首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human disc degeneration is associated with increased MMP 7 expression.   总被引:2,自引:0,他引:2  
During intervertebral disc (IVD) degeneration, normal matrix synthesis decreases and degradation of disc matrix increases. A number of proteases that are increased during disc degeneration are thought to be involved in its pathogenesis. Matrix metalloproteinase 7 (MMP 7) (Matrilysin, PUMP-1) is known to cleave the major matrix molecules found within the IVD, i.e., the proteoglycan aggrecan and collagen type II. To date, however, it is not known how its expression changes with degeneration or its exact location. We investigated the localization of MMP 7 in human, histologically graded, nondegenerate, degenerated and prolapsed discs to ascertain whether MMP 7 is up-regulated during disc degeneration. Samples of human IVD tissue were fixed in neutral buffered formalin, embedded in paraffin, and sections stained with hematoxylin and eosin to score the degree of morphological degeneration. Immunohistochemistry was performed to localize MMP 7 in 41 human IVDs with varying degrees of degeneration. We found that the chondrocyte-like cells of the nucleus pulposus and inner annulus fibrosus were MMP 7 immunopositive; little immunopositivity was observed in the outer annulus. Nondegenerate discs showed few immunopositive cells. A significant increase in the proportion of MMP 7 immunopositive cells was seen in the nucleus pulposus of discs classified as showing intermediate levels of degeneration and a further increase was seen in discs with severe degeneration. Prolapsed discs showed more MMP 7 immunopositive cells compared to nondegenerated discs, but fewer than those seen in cases of severe degeneration.  相似文献   

2.
During intervertebral disc (IVD) degeneration, normal matrix synthesis decreases and degradation of disc matrix increases. A number of proteases that are increased during disc degeneration are thought to be involved in its pathogenesis. Matrix metalloproteinase 7 (MMP 7) (Matrilysin, PUMP-1) is known to cleave the major matrix molecules found within the IVD, i.e., the proteoglycan aggrecan and collagen type II. To date, however, it is not known how its expression changes with degeneration or its exact location. We investigated the localization of MMP 7 in human, histologically graded, nondegenerate, degenerated and prolapsed discs to ascertain whether MMP 7 is up-regulated during disc degeneration. Samples of human IVD tissue were fixed in neutral buffered formalin, embedded in paraffin, and sections stained with hematoxylin and eosin to score the degree of morphological degeneration. Immunohistochemistry was performed to localize MMP 7 in 41 human IVDs with varying degrees of degeneration. We found that the chondrocyte-like cells of the nucleus pulposus and inner annulus fibrosus were MMP 7 immunopositive; little immunopositivity was observed in the outer annulus. Nondegenerate discs showed few immunopositive cells. A significant increase in the proportion of MMP 7 immunopositive cells was seen in the nucleus pulposus of discs classified as showing intermediate levels of degeneration and a further increase was seen in discs with severe degeneration. Prolapsed discs showed more MMP 7 immunopositive cells compared to nondegenerated discs, but fewer than those seen in cases of severe degeneration.  相似文献   

3.
During intervertebral disc (IVD) degeneration, normal matrix synthesis decreases and degradation of disc matrix increases. A number of proteases that are increased during disc degeneration are thought to be involved in its pathogenesis. Matrix metalloproteinase 7 (MMP 7) (Matrilysin, PUMP-1) is known to cleave the major matrix molecules found within the IVD, i.e., the proteoglycan aggrecan and collagen type II. To date, however, it is not known how its expression changes with degeneration or its exact location. We investigated the localization of MMP 7 in human, histologically graded, nondegenerate, degenerated and prolapsed discs to ascertain whether MMP 7 is up-regulated during disc degeneration. Samples of human IVD tissue were fixed in neutral buffered formalin, embedded in paraffin, and sections stained with hematoxylin and eosin to score the degree of morphological degeneration. Immunohistochemistry was performed to localize MMP 7 in 41 human IVDs with varying degrees of degeneration. We found that the chondrocyte-like cells of the nucleus pulposus and inner annulus fibrosus were MMP 7 immunopositive; little immunopositivity was observed in the outer annulus. Nondegenerate discs showed few immunopositive cells. A significant increase in the proportion of MMP 7 immunopositive cells was seen in the nucleus pulposus of discs classified as showing intermediate levels of degeneration and a further increase was seen in discs with severe degeneration. Prolapsed discs showed more MMP 7 immunopositive cells compared to nondegenerated discs, but fewer than those seen in cases of severe degeneration.  相似文献   

