-717
Early hominid brain morphology is reassessed from endocasts of Australopithecus africanus and three species of Paranthropus, and new endocast reconstructions and cranial capacities are reported for four key specimens from the Paranthropus clade. The brain morphology of Australopithecus africanus appears more human like than that of Paranthropus in terms of overall frontal and temporal lobe shape. These new data do not support the proposal that increased encephalization is a shared feature between Paranthropus and early Homo. Our findings are consistent with the hypothesis that Australopithecus africanus could have been ancestral to Homo, and have implications for assessing the tempo and mode of early hominid neurological and cognitive evolution. 相似文献
11.
Brent H. Breithaupt David Duvall 《Lethaia: An International Journal of Palaeontology and Stratigraphy》1986,19(2):181-185
Three virtually complete skeletons in east-central Wyoming of the Oligocene erycinine boid snakes Ogmophis and Calamagras represent the oldest known record of serpent aggregation. The skeletons are articulated and coiled loosely together in life-like positions in a horizontal plane within sediments of the White River Formation. The fossils represent an autochthonous, fluvial burial of snakes some 32 million years ago. Taphonomic considerations suggest the preservation of an aggregative event that occurred just prior to death. We suggest that serpent aggregation is a conservative, relatively unchanged form of behaviour, with a minimum age of 32 million years before present. 相似文献
12.
Brain shape asymmetries or petalias consist of the extension of one cerebral hemisphere beyond the other. A larger frontal or caudal projection is usually coupled with a larger lateral extent of the more projecting hemisphere relative to the other. The concurrence of these petalial components is characteristic of hominins. Studies aimed at quantifying petalial asymmetries in human and great ape endocasts rely on the definition of the midline of the endocranial surface. Studies of brain material show that, at least in humans, most of the medial surface of the left occipital lobe distorts along the midline and protrudes on to the right side, making it difficult for midline and corresponding left and right reference point identification. In order to accurately quantify and compare brain shape asymmetries in extant hominid species, we propose here a new protocol based on the objective definition of cranial landmarks. We describe and quantify for the first time in three dimensions the positions of frontal and occipital protrusions in large samples of Pan paniscus, Pan troglodytes and Gorilla gorilla. This study confirms the existence of frontal and occipital petalias in African apes. Moreover, the detailed analysis of the 3D structure of these petalias reveals shared features, as well as features that are unique to the different great ape species. 相似文献
13.
Ralph L. Holloway 《American journal of physical anthropology》1984,64(3):285-287
Using an independent method of direct tape-arc measurements on six chimpanzee brain casts, it is shown that Falk's (1980, 1983) claims regarding an anterior pongidlike placement of a lunate sulcus on the Taung specimen remain unconfirmed. Thus Holloway's (1981) stereoplotting method of testing Falk's hypothesis is independently confirmed, using the actual specimens rather than photographs of them. Falk's (1980) placement of a lunate sulcus falls at least 2.5 standard deviations anterior to a position expected on the basis of a Pan location. 相似文献
14.
Based on 244 measurements of the relationship of the squamosal suture to the landmark asterion in 49 chimpanzee skulls, it is shown that in the normal lateral view the squamosal suture is very rarely inferior to asterion. In hominid crania, the squamosal suture is always well superior to asterion. Even in Pan, that part of the squamosal suture most homologous with the remnant found on the Hadar AL 162-28 Australopithecus afarensis hominid cranial fragment is very rarely inferior to asterion. Such variability suggests that Falk's (Nature 313:45-47, 1985) orientation of the Hadar specimen is incorrect; she places asterion superior to the position of the squamosal suture if projected endocranially. The implication for the brain endocast is that, however the fragment is oriented, the posterior aspect of the intraparietal (IP) sulcus is in a very posterior position relative to any chimpanzee brain. The distance from the posterior aspect of IP to occipital pole is twice as great in chimpanzee brain casts than on the Hadar AL 162-28 endocast, even though the chimpanzee brain casts are smaller in overall size. This suggests that brain reorganization, at least as exemplified as a reduction in primary visual striate cortex (area 17 of Brodmann), occurred early in hominid evolution, prior to any major brain expansion. 相似文献
15.
