首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The biological functions of myotonic dystrophy protein kinase (DMPK), a serine/threonine kinase whose gene mutations cause myotonic dystrophy type 1 (DM1), remain poorly understood. Several DMPK isoforms exist, and the long ones (DMPK-A/B/C/D) are associated with the mitochondria, where they exert unknown activities. We have studied the isoform A of DMPK, which we have found to be prevalently associated to the outer mitochondrial membrane. The kinase activity of mitochondrial DMPK protects cells from oxidative stress and from the ensuing opening of the mitochondrial permeability transition pore (PTP), which would otherwise irreversibly commit cells to death. We observe that DMPK (i) increases the mitochondrial localization of hexokinase II (HK II), (ii) forms a multimeric complex with HK II and with the active form of the tyrosine kinase Src, binding its SH3 domain and (iii) it is tyrosine-phosphorylated by Src. Both interaction among these proteins and tyrosine phosphorylation of DMPK are increased under oxidative stress, and Src inhibition selectively enhances death in DMPK-expressing cells after HK II detachment from the mitochondria. Down-modulation of DMPK abolishes the appearance of muscle markers in in vitro myogenesis, which is rescued by oxidant scavenging. Our data indicate that, together with HK II and Src, mitochondrial DMPK is part of a multimolecular complex endowed with antioxidant and pro-survival properties that could be relevant during the function and differentiation of muscle fibers.  相似文献   

2.
3.
Myotonic dystrophy is a multisystemic disorder, due to a CTG triplet expansion at the 3'UTR of the DM1 gene encoding for myotonic dystrophy protein kinase. Recent studies indicate that decreased DMPK levels could account for part of the symptoms suggesting a role of this protein in skeletal muscle differentiation. To investigate this aspect, polyclonal antibodies were raised against two peptides of the catalytic domain and against the human full-length DMPK (DMFL). In western blots, anti-hDMFL antibody was able to detect low amounts of purified human recombinant protein and recognized the splicing isoforms in heart and stomach of overexpressing mice. In human muscle extracts, this antibody specifically recognized a protein of apparent molecular weight of 85 kDa and it specifically stained neuromuscular junctions in skeletal muscle sections. In contrast, both anti-peptide antibodies demonstrated low specificity for either denatured or native DMPK, suggesting that these two epitopes are probably cryptic sites. Using anti-hDMFL, the expression and localization of DMPK was studied in human skeletal muscle cells (SkMC). Western blot analysis indicated that the antibody recognizes a main protein of apparent MW of 75 kDa, which appears to be expressed during differentiation into myotubes. Immunolocalization showed low levels of DMPK in the cytoplasm of undifferentiated cells; during differentiation the staining became more intense and was localized to the terminal part of the cells, suggesting that DMPK might have a role in cell elongation and fusion.  相似文献   

4.
Myotonic dystrophy 1 (DM1) is a multisystemic disease caused by a triplet nucleotide repeat expansion in the 3' untranslated region of the gene coding for myotonic dystrophy protein kinase (DMPK). DMPK is a nuclear envelope (NE) protein that promotes myogenic gene expression in skeletal myoblasts. Muscular dystrophy research has revealed the NE to be a key determinant of nuclear structure, gene regulation, and muscle function. To investigate the role of DMPK in NE stability, we analyzed DMPK expression in epithelial and myoblast cells. We found that DMPK localizes to the NE and coimmunoprecipitates with Lamin-A/C. Overexpression of DMPK in HeLa cells or C2C12 myoblasts disrupts Lamin-A/C and Lamin-B1 localization and causes nuclear fragmentation. Depletion of DMPK also disrupts NE lamina, showing that DMPK is required for NE stability. Our data demonstrate for the first time that DMPK is a critical component of the NE. These novel findings suggest that reduced DMPK may contribute to NE instability, a common mechanism of skeletal muscle wasting in muscular dystrophies.  相似文献   

