首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
This study concerned the response to freezing of Neurospora crassa conidia in four different states: air-dry, hydrated in water, hydrated in Vogel medium lacking only sucrose, or hydrated in complete Vogel medium. All hydrated conidia were incubated in one of the above media for various times before freezing and were then washed and frozen in distilled water. Viability was estimated by three techniques, and the agreement among them was good. Hydration of air-dry conidia was found to be very rapid and, once hydrated, the conidia were much more sensitive to rapid freezing than they were before hydration. Rapidly cooled conidia survived freezing to a much higher extent when the warming rate was rapid than when it was slow; slowly cooled conidia showed little or no dependence on the warming rate. This sensitivity to rapid cooling and slow warming was attributed to the effects of intracellular ice. The sensitivity to freezing could be reversed by dehydrating the conidia in vacuo before freezing; thus, it was concluded that the presence or absence of water is the determining factor in the initial sensitivity due to freezing. In water, the sensitivity remained constant from 2 min to 15 days after hydration. Although conidia hydrated in growth medium lacking sucrose remained metabolically inactive, their sensitivity to rapid freezing decreased as a function of time in the medium before freezing. The reason for this decreased sensitivity is not understood. Conidia hydrated in complete growth medium (i.e., containing sucrose) became metabolically active and, after the initial sensitivity associated with hydration, became increasingly more sensitive to freezing as a function of their time in the medium. Drying itself was deleterious to metabolically active conidia, and those that survived dehydration did not exhibit a large absolute increase in resistance to subsequent freezing. The increase in sensitivity to freezing and to drying seems associated with the presence of metabolic activity; however, the precise cause of the sensitization remains obscure.  相似文献   

3.
During nitrogen deprivation, de novo synthesis of glutamine synthetase was induced in non-growing conidia of Neurospora crassa. When ammonia or glutamine was added to conidia which had been deprived of nitrogen, glutamine and arginine accumulated at a higher rate than in condia not deprived of nitrogen. The degradation of exogenous glutamine to glutamate is apparently a necessary step in the accumulation of glutamine and arginine within the conidia. In non-growing conidia, a cycle probably operates in which glutamine is degraded and resynthesized. The advantages of such a cycle would be that the carbon and nitrogen could be used to synthesize amino acids in general, as well as for the synthesis and accumulation of arginine and/or glutamine in particular.  相似文献   

4.
Neurospora crassa macroconidia possess a regularly arranged layer of small fibers (rodlets) near the spore surface. The structure and location of this layer were studied by making surface replicas, by negative staining, by freeze-fracturing and deep-etching, and by thin sectioning. When conidia were shaken vigorously in water, the layer fragmented and became separated from the surface in sheets. Negative staining of such sheets showed that the individual rodlets have a hollow central core. When conidia were shaken gently in water or fixative, large fragments of the rodlet layer often remained on the conidial surface. The fragments tended to fold back on each other such that multiple layers were sometimes seen in thin sections. It is concluded that in dry conidia the rodlets are located on the extreme outside of the spore where they form a monolayer with only occasional regions of overlap.  相似文献   

5.
A temperature-sensitive mutant has been shown to be blocked at a specific point in the nuclear division cycle: just before the initiation of DNA synthesis at the time when the spindle pole bodies have duplicated but not separated. The metabolic activities of conidia of this mutant strain at the nonpermissive temperature have led us to conclude that the nuclei in a population of dormant conidia are arrested at various points in the nuclear division cycle. This conclusion is substantiated by the activities of conidia in the presence of the inhibitory drugs cycloheximide and hydroxyurea. In each inhibitory situation we observed that some, but not all, of the conidia were able to accomplish DNA synthesis and/or nuclear division.  相似文献   

6.
Neurospora crassa conidia possess an active transport system for the uptake of acetate. This system was characterized as: (a) energy dependent; (b) taking place against a concentration gradient; (c) saturating at higher substrate concentrations and (d) competitively inhibited by propionate. Activity of the acetate transport system can be further enhanced by preincubating conidia in 1 mM acetate medium for 180 min (the inducible transport system). The conidial system and the inducible system have similar properties. The development of the inducible transport was dependent on RNA and protein synthesis. A genetic control of this system was further confirmed by isolating a mutant acp-i acetate permease, inducible) that fails to develop the inducible transport system.  相似文献   

7.
Conserved mRNA from the conidia of Neurospora crassa   总被引:7,自引:0,他引:7  
Summary Species of RNA showing the characteristics of mRNA have been isolated from ungerminated conidia and from mycelia of Neurospora crassa grown for 8, 16 and 24 hours. Molecular hybridization between such RNA species and DNA together with hybridization competition between mRNA from ungerminated conidia and from growth periods of 8, 16 and 24 hours, showed that conidia contain conserved mRNA. Such mRNA may participate in protein synthesis taking place up to 30 minutes of incubation of the conidia.  相似文献   

8.
9.
10.
A rapid and efficient electroporation procedure has been developed for transformation of germinating conidia of filamentous fungi. Pretreatment of conidial preparations with a cell wall weakening agent, such as beta-glucuronidase, was found to be essential for successful transformation. Using the qa-2+ gene of Neurospora crassa, encoding the catabolic dehydroquinase, as a selectable marker with a double-mutant host strain, auxotrophic for aromatic amino acids, integration of the plasmid was observed to be predominantly at ectopic chromosomal sites. Cotransformation with the qa-2+ gene and a plasmid containing a heat shock gene sequence (hsp70 of N. crassa) suggested integration site preference. High efficiencies of transformation to hygromycin resistance were achieved employing the bacterial hygromycin B phosphotransferase gene with N. crassa, the patulin-producer Penicillium urticae, and the causal agent of blackleg disease of crucifers, Leptosphaeria maculans. The economically important species Aspergillus oryzae was similarly transformed to benomyl resistance with the benomyl-resistant beta-tubulin gene of N. crassa as a dominant selectable marker.  相似文献   