4.
A hallmark of early IVD degeneration is a decrease in proteoglycan content. Progression will eventually lead to matrix degradation, a decrease in weight bearing capacity and loss of disc height. In the final stages of IVD degradation, fissures appear in the annular ring allowing extrusion of the NP. It is crucial to understand the interplay between mechanobiology, disc composition and metabolism to be able to provide exercise recommendations to patients with early signs of disc degeneration. This study evaluates the effect of physiological loading compared to no loading on matrix homeostasis in bovine discs with induced degeneration. Bovine discs with trypsin-induced degeneration were cultured for 14 days in a bioreactor under dynamic loading with maintained metabolic activity. Chondroadherin abundance and structure was used to confirm that a functional matrix was preserved in the chosen loading environment. No change was observed in chondroadherin integrity and a non-significant increase in abundance was detected in trypsin-treated loaded discs compared to unloaded discs. The proteoglycan concentration in loaded trypsin-treated discs was significantly higher than in unloaded disc and the newly synthesised proteoglycans were of the same size range as those found in control samples. The proteoglycan showed an even distribution throughout the NP region, similar to that of control discs. Significantly more newly synthesised type II collagen was detected in trypsin-treated loaded discs compared to unloaded discs, demonstrating that physiological load not only stimulates aggrecan production, but also that of type II collagen. Taken together, this study shows that dynamic physiological load has the ability to repair the extracellular matrix depletion typical of early disc degeneration.  相似文献   

5.
Intervertebral disc (IVD) degeneration is strongly associated with chronic low back pain, one of the most common causes of morbidity in the West. While normal healthy IVD is avascular, angiogenesis is a constant feature of IVD degeneration and has been shown to be associated with in-growth of nerves. Connective tissue growth factor (CTGF) plays a pivotal role in angiogenesis. To investigate the expression of CTGF in both normal and degenerated IVD, 21 IVDs were obtained from patients at surgery or postmortem examination and grouped according to the severity of histological degeneration. The immunohistochemical expression of CTGF was correlated with the degree of degeneration. CD31 immunohistochemistry was used to correlate IVD degeneration with vasculature. Our results showed that CTGF is expressed in non-degenerated and degenerated human IVDs and increased expression of CTGF is associated with degenerated discs, particularly within areas of neovascularization. We suggest that CTGF may play a role in angiogenesis in the human degenerated IVD.  相似文献   

6.
Current evidence implicates intervertebral disc degeneration as a major cause of low back pain, although its pathogenesis is poorly understood. Numerous characteristic features of disc degeneration mimic those seen during ageing but appear to occur at an accelerated rate. We hypothesised that this is due to accelerated cellular senescence, which causes fundamental changes in the ability of disc cells to maintain the intervertebral disc (IVD) matrix, thus leading to IVD degeneration. Cells isolated from non-degenerate and degenerate human tissue were assessed for mean telomere length, senescence-associated β-galactosidase (SA-β-gal), and replicative potential. Expression of P16 INK4A (increased in cellular senescence) was also investigated in IVD tissue by means of immunohistochemistry. RNA from tissue and cultured cells was used for real-time polymerase chain reaction analysis for matrix metalloproteinase-13, ADAMTS 5 (a disintegrin and metalloprotease with thrombospondin motifs 5), and P16 INK4A . Mean telomere length decreased with age in cells from non-degenerate tissue and also decreased with progressive stages of degeneration. In non-degenerate discs, there was an age-related increase in cellular expression of P16 INK4A . Cells from degenerate discs (even from young patients) exhibited increased expression of P16 INK4A , increased SA-β-gal staining, and a decrease in replicative potential. Importantly, there was a positive correlation between P16 INK4A and matrix-degrading enzyme gene expression. Our findings indicate that disc cell senescence occurs in vivo and is accelerated in IVD degeneration. Furthermore, the senescent phenotype is associated with increased catabolism, implicating cellular senescence in the pathogenesis of IVD degeneration.  相似文献   