5.
We expressed human myotonic dystrophy protein kinase (DMPK) in the fission yeast Schizosaccharomyces pombe, in which the overexpression of human DMPK affects cell growth and cell shape. The human DMPK protein has a leucine-rich domain at the N-terminus, a serine/threonine kinase domain in the middle, and a hydrophobic region at the C-terminus. C-Terminus-deleted DMPK produced a middle-swollen phenotype (lemon-like shape), indicating an abnormality in cell division. On the other hand, when both the kinase domain and C-terminus were present, the expression of DMPK resulted in polarized cell growth and multinucleated/branched cells. The lemon-like phenotype seen with the C-terminus-deleted DMPK disappeared when the ATP binding site of DMPK was disrupted by replacing the lysine at amino acid 100 with arginine (K100R mutant). However, polarized and/or multinucleated cells lacking the DMPK N-terminus were not rescued by the K100R mutation. Therefore, we conclude that the N-terminus of DMPK plays an important role in DMPK kinase activity, and that the C-terminus of DMPK determines the intracellular localization of the protein.  相似文献   

6.
Myotonic dystrophy (DM) is the most common form of adult onset muscular dystrophy. Patients have a large CTG repeat expansion in the 3' untranslated region of the DMPK gene, which encodes DM protein kinase. RNA trans-dominant models, which hypothesize that the expanded CUG trinucleotide repeat on DMPK mRNA sequesters a factor or disrupts the RNA metabolism of the DMPK mRNA itself and other mRNAs in a trans dominant manner, have been proposed. A candidate for the sequestered factor, termed CUG-binding protein (CUG-BP), exists in several alternatively spliced isoforms. We found a human isoform with a twelve base insertion (deduced amino acids Leu-Tyr-Leu-Gln) and an isoform with a three base insertion (deduced amino acid Ala) insertion. In order to elucidate the effects of CUG-BP on DMPK expression, we introduced CUG-BP and DMPK cDNA transiently into COS-7 cells. Cotransfection of CUG-BP did not significantly affect the expression of either wild type or mutant DMPK at the mRNA level. On the other hand, cotransfection of CUG-BP significantly affected the expression of both the wild type and mutant DMPKs at the protein level. This reduction was remarkable when the mutant DMPK construct was used.  相似文献   

7.
Myotonic dystrophy protein kinase (DMPK) is a serine-threonine protein kinase encoded by the myotonic dystrophy (DM) locus on human chromosome 19q13.3. It is a close relative of other kinases that interact with members of the Rho family of small GTPases. We show here that the actin cytoskeleton-linked GTPase Rac-1 binds to DMPK, and coexpression of Rac-1 and DMPK activates its transphosphorylation activity in a GTP-sensitive manner. DMPK can also bind Raf-1 kinase, the Ras-activated molecule of the MAP kinase pathway. Purified Raf-1 kinase phosphorylates and activates DMPK. The interaction of DMPK with these distinct signals suggests that it may play a role as a nexus for cross-talk between their respective pathways and may partially explain the remarkable pleiotropy of DM.  相似文献   

8.
Myotonic dystrophy protein kinase (DMPK) was designated as a gene responsible for myotonic dystrophy (DM) on chromosome 19, because the gene product has extensive homology to protein kinase catalytic domains. DM is the most common disease with multisystem disorders among muscular dystrophies. The genetic basis of DM is now known to include mutational expansion of a repetitive trinucleotide sequence (CTG)n in the 3'-untranslated region (UTR) of DMPK. Full-length DMPK was detected and various isoforms of DMPK have been reported in skeletal and cardiac muscles, central nervous tissues, etc. DMPK is localized predominantly in type I muscle fibers, muscle spindles, neuromuscular junctions and myotendinous tissues in skeletal muscle. In cardiac muscle it is localized in intercalated dises and Purkinje fibers. Electron microscopically it is detected in the terminal cisternae of SR in skeletal muscle and the junctional and corbular SR in cardia muscle. In central nervous system, it is located in many neurons, especially in the cytoplasm of cerebellar Purkinje cells, hippocampal interneurons and spinal motoneurons. Electron microscopically it is detected in rough endoplasmic reticulum. The functional role of DMPK is not fully understood, however, it may play an important role in Ca2+ homeostasis and signal transduction system. Diseased amount of DMPK may play an important role in the degeneration of skeletal muscle in adult type DM. However, other molecular pathogenetical mechanisms such as dysfunction of surrounding genes by structural change of the chromosome by long trinucleotide repeats, and the trans-gain of function of CUG-binding proteins might be responsible to induce multisystemic disorders of DM such as myotonia, endocrine dysfunction, etc.  相似文献   