11.
12.
13.
14.
L-Glutamate decarboxylase, an enzyme under the control of the asexual developmental cycle of Neurospora crassa, was purified to homogeneity from conidia. The purification procedure included ammonium sulfate fractionation and DEAE-Sephadex and cellulose phosphate column chromatography. The final preparation gave a single band on sodium dodecyl sulfate-polyacrylamide gels with a molecular weight of 33,200 +/- 200. A single band coincident with enzyme activity was found on native 7.5% polyacrylamide gels. The molecular weight of glutamate decarboxylase was 30,500 as determined by gel permeation column chromatography at pH 6.0. The enzyme had an acidic pH optimum and showed hyperbolic kinetics at pH 5.5 with a Km for glutamic acid of 2.2 mM and a Km for pyridoxal-5'-phosphate of 0.04 microM.  相似文献   

15.
The rodlet layer of Neurospora crassa macroconidia has been purified and chemically characterized. Sheets of rodlets were released from the conidial surface by vigorously shaking conidia in water. Conidia were removed by filtration and low-speed centrifugation, and the rodlets were recovered from the supernatant by high-speed centrifugation. The rodlet pellet comprised 1.9% of the initial dry weight. Chemical analysis was hampered by the insolubility of the rodlets. They were not solubilized by heating in various protein-denaturing buffers and were only partially dissolved by heating in 1 M NaOH at 100 degrees C for 5 min. Nevertheless, they were found to be largely composed of protein (91%, based on total nitrogen). The major amino acids in acid hydrolysates were aspartic acid, glycine, serine, alanine, half-cystine, and valine. Glucosamine was not detected in acid hydrolysates. The sulfur content was 2.5%, and this could be accounted for in half-cystine and methionine. Carbohydrate comprised just over 2%. The phosphorus content was 0.21%, of which less than one-third was accounted for in phospholipid. The total fatty acid content was 1.0%, most of which could be accounted for by the fatty acids of the phospholipids.  相似文献   

16.
17.
The conidia of wild-type Neurospora crassa are shown to have a drastically lower activity for three enzymes of the isoleucine-valine pathway—acetohydroxy acid synthetase, dihydroxy acid dehydratase, and aminotransferase—than the actively growing mycelium. Lower activity was also found in the conidia for ornithine transcarbamylase and aspartate transcarbamylase. Lower activity (10- to 100-fold) was found for the overall synthesis of valine from pyruvate in the conidia as compared to the mycelium as expected.In addition it is also apparent that the distribution of the isoleucine-valine enzymes is different in conidia from the mycelium as regards activity in the mitochondria as compared to the cytosol. In conidia their activity in the mitochondria is lower than in the cytosol, but the opposite holds in the mycelium. These differences are also reflected in the overall activity.Cycloheximide inhibits the increase in total activity of the acetohydroxy acid synthetase and the dehydratase during germination of the conidia.  相似文献   

18.
The effect of three UV-sensitive mutations of Neurospora crassa, upr-I, uvs-4 and uvs-6, on the ultraviolet-inactivation of conidia from two-component heterokaryons was investigated. In two-component heterokaryons with wild-type sensitivity to radiation inactivation, all three conidial fractions exhibited similar ultraviolet-inactivation curves. Each UV-sensitive mutation studied uniquely modified the ultraviolet-inactivation curves of conidia from two-component heterokaryons. In heterokaryons heterokaryotic for upr-I, the upr-I mutation was recessive and the repair function determined by the wild type allele was functional to some degree in homokaryotic upr-I conidia. All three conidial fractions of heterokaryons containing upr-I in both components showed increased sensitivity to ultraviolet light. The uvs-4 mutation was recessive and resulted in conidia with increased UV-sensitivity only when included in both components of a heterokaryon. Homokaryotic uvs-4 conidia, which arose from heterokaryons containing both uvs-4 and wild-type components, exhibited wild-type survival. Therefore, as with upr-I, there was a carryover the repair capability to conidia which were genetically UV-sensitive. The uvs-6 mutation, when included in one component of a two-component heterokaryon, resulted in increased UV-sensitivity of both heterokaryotic and homokaryotic uvs-6 conidia. When both components contained uvs-6, the UV-sensitivity of all three conidial fractions was increased and all showed similar inactivation curves. Thus, as with upr-I and uvs-4, there was a carryover of the wild-type repair capability to genetically uvs-6 conidia. Heterokaryon tests for complementation between two non-allelic UV-sensitive mutations showed that in heterokaryotic conidia, complete complementation occurred between upr-I and uvs-4.  相似文献   

19.
Dehydrins are a family of heat-soluble, hydrophilic proteins that share a considerable degree of sequence homology. Their expression has been reported in numerous plant species in response to a multitude of environmental stresses including low temperature, freezing, and desiccation. It has also been established that exposing plant tissues to freezing temperatures generates desiccation stress. We observed differential accumulation of a dehydrin-like protein and corresponding mRNA in three-day-old maize (Zea mays L) seedlings germinated under favorable environmental conditions from seed that had been exposed to freezing temperatures during maturation. This represents the first documented situation in which a dehydrin-like protein differentially accumulates under favorable environmental conditions. We believe that the dehydrin-like protein and corresponding mRNA are synthesized de novo in seedlings that are germinated from seed that have been exposed to freezing in response to desiccation-like stress that persists under favorable environmental conditions resulting from freeze-induced damage sustained by the ungerminated embryo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号