7.
The intervertebral disc (IVD) receives important nutrients, such as glucose, from surrounding blood vessels. Poor nutritional supply is believed to play a key role in disc degeneration. Several investigators have presented finite element models of the IVD to investigate disc nutrition; however, none has predicted nutrient levels and cell viability in the disc with a realistic 3D geometry and tissue properties coupled to mechanical deformation. Understanding how degeneration and loading affect nutrition and cell viability is necessary for elucidating the mechanisms of disc degeneration and low back pain. The objective of this study was to analyze the effects of disc degeneration and static deformation on glucose distributions and cell viability in the IVD using finite element analysis. A realistic 3D finite element model of the IVD was developed based on mechano-electrochemical mixture theory. In the model, the cellular metabolic activities and viability were related to nutrient concentrations, and transport properties of nutrients were dependent on tissue deformation. The effects of disc degeneration and mechanical compression on glucose concentrations and cell density distributions in the IVD were investigated. To examine effects of disc degeneration, tissue properties were altered to reflect those of degenerated tissue, including reduced water content, fixed charge density, height, and endplate permeability. Two mechanical loading conditions were also investigated: a reference (undeformed) case and a 10% static deformation case. In general, nutrient levels decreased moving away from the nutritional supply at the disc periphery. Minimum glucose levels were at the interface between the nucleus and annulus regions of the disc. Deformation caused a 6.2% decrease in the minimum glucose concentration in the normal IVD, while degeneration resulted in an 80% decrease. Although cell density was not affected in the undeformed normal disc, there was a decrease in cell viability in the degenerated case, in which averaged cell density fell 11% compared with the normal case. This effect was further exacerbated by deformation of the degenerated IVD. Both deformation and disc degeneration altered the glucose distribution in the IVD. For the degenerated case, glucose levels fell below levels necessary for maintaining cell viability, and cell density decreased. This study provides important insight into nutrition-related mechanisms of disc degeneration. Moreover, our model may serve as a powerful tool in the development of new treatments for low back pain.  相似文献   

8.
Molecular consequences of long-term deformation and altered mechanical loading of intervertebral disc (IVD) tissue in scoliosis have yet to be elucidated. We hypothesized that histological disc degeneration is faster in scoliosis than in normal ageing and that this is reflected by an altered gene expression profile. A semiquantitative histodegeneration score (HDS) revealed significantly enhanced degeneration in scoliosis (HDS 5.3) versus age-matched control IVDs (HDS 2.25; p = 0.001). Gene expression analysis by cDNA array and RT-PCR demonstrated higher mRNA levels for extracellular-matrix molecules like aggrecan, biglycan, decorin, lumican, chondromodulin, and COL2A1 in scoliotic discs versus normal discs of identical degeneration score. No differences were evident for catabolic molecules like MMP3, MMP13, MMP17, and TIMP1. In sum, morphologic disc degeneration was accelerated by about 2 decades in scoliosis versus physiological ageing and developed against a background of stronger anabolic matrix metabolism at younger age or in response to the altered mechanical environment of the tissue.  相似文献   

9.
Degeneration of the intervertebral disc (IVD) is a major cause of low back pain affecting a large percentage of the population at some point in their lives. Consequently IVD degeneration and its associated low back pain has a huge socio-economic impact and places a burden on health services world-wide. Current treatments remove the symptoms without treating the underlying problem and can result in reoccurrence in the same or adjacent discs. Tissue engineering offers hope that new therapies can be developed which can regenerate the IVD. Combined with this, development of novel biomaterials and an increased understanding of mesenchymal stem cell and IVD cell biology mean that tissue engineering of the IVD may soon become a reality. However for any regenerative medicine approach to be successful there must first be an understanding of the biology of the tissue and the pathophysiology of the disease process. This review covers these key areas and gives an overview of the recent developments in the fields of biomaterials, cell biology and tissue engineering of the IVD.  相似文献   

10.