9.
Muscle cells are frequently subjected to severe conditions caused by heat, oxidative, and mechanical stresses. The small heat shock proteins (sHSPs) such as αB-crystallin and HSP27, which are highly expressed in muscle cells, have been suggested to play roles in maintaining myofibrillar integrity against such stresses. Here, we identified a novel member of the sHSP family that associates specifically with myotonic dystrophy protein kinase (DMPK). This DMPK-binding protein, MKBP, shows a unique nature compared with other known sHSPs: (a) In muscle cytosol, MKBP exists as an oligomeric complex separate from the complex formed by αB-crystallin and HSP27. (b) The expression of MKBP is not induced by heat shock, although it shows the characteristic early response of redistribution to the insoluble fraction like other sHSPs. Immunohistochemical analysis of skeletal muscle cells shows that MKBP localizes to the cross sections of individual myofibrils at the Z-membrane as well as the neuromuscular junction, where DMPK has been suggested to be concentrated. In vitro, MKBP enhances the kinase activity of DMPK and protects it from heat-induced inactivation. These results suggest that MKBP constitutes a novel stress-responsive system independent of other known sHSPs in muscle cells and that DMPK may be involved in this system by being activated by MKBP. Importantly, since the amount of MKBP protein, but not that of other sHSP family member proteins, is selectively upregulated in skeletal muscle from DM patients, an interaction between DMPK and MKBP may be involved in the pathogenesis of DM.  相似文献   

10.
Zhang R  Epstein HF 《FEBS letters》2003,546(2-3):281-287
Myotonic dystrophy protein kinase (DMPK) is the protein product of the human DM-1 locus on chromosome 19q13.1 and has been implicated in the cardiac and behavioral dysfunctions of the disorder. DMPK contains four distinct regions: a leucine-rich repeat (L), a serine-threonine protein kinase catalytic domain (PK), an alpha-helical coiled-coil region (H), and a putative transmembrane-spanning tail (T). Multiple protein kinases that participate in cytoskeletal and cell cycle functions share homology with DMPK in the PK and H regions. Here we show that the LPKH and PKH subfragments of DMPK formed dimers of 140000 molecular weight, whereas the LPK subfragment remained a monomer of 62000 apparent molecular weight. The H domain thus appeared to be required for dimerization of DMPK subfragments. Caspase 1 cleaved LPKH between the PK and H regions. After cleavage, LPKH dimers became LPK-like monomers, consistent with the H domain mediating dimerization. The V(max) and k(cat)/K(m) of LPKH with a synthetic peptide kinase substrate were over 10-fold greater than either LPK or caspase-cleaved LPKH. The K(m) of dimeric LPKH was over three-fold greater than those of the monomeric proteins. Dimerization appeared to significantly affect the catalytic efficiency and substrate binding of DMPK. These interactions are likely to be functionally significant in other members of the myotonic dystrophy family of protein kinases with extensive coiled-coil domains.  相似文献   

