首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amylin, an islet amyloid peptide secreted by the pancreatic beta cell, has been proposed as a humoral regulator of islet insulin secretion. Four separate preparations of amylin were tested for effects on hormone secretion in both freshly isolated and cultured rat islets and in HIT-T15, hamster insulinoma cells. With all three experimental models, exposure to human amylin acid and human and rat amylin at concentrations as high as 100 nM had no significant effect on rates of insulin or glucagon secretion. These observations suggest that amylin, even at concentrations appreciably higher than those measured in peripheral plasma, is not a significant humoral regulator of islet hormone secretion.  相似文献   

2.
1. Crude extracts of seeds of Pinus radiata catalysed acetate-, propionate-, n-butyrate- and n-valerate-dependent PP(i)-ATP exchange in the presence of MgCl(2), which was apparently due to a single enzyme. Propionate was the preferred substrate. Crude extracts did not catalyse medium-chain or long-chain fatty acid-dependent exchange. 2. Ungerminated dry seeds contained short-chain fatty acyl-CoA synthetase activity. The activity per seed was approximately constant for 11 days after imbibition and then declined. The enzyme was located only in the female gametophyte tissue. 3. The synthetase was purified 70-fold. 4. Some properties of the enzyme were studied by [(32)P]PP(i)-ATP exchange. K(m) values for acetate, propionate, n-butyrate and n-valerate were 4.7, 0.21, 0.33 and 2.1mm respectively. Competition experiments between acetate and propionate demonstrated that only one enzyme was involved and confirmed that the affinity of the enzyme for propionate was greater than that for acetate. CoA inhibited fatty acid-dependent PP(i)-ATP exchange. The enzyme catalysed fatty acid-dependent [(32)P]PP(i)-dATP exchange. 5. The enzyme also catalysed the fatty acyl-AMP-dependent synthesis of [(32)P]ATP from [(32)P]PP(i). Apparent K(m) (acetyl-AMP) and apparent K(m) (propionyl-AMP) were 57mum and 7.5mum respectively. The reaction was inhibited by AMP and CoA. 6. Purified enzyme catalysed the synthesis of acetyl-CoA and propionyl-CoA. Apparent K(m) (acetate) and apparent K(m) (propionate) were 16mm and 7.5mm respectively. The rate of formation of acetyl-CoA was enhanced by pyrophosphatase. 7. It was concluded that fatty acyl adenylates are intermediates in the formation of the corresponding fatty acyl-CoA.  相似文献   

3.
Yang SJ  Huh JW  Kim MJ  Lee WJ  Kim TU  Choi SY  Cho SW 《Biochimie》2003,85(6):581-586
It has been known that glutamate, generated by glutamate dehydrogenase (GDH), acts as an intracellular messenger in insulin exocytosis in pancreatic beta cells. Here we demonstrate the correlation of GDH activity and insulin release in rat pancreatic islets perfused with 5'-deoxypyridoxal. Perfusion of islets with 5'-deoxypyridoxal, an effective inhibitor of GDH, reduced the islet GDH activity at concentration-dependent manner. Treatment of 5'-deoxypyridoxal up to 2 mM did not affect the cell viability. There was reduction in V(max) values on average about 60%, whereas no changes in K(m) values for substrates and coenzymes were observed. The concentration of GDH on the Western blot analysis and the level of GDH mRNA remained unchanged. The concentration of glutamate decreased by 52%, whereas the concentration of 2-oxoglutarate increased up to 2.3-fold in the presence of 5'-deoxypyridoxal. 5'-Deoxypyridoxal had no effects on inhibition by GTP and activation by ADP or L-leucine of islet GDH. In parallel with the inhibition of GDH activity, perfusion of islets with 5'-deoxypyridoxal reduced insulin release up to 2.5-fold. Although precise mechanism for correlation between GDH activity and insulin release remains to be studied further, our results suggest a possibility that the inhibitory effect of 5'-deoxypyridoxal on islet GDH activity may correlate with its effect on insulin release.  相似文献   