Introduction

Biglycan is an important proteoglycan of the extracellular matrix of intervertebral disc (IVD), and its decrease with aging has been correlated with IVD degeneration. Biglycan deficient (Bgn−/0) mice lack this protein and undergo spontaneous IVD degeneration with aging, thus representing a valuable in vivo model for preliminary studies on therapies for human progressive IVD degeneration. The purpose of the present study was to assess the possible beneficial effects of adipose-derived stromal cells (ADSCs) implants in the Bgn−/0 mouse model.

Methods

To evaluate ADSC implant efficacy, Bgn−/0 mice were intradiscally (L1-L2) injected with 8x104 ADSCs at 16 months old, when mice exhibit severe and complete IVD degeneration, evident on both 7Tesla Magnetic Resonance Imaging (7TMRI) and histology. Placebo and ADSCs treated Bgn−/0 mice were assessed by 7TMRI analysis up to 12 weeks post-transplantation. Mice were then sacrificed and implanted discs were analyzed by histology and immunohistochemistry for the presence of human cells and for the expression of biglycan and aggrecan in the IVD area.

Results

After in vivo treatment, 7TMRI revealed evident increase in signal intensity within the discs of mice that received ADSCs, while placebo treatment did not show any variation. Ultrastructural analyses demonstrated that human ADSC survival occurred in the injected discs up to 12 weeks after implant. These cells acquired a positive expression for biglycan, and this proteoglycan was specifically localized in human cells. Moreover, ADSC treatment resulted in a significant increase of aggrecan tissue levels.

Conclusion

Overall, this work demonstrates that ADSC implant into degenerated disc of Bgn−/0 mice ameliorates disc damage, promotes new expression of biglycan and increased levels of aggrecan. This suggests a potential benefit of ADSC implant in the treatment of chronic degenerative disc disease and prompts further studies in this field.  相似文献   

11.
12.
Despite numerous studies on pulsed electromagnetic field (PEMF) application, its effects of PEMF on intervertebral disc (IVD) have not yet been investigated in vivo. Accordingly, the effects of PEMF upon IVD in rats were evaluated through molecular surveys. Rats were divided into six groups: Group I and II were exposed to low and high frequency of PEMF (LF and HF, respectively). Group III and IV underwent induced disc degeneration and were exposed to low and high frequency of PEMF (LF/IDD and HF/IDD, respectively). Group V underwent induced disc degeneration (IDD), and group VI was control. The values of caspase 3, Bax, Bcl-2 and β-actin band density, as cell apoptotic markers, were obtained from band densitometry. Our results showed that the value of cleaved caspase-3 of cells and Bax/Bcl-2 ratio in IDD group increased significantly compared to the control group (p?p?相似文献   

13.

Introduction  

The decreased disc height characteristic of intervertebral disc (IVD) degeneration has often been linked to low back pain, and thus regeneration strategies aimed at restoring the disc extracellular matrix and ultimately disc height have been proposed as potential treatments for IVD degeneration. One such therapy under investigation by a number of groups worldwide is the use of autologous mesenchymal stem cells (MSCs) to aid in the regeneration of the IVD extracellular matrix. To date, however, the optimum method of application of these cells for regeneration strategies for the IVD is unclear, and few studies have investigated the direct injection of MSCs alone into IVD tissues. In the present article, we investigated the survival and phenotype of human MSCs, sourced from aged individuals, following injection into nucleus pulposus (NP) tissue explant cultures.  相似文献   

14.
Intervertebral disc (IVD) cell apoptosis has been suggested to play an important role in promoting the degeneration process. It has been demonstrated that IVD cell apoptosis occurs through either death receptor, mitochondrial or endoplasmic reticulum (ER) pathway. Our study aimed to explore the relationship among these three pathways and grade of IVD degeneration (IVDD). IVDs were collected from patients with lumbar fracture, vertebral tumor, disc herniation or spondylolisthesis. IVDs were distinguished by MRI and histomorphological examination, cell apoptosis was detected by TUNEL staining. Biomarkers of these three apoptosis pathways were detected by RT-PCR and Western blot. Furthermore, the correlation between apoptosis pathways biomarkers and disc pathology were analyzed. Nucleus pulposus cell density decreased with degeneration process, and increased apoptotic ratio. ER pathway was predominant in mild stage of IVDD (GRP78, GADD153 upregulation and caspase-4 activation), death receptor pathway was predominant in mild and moderate stages (Fas, FasL up-regulation and caspase-8 activation) and mitochondrial pathway was predominant in moderate and severe stages (Bcl-2 down-regulation, Bax up-regulation, cytochrome-c accumulation in cytoplasm and caspase-9 activation). There were significant differences in the expressions of Fas, FasL, Bax, GADD153, cytochrome-c and cleaved caspase-8/9/3 between contained and non-contained discs. In conclusion, apoptosis occurs via these three apoptosis pathways together in IVDD. ER pathway plays a more critical role in the mild compared to moderate and severe stages, death receptor pathway in mild and moderate, and mitochondrial pathway in moderate and severe stages of IVDD. Disc cells apoptosis may progress rapidly after herniation, and may depend on the type of herniation.  相似文献   