11.
12.
The genetic abnormality in myotonic muscular dystrophy, multiple CTG repeats lie upstream of a gene that encodes a novel protein kinase, myotonic dystrophy protein kinase (DMPK). Phospholemman (PLM), a major membrane substrate for phosphorylation by protein kinases A and C, induces Cl currents (I(Cl(PLM))) when expressed in Xenopus oocytes. To test the idea that PLM is a substrate for DMPK, we measured in vitro phosphorylation of purified PLM by DMPK. To assess the functional effects of PLM phosphorylation we compared I(Cl(PLM)) in Xenopus oocytes expressing PLM alone to currents in oocytes co-expressing DMPK, and examined the effect of DMPK on oocyte membrane PLM expression. We found that PLM is indeed a good substrate for DMPK in vitro. Co-expression of DMPK with PLM in oocytes resulted in a reduction in I(Cl(PLM)). This was most likely a specific effect of phosphorylation of PLM by DMPK, as the effect was not present in oocytes expressing a phos(-) PLM mutant in which all potential phosphorylation had been disabled by Ser --> Ala substitution. The biophysical characteristics of I(Cl(PLM)) were not changed by DMPK or by the phos(-) mutation. Co-expression of DMPK reduced the expression of PLM in oocyte membranes, suggesting a possible mechanism for the observed reduction in I(Cl(PLM)) amplitude. These data show that PLM is a substrate for phosphorylation by DMPK and provide functional evidence for modulation of PLM function by phosphorylation.  相似文献   

13.
Human myotonic dystrophy protein kinase (DMPK) is a member of a novel class of multidomain protein kinases that regulate cell size and shape in a variety of organisms. However, little is currently known about the general properties of DMPK including domain function, substrate specificity, and potential mechanisms of regulation. Two forms of the kinase are expressed in muscle, DMPK-1 and DMPK-2. We demonstrate that the larger DMPK-1 form (the primary translation product) is proteolytically cleaved near the carboxy terminus to generate the smaller DMPK-2 form. We further demonstrate that the coiled-coil domain is required for DMPK oligomerization; coiled-coil mediated oligomerization also correlated with enhanced catalytic activity. DMPK was found to exhibit a novel catalytic activity similar to, but distinct from, related protein kinases such as protein kinase C and A, and the Rho kinases. We observed that recombinant DMPK-1 exhibits low activity, whereas the activity of carboxy-terminally truncated DMPK is increased approximately 3-fold. The inhibitory activity of the full-length kinase was mapped to what appears to be a pseudosubstrate autoinhibitory domain at the extreme carboxy terminus of DMPK. To date, endogenous activators of DMPK are unknown; however, we observed that DMPK purified from cells exposed to the G protein activator GTP-gamma-S exhibited an approximately 2-fold increase in activity. These results suggest a general model of DMPK regulation with two main regulatory branches: short-term activation of the kinase in response to G protein second messengers and long-term activation as a result of proteolysis.  相似文献   

14.
The myotonic dystrophy protein kinase polypeptide repertoire in mice and humans consists of six different splice isoforms that vary in the nature of their C-terminal tails and in the presence or absence of an internal Val-Ser-Gly-Gly-Gly motif. Here, we demonstrate that myotonic dystrophy protein kinase isoforms exist in high-molecular-weight complexes controlled by homo- and heteromultimerization. This multimerization is mediated by coiled-coil interactions in the tail-proximal domain and occurs independently of alternatively spliced protein segments or myotonic dystrophy protein kinase activity. Complex formation was impaired in myotonic dystrophy protein kinase mutants in which three leucines at positions a and d in the coiled-coil heptad repeats were mutated to glycines. These coiled-coil mutants were still capable of autophosphorylation and transphosphorylation of peptides, but the rates of their kinase activities were significantly lowered. Moreover, phosphorylation of the natural myotonic dystrophy protein kinase substrate, myosin phosphatase targeting subunit, was preserved, even though binding of the myotonic dystrophy protein kinase to the myosin phosphatase targeting subunit was strongly reduced. Furthermore, the association of myotonic dystrophy protein kinase isoform C to the mitochondrial outer membrane was weakened when the coiled-coil interaction was perturbed. Our findings indicate that the coiled-coil domain modulates myotonic dystrophy protein kinase multimerization, substrate binding, kinase activity and subcellular localization characteristics.  相似文献   