4.
Dietary fibers, probably by generating short chain fatty acids (SCFA) through enterobacterial fermentation, have a beneficial effect on the control of glycemia in patients with peripheral insulin resistance. We studied the effect of propionate on glucose-induced insulin secretion in isolated rat pancreatic islets. Evidence is presented that propionate, one of the major SCFA produced in the gut, inhibits insulin secretion induced by high glucose concentrations (11.1 and 16.7 mM) in incubated and perfused pancreatic islets. This short chain fatty acid reduces [U-(14)C]-glucose decarboxylation and raises the conversion of glucose to lactate. Propionate causes a significant decrease of both [1-(14)C]- (84%) and [2-(14)C]-pyruvate (49%) decarboxylation. These findings indicate pyruvate dehydrogenase as the major site for the propionate effect. These observations led us to postulate that the reduction in glucose oxidation and the consequent decrease in the ATP/ADP ratio may be the major mechanism for the lower insulin secretion to glucose stimulus induced by propionate.  相似文献   

5.
Astragalin is a flavonol glycoside with several biological activities, including antidiabetic properties. The objective of this study was to investigate the effects of astragalin on glycaemia and insulin secretion, in vivo, and on calcium influx and insulin secretion in isolated rat pancreatic islets, ex vivo. Astragalin (1 and 10 mg / kg) was administered by oral gavage to fasted Wistar rats and serum glucose and plasma insulin were measured. Isolated pancreatic islets were used to measure basal insulin secretion and calcium influx. Astragalin (10 mg/ kg) decreased glycaemia and increased insulin secretion significantly at 15–180 min, respectively, in the glucose tolerance test. In isolated pancreatic cells, astragalin (100 μM) stimulated calcium influx through a mechanism involving ATP-dependent potassium channels, L-type voltage-dependent calcium channels, the sarcoendoplasmic reticulum calcium transport ATPase (SERCA), PKC and PKA. These findings highlight the dietary coadjuvant, astragalin, as a potential insulin secretagogue that may contribute to glucose homeostasis.  相似文献   

6.
The relationship between glucose-induced insulin secretion and metabolism of inositol phospholipid was investigated by means of an islet perifusion method and direct measuring of inositol phosphates after sonicating the islets. The results showed that the time course of inositol phospholipid breakdown is coincident with the first phase of glucose-induced insulin secretion. Analysis of the effluent perifusate as well as the water soluble inositol-containing substance after sonication of stimulated islets revealed that most of the metabolite of inositol phospholipid is inositol-triphosphate, the hydrolysis product of phosphatidylinositol-4,5-bisphosphate. On the other hand, perifusion of islets with exogenous inositol-triphosphate showed a monophasic and dose-dependent response of insulin secretion. Thus, the initial process of glucose stimulation is accompanied with the formation of inositol-triphosphate, which is a possible candidate for the triggering of first phase insulin secretion.  相似文献   

7.
8.
Isolated perifused rat islets were stimulated with glucose, exogenous insulin, or carbachol. C-peptide and, where possible, insulin secretory rates were measured. Glucose (8-10 mm) induced dose-dependent and kinetically similar patterns of C-peptide and insulin secretion. The addition of 100 nm bovine insulin had no effect on C-peptide release in response to 8-10 mm glucose stimulation. The addition of 100 nm bovine insulin or 500 nm human insulin together with 3 mm glucose had no stimulatory effect on C-peptide secretion rates from perifused rat islets. Stimulation with carbachol plus 7 mm glucose enhanced both C-peptide and insulin secretion, and the further addition of 100 nm bovine insulin had no inhibitory effect on C-peptide secretory rates under this condition. Perifusion studies using pharmacologic inhibitors (genistein and wortmannin) of the kinases thought to be involved in insulin signaling potentiated 10 mm glucose-induced secretion. The results support the following conclusions. 1) C-peptide release rates accurately reflect insulin secretion rates from collagenase-isolated, perifused rat islets. 2) Exogenously added bovine insulin exerts no inhibitory effect on release to several agonists including glucose. 3) In the presence of 3 mm glucose, exogenously added bovine or human insulin do not stimulate endogenous insulin secretion.  相似文献   