Sakai ST Arsznov BM Lundrigan BL Holekamp KE 《Annals of the New York Academy of Sciences》2011,1225(Z1):E160-E170
Reliable brain volume measurements are crucial in identifying factors that influence the course of brain evolution. Here, we demonstrate the potential for using virtual endocasts (VEs) to examine inter- and intraspecific variation in brain volume in members of the family Hyaenidae. Total endocranial volume (adjusted for body size) and anterior cerebrum volume (adjusted for endocranial volume) were greater in the spotted hyena, the most gregarious of the species, than in the other hyaenids, all of which are less gregarious. An intraspecific analysis of spotted hyenas revealed that anterior cerebrum volume is significantly larger in males than females, although total endocranial volume does not differ between the sexes. Greater total endocranial and anterior cerebrum volume of spotted hyenas, relative to those of other hyena species, may be related to increased neural processing mediating cognitive demands associated with a complex social life. These data demonstrate that computed tomographic (CT) technology can be used to create VEs in species for which actual brains are rare or unavailable, and suggest that this approach can be applied systematically to explore intra- and interspecies brain variations in studies of brain evolution. 相似文献
16.
Miguel A. Schn Ybarra 《American journal of physical anthropology》1984,63(1):65-76
Positional (postural and locomotor) patterns and substrates used by the seven adults of a free-ranging troop of red howling monkeys (Alouatta seniculus) were identified and sampled during their feeding and resting. Traveling patterns and substrates were noted but not quantified. Arboreal locomotor behaviors were pronograde quadrupedalism, some leaping, bridging, lowering, and pull up. Sitting and reclining were the most frequent postures. Tail suspension and arboreal bipedal stance were used when feeding. Predominant locomotor behaviors were those in which limbs appeared to be compression stressed. There were no limb suspensions. The monkeys used the entire tree canopy, that of the low shrubs, and did a good deal of travel on the ground. The lack of forelimb suspension is attributed to the inability of these howlers to hang beneath supports and look forward at the same time; the impediment is created by the size of the vocal organs in the neck. The locomotion of these monkeys is offered to depict that of Aegyptopithecus zeuxis. 相似文献
17.
Paleoneurology is an important field of research within human evolution studies. Variations in size and shape of an endocast help to differentiate among fossil hominin species whereas endocranial asymmetries are related to behavior and cognitive function. Here we analyse variations of the surface of the frontal, parieto-temporal and occipital lobes among different species of Homo, including 39 fossil hominins, ten fossil anatomically modern Homo sapiens and 100 endocasts of extant modern humans. We also test for the possible asymmetries of these features in a large sample of modern humans and observe individual particularities in the fossil specimens.This study contributes important new information about the brain evolution in the genus Homo. Our results show that the general pattern of surface asymmetry for the different regional brain surfaces in fossil species of Homo does not seem to be different from the pattern described in a large sample of anatomically modern H. sapiens, i.e., the right hemisphere has a larger surface than the left, as do the right frontal, the right parieto-temporal and the left occipital lobes compared with the contra-lateral side. It also appears that Asian Homo erectus specimens are discriminated from all other samples of Homo, including African and Georgian specimens that are also sometimes included in that taxon. The Asian fossils show a significantly smaller relative size of the parietal and temporal lobes. Neandertals and anatomically modern H. sapiens, who share the largest endocranial volume of all hominins, show differences when considering the relative contribution of the frontal, parieto-temporal and occipital lobes. These results illustrate an original variation in the pattern of brain organization in hominins independent of variations in total size. The globularization of the brain and the enlargement of the parietal lobes could be considered derived features observed uniquely in anatomically modern H. sapiens. 相似文献
18.
Ralph L. Holloway 《American journal of physical anthropology》1980,53(2):267-274
The O.H.7 brain endocast was reexamined using a stereoplotting apparatus to quantify the amount of distortion. Some 127 measurements for each of the left and right sides were taken and treated statistically by student t-tests, both in paired and grouped fashion. Grouped data indicated no significant left-right differences. Paired data suggested three small regions of distortion, which produced three pairs of left-right differences that were significantly different. Given the very local nature of these minor distortions, it is concluded that the original reconstruction by Tobias was essentially correct. In addition, multiple regression analyses of selected chord-arc dimensions suggest that a volume in excess of 700 ml is most probable. 相似文献
19.
20.
By T. Kamiya P. Pirlot 《Journal of Zoological Systematics and Evolutionary Research》1988,26(1):65-72
A quantitative analysis of the brain of the lesser panda Ailurus fulgens was carried out, using both ratios and progression indices. In a general way, the lesser panda appears to be an intermediate form between the giant panda and the raccoon. Relations between brain size or brain component size, and life-habits, suggest the same conclusion. The traditionally assumed closeness of both pandas implied in the vernacular names, is questioned. A comprehensive neuroethological work on the comparative organization of the brain in all ursoid species is desirable, as a good case in fundamental functional morphology. 相似文献