15.
Targeting signals are critical for proteins to find their specific cellular destination. Signals for protein targeting to the endoplasmic reticulum (ER), mitochondria, peroxisome and nucleus are distinct and the mechanisms of protein translocation across these membrane compartments also vary markedly. Recently, however, a number of proteins have been shown to be present in multiple cellular sites such as mitochondria and ER, cytosol and mitochondria, plasma membrane and mitochondria, and peroxisome and mitochondria suggesting the occurrence of multimodal targeting signals in some cases. Cytochrome P450 monooxygenases (CYPs), which play crucial roles in pharmacokinetics and pharmacodynamics of drugs and toxins, are the prototype of bimodally targeted proteins. Several members of family 1, 2 and 3 CYPs have now been reported to be associated with mitochondria and plasma membrane in addition to the ER. This review highlights the mechanisms of bimodal targeting of CYP1A1, 2B1, 2E1 and 2D6 to mitochondria and ER. The bimodal targeting of these proteins is driven by their N-terminal signals which carry essential elements of both ER targeting and mitochondria targeting signals. These multimodal signals have been termed chimeric signals appropriately to describe their dual targeting property. The cryptic mitochondrial targeting signals of CYP2B1, 2D6, 2E1 require activation by protein kinase A or protein kinase C mediated phosphorylation at sites immediately flanking the targeting signal and/or membrane anchoring regions. The cryptic mitochondria targeting signal of CYP1A1 requires activation by endoproteolytic cleavage by a cytosolic endoprotease, which exposes the mitochondrial signal. This review discusses both mechanisms of bimodal targeting and toxicological consequences of mitochondria targeted CYP proteins.  相似文献   

16.
17.
18.
19.
Myotonic dystrophy: molecular windows on a complex etiology.   总被引:4,自引:0,他引:4       下载免费PDF全文
Myotonic dystrophy (DM) is the most common form of adult onset muscular dystrophy, with an incidence of approximately 1 in 8500 adults. DM is caused by an expanded number of trinucleotide repeats in the 3'-untranslated region (UTR) of a cAMP-dependent protein kinase (DM protein kinase, DMPK). Although a large number of transgenic animals have been generated with different gene constructions and knock-outs, none of them faithfully recapitulates the multisystemic and often severe phenotype seen in human patients. The transgenic data suggest that myotonic dystrophy is not caused simply by a biochemical deficiency or abnormality in the DM kinase gene product. Emerging studies suggest that two novel pathogenetic mechanisms may play a role in the disease: the expanded repeats appear to cause haploinsufficiency of a neighboring homeobox gene and also abnormal DMPK RNA appears to have a detrimental effect on RNA homeostasis. The complex, multisystemic phenotype may reflect an underlying multifaceted molecular pathophysiology: the facial dysmorphology may be due to pattern defects caused by haploinsufficiency of the homeobox gene, while the muscle disease and endocrine abnormalities may be due to both altered RNA metabolism and deficiency of the cAMP DMPK protein.  相似文献   

20.
The mechanism by which (CTG)n expansion in the 3' UTR of the DMPK gene causes myotonic dystrophy (DM) is unknown. We identified four RNA splicing factors--hnRNP C, U2AF (U2 auxiliary factor), PTB (polypyrimidine tract binding protein), and PSF (PTB associated splicing factor)--that bind to two short regions 3' of the (CUG)n, and found a novel 3' DMPK exon resulting in an mRNA lacking the repeats. We propose that the (CUG)n is an essential cis acting element for this splicing event. In contrast to (CUG)n containing mRNAs, the novel isoform is not retained in the nucleus in DM cells, resulting in imbalances in relative levels of cytoplasmic DMPK mRNA isoforms and a new dominant effect of the mutation on DMPK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号