9.
A potential role of arachidonic acid in the modulation of insulin secretion was investigated by measuring its effects on calmodulin-dependent protein kinase and protein kinase C in islet subcellular fractions. The results were interpreted in the light of arachidonic acid effects on insulin secretion from intact islets. Arachidonic acid could replace phosphatidylserine in activation of cytosolic protein kinase C (K0.5 of 10 microM) and maximum activation was observed at 50 microM arachidonate. Arachidonic acid did not affect the Ca2+ requirement of the phosphatidylserine-stimulated activity. Arachidonic acid (200 microM) inhibited (greater than 90%) calmodulin-dependent protein kinase activity (K0.5 = 50-100 microM) but modestly increased basal phosphorylation activity (no added calcium or calmodulin). Arachidonic acid inhibited glucose-sensitive insulin secretion from islets (K0.5 = 24 microM) measured in static secretion assays. Maximum inhibition (approximately 70%) was achieved at 50-100 microM arachidonic acid. Basal insulin secretion (3 mM glucose) was modestly stimulated by 100 microM arachidonic acid but in a non-saturable manner. In perifusion secretion studies, arachidonic acid (20 microM) had no effect on the first phase of glucose-induced secretion but nearly completely suppressed second phase secretion. At basal glucose (4 mM), arachidonic acid induced a modest but reproducible biphasic insulin secretion response which mimicked glucose-sensitive secretion. However, phosphorylation of an 80 kD protein substrate of protein kinase C was not increased when intact islets were incubated with arachidonic acid, suggesting that the small increases in insulin secretion seen with arachidonic acid were not mediated by protein kinase C. These data suggest that arachidonic acid generated by exposure of islets to glucose may influence insulin secretion by inhibiting the activity of calmodulin-dependent protein kinase but probably has little effect on protein kinase C activity.  相似文献   

10.
11.
12.
Several neural, hormonal and biochemical inputs actively participate in the balance of insulin secretion induced by blood glucose fluctuations. The exact role of insulin as an autocrine and paracrine participant in the control of its own secretion remains to be determined, mostly due to insufficient knowledge about the molecular phenomena that govern insulin signaling in pancreatic islets. In the present experiments we demonstrate that higher insulin receptor and insulin receptor substrates-1 and -2 (IRS1 and IRS2) concentrations are predominantly encountered in cells of the periphery of rat pancreatic islets, as compared to centrally located cells, and that partial blockade of IRS1 protein expression by antisense oligonucleotide treatment leads to improved insulin secretion induced by glucose overload, which is accompanied by lower steady-state glucagon secretion and blunted glucose-induced glucagon fall. These data reinforce the inhibitory role of insulin upon its own secretion in isolated, undisrupted pancreatic islets.  相似文献   

13.
Resveratrol is a stilbene present in different plant species and exerting numerous beneficial effects, including prevention of diabetes and attenuation of some diabetic complications. Its inhibitory effect on insulin secretion was recently documented, but the exact mechanism underlying this action remains unknown. Experiments employing diazoxide and a high concentration of K(+) revealed that, in depolarized pancreatic islets incubated for 90 min with resveratrol (1, 10, and 100 microM), insulin secretion stimulated by glucose and leucine was impaired. The attenuation of the insulin secretory response to 6.7 mM glucose was not abrogated by blockade of intracellular estrogen receptors and was found to be accompanied by diminished islet glucose oxidation, enhanced lactate production, and reduced ATP levels. Glucose-induced hyperpolarization of the mitochondrial membrane was also reduced in the presence of resveratrol. Moreover, in depolarized islets incubated with 2.8 mM glucose, activation of protein kinase C or protein kinase A potentiated insulin release; however, under these conditions, resveratrol was ineffective. Further studies also revealed that, under conditions of blocked voltage-dependent calcium channels, the stilbene reduced insulin secretion induced by a combination of glucose with forskolin. These data demonstrate that resveratrol 1) inhibits the amplifying pathway of insulin secretion, 2) exerts an insulin-suppressive effect independently of its estrogenic/anti-estrogenic activity, 3) shifts islet glucose metabolism from mitochondrial oxidation to anaerobic,4) fails to abrogate insulin release promoted without metabolic events, and 5) does not suppress hormone secretion as a result of the direct inhibition of Ca(2+) influx through voltage-dependent calcium channels.  相似文献   

14.
The effects of various sugars on the simultaneous release of insulin and accumulation of cyclic AMP were studied in collagenase isolated rat pancreatic islets. d-Glucose stimulated the formation of cyclic AMP at 3 and 60 min of incubation, whether measured by a label incorporation technique, or by the protein kinase binding assay of Gilman. Only d-glucose and d-mannose were able to stimulate insulin release and cyclic [3H]AMP accumulation in the absence of other substrate. d-fructose had a stimulatory effect in the presence of 3.3 mM d-glucose only at a high concentration (38.8 mM), and enhanced the effects of 8.3 mM glucose when added at the concentration of 8.3 mM. d-Galactose was effective only together with 8.3 mM d-glucose. The order of potency of these hexoses, both regarding insulin secretion and cyclic [3H]AMP accumulation, was glucose-mannose-fructose-galactose.l-Glucose and 3-O-methylglucose had no effects at 60 min when incubated together with 8.3 mM d-glucose, whereas at 3 min, 3-O-methylglucose induced a small stimulation of the cyclic [3H]AMP response.d-mannoheptulose and d-glucosamine inhibited the insulin and cyclic [3H]-AMP responses to 27.7 mM glucose. Mannoheptulose suppressed completely the glucose effect on cyclic nucleotide accumulation within 90 s.Although under all incubation conditions, the threshold stimulatory or inhibitory concentration of a given agent was identical for insulin release and cyclic [3H]AMP accumulation, these two variables showed quantitative differences in incubations of 60 min, the magnitude of the changes in insulin secretion being larger than that for the cyclic nucleotide. It is suggested that modulation of islet cyclic AMP level is an important step in the transmission of the effect of various sugars on insulin release; however, glucose and possibly other sugars may also enhance insulin release by additional mechanisms not involving the adenylate cyclase-cyclic AMP system of the β-cell.  相似文献   

15.
  • 1.1. The effect of adenosine separately or in combination with alpha-1 adrenergic antagonist prazosin and alpha-2 adrenergic antagonist yohimbine as well as adenosine antagonists 8-phenyltheophylline and xanthine amine conjugate on glucose-induced insulin secretion from isolated rat pancreatic islets was studied.
  • 2.2. Their in vivo effects on serum glucose and insulin levels were also investigated. Adenosine at 10 and 100 μM inhibited significantly, insulin secretion from the isolated islets whereas at 10 mM slightly increased the secretion of insulin.
  • 3.3. Prazosin used at 100 μM inhibited insulin secretion. When it combined with adenosine (10 μM) it augmented the inhibitory effect of adenosine.
  • 4.4. In vivo prazosin (21 mg/kg bodywt) caused a hyperglycaemia which was accompanied by hypoinsulinaemia.
  • 5.5. Concurrent administration of this drug with adenosine neither affect the hyperglycaemic nor the hypoinsulinaemic effects of adenosine.
  • 6.6. On the other hand, yohimbine (100 μM) has no effect neither separately nor in combination with adenosine (10 μM) in modulating the inhibitory effect of adenosine on insulin secretion.
  • 7.7. When Yohimbine administered at 19.5 mg/kg body wt it did not alter serum glucose but it markedly increased the serum insulin level. Its combined administration with adenosine reduced the hyperglycaemic effect of adenosine with a remarkable increase in serum insulin.
  • 8.8. Both adenosine-antagonists were ineffective in alteration of insulin secretion.
  • 9.9. However, combination of 8-phenyltheophylline with adenosine (10 μM) totally blocked the inhibitory effect of adenosine on insulin secretion while xanthine amine conjugate failed to prevent this effect of adenosine.
  • 10.10. These results indicate that the inhibitory effect of adenosine on insulin secretion is neither mediated via alpha-1 nor alpha-2 adrenoceptors. It might be via activation of specific adenosine receptors on rat islets which are sensitive to blockade by 8-phenyltheophylline.
  相似文献   

16.
Rates of glucose oxidation and insulin release in response to a wide range of glucose concentrations were studied in short-term experiments in isolated mouse pancreatic islets maintained in tissue culture for 6 days at either a physiological glucose concentration (6.7mm) or at a high glucose concentration (28mm). The curves relating glucose oxidation or insulin release to the extracellular glucose concentration obtained with islets cultured in 6.7mm-glucose displayed a sigmoid shape similar to that observed for freshly isolated non-cultured islets. By contrast islets that had been cultured in 28mm-glucose showed a linear relationship between the rate of glucose oxidation and the extracellular glucose concentration up to about 8mm-glucose. The maximal oxidative rate was twice that of the non-cultured islets and the glucose concentration associated with the half-maximal rate considerably decreased. In islets cultured at 28mm-glucose there was only a small increase in the insulin release in response to glucose, probably due to a depletion of stored insulin in those B cells that had been cultured in a high-glucose medium. It is concluded that exposure of B cells for 6 days to a glucose concentration comparable with that found in diabetic individuals causes adaptive metabolic alterations rather than degeneration of these cells.  相似文献   

17.
Pancreatic islets of wistar rats, isolated after 15 min of digestion with collagenase, secreted insulin in response to 15.0 mM glucose within 2 min and showed the typical sigmoidal glucose response during an incubation time of 15 and 60 min, respectively. Islets, isolated after 35 min of digestion with collagenase, responded with delay after stimulation with glucose (after 15 min of incubation), and are characterized by an increased "release" in the presence of 2.5 mM glucose.  相似文献   

18.
Hong SH  Won JH  Yoo SA  Auh CK  Park YM 《FEBS letters》2002,532(1-2):17-20
This study investigates the effect of extracellular annexin I (Anx I) on regulating insulin secretion in isolated rat pancreatic islets. Results show that Anx I stimulates insulin release in pancreatic islets regardless of the presence or absence of extracellular Ca2+. In particular, confocal microscopy shows that Anx I binds to the surface of islet cells in the absence of extracellular Ca2+. However, insulin secretion through Anx I significantly decreases in trypsin-treated islets. Likewise, there is minimal binding of Anx I to the surface of trypsin-treated islets. Anti-Anx I polyclonal antibody also inhibits the stimulating effect of Anx I on insulin secretion. These results indicate that Anx I is capable of binding to the cell surface receptor, in order to regulate the stimulation of insulin release in rat pancreatic islets.  相似文献   

19.
The effects of D-glyceraldehyde and glucose on islet function were compared in order to investigate the difference between them in the mechanism by which they induce insulin secretion. The stimulation of insulin secretion from isolated rat islets by 10 mM glyceraldehyde was not completely inhibited by either 150 microM diazoxide (an opener of ATP-sensitive K(+) channels) or 5 microM nitrendipine (an L-type Ca(2+)-channel blocker), whereas the stimulation of insulin secretion by 20 mM glucose was completely inhibited by either drug. The insulin secretion induced by glyceraldehyde was less augmented by 100 microM carbachol (a cholinergic agonist) than that induced by glucose. The stimulation of myo-inositol phosphate production by 100 microM carbachol was more marked in islets incubated with the hexose than with the triose. The content of glyceraldehyde 3-phosphate, a glycolytic intermediate, in islets incubated with glyceraldehyde was far higher than that in islets incubated with glucose, whereas the ATP content in islets incubated with the triose was significantly lower than that in islets incubated with the hexose. These results suggest that glyceraldehyde not only mimics the effect of glucose on insulin secretion but also has the ability to cause the secretion of insulin without the influx of Ca(2+ )through voltage-dependent Ca(2+) channels. The reason for the lower potency of the triose than the hexose in stimulating insulin secretion is also discussed.  相似文献   

20.
d-glyceraldehyde stimulated insulin secretion from isolated rat pancreatic islets in static incubation and perifusion systems. At low concentrations (2–4 mM) d-glyceraldehyde was a more potent secretagogue than glucose. The insulinotropic action of 15 mM d-glyceraldehyde was not affected by d-mannoheptulose, was potentiated by cytochalasin B (5 μg/ml) and theophylline (4 mM), and was inhibited by both adrenalin (2 μM) and somatostatin (10 μg/ml). D-glyceraldehyde at a concentration of 1.5 mM produced a 10-fold increase of l-[4,5-3 H]leucine incorporation into proinsulin and insulin without a significant increase into other islet proteins. Glucose at 1.5 mM did not stimulate proinsulin biosynthesis. d-Glyceraldehyde at concentrations higher than 1.5 mM, in marked contrast to glucose, progressively inhibited incorporation of labelled leucine into proinsulin + insulin and other islet proteins. d-glyceraldehyde also inhibited the oxidation of glucose. l-Glyceraldehyde did not stimulate proinsulin biosynthesis and had less effect than the d-isomer on insulin release and glucose oxidation. The results strongly suggest that metabolites below d-glyceraldehyde-3-P are signals for insulin biosynthesisand release. Interaction of d-glyceraldehyde with a “membrane receptor” cannot, however, be excluded with certainty.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号