15.
Evaluation of the loads on lumbar intervertebral discs (IVD) is critically important since it is closely related to spine biomechanics, pathology and prosthesis design. Non-invasive estimation of the loads in the discs remains a challenge. In this study, we proposed a new technique to estimate in vivo loads in the IVD using a subject-specific finite element (FE) model of the disc and the kinematics of the disc endplates as input boundary conditions. The technique was validated by comparing the forces and moments in the discs calculated from the FE analyses to the in vitro experiment measurements of three corresponding lumbar discs. The results showed that the forces and moments could be estimated within an average error of 20%. Therefore, this technique can be a promising tool for non-invasive estimation of the loads in the discs and may be extended to be used on living subjects.  相似文献   

16.

Introduction  

Earlier work indicates that the cholesterol-lowering drug, simvastatin, is anabolic to chondrogenic expression of rat intervertebral disc (IVD) cells, which suggests a potential role for simvastatin in IVD regeneration. In this study, we expand on our earlier work to test the effectiveness of simvastatin on disc degeneration utilizing a rat tail disc degeneration model.  相似文献   

17.
The insulin-like growth factor-1 (IGF-1) is a well-known anabolic agent for intervertebral disc (IVD), promoting both proteoglycan (PG) biosynthesis and cell proliferation. Accordingly, it is believed that IGF-1 may play a central role in IVD homeostasis. Furthermore, the exogenous administration of IGF-1 has been proposed as a possible therapeutic strategy for disc degeneration. The objectives of this study were to develop a new computational framework for describing the mechanisms regulating IGF-mediated homeostasis in IVD, and to apply this numerical tool for investigating the effectiveness of exogenous administration of IGF-1 for curing disc degeneration. A diffusive–reactive model was developed for describing competitive binding of IGF-1 to its binding proteins and cell surface receptors, with the latter reaction initiating the intracellular signaling mechanism leading to PG production and cell proliferation. Because PG production increases cell metabolic rate, and cell proliferation increases nutritional demand, nutrients transport and metabolism were also included into the model, and co-regulated, together with IGF-1, IVD cellularity. The sustainability and the effectiveness of IGF-mediated anabolism were investigated for conditions of pathologically insufficient nutrient supply, and for the case of exogenous administration of IGF-1 to degenerated IVD. Results showed that pathological nutrients deprivation, by decreasing cellularity, caused a reduction of PG biosynthesis. Also, exogenous administration of IGF-1 was only beneficial in well-nourished regions of IVD, and exacerbated cell mortality in malnourished regions. These findings remark the central role of nutrition in IVD health, and suggest that adequate nutritional supply is paramount for achieving a successful IGF-based therapy for disc degeneration.  相似文献   

18.
Human HTRA1 is a highly conserved secreted serine protease that degrades numerous extracellular matrix proteins. We have previously identified HTRA1 as being up-regulated in osteoarthritic patients and as having the potential to regulate matrix metalloproteinase (MMP) expression in synovial fibroblasts through the generation of fibronectin fragments. In the present report, we have extended these studies and investigated the role of HTRA1 in the pathogenesis of intervertebral disc (IVD) degeneration. HTRA1 mRNA expression was significantly elevated in degenerated disc tissue and was associated with increased protein levels. However, these increases did not correlate with the appearance of rs11200638 single nucleotide polymorphism in the promoter region of the HTRA1 gene, as has previously been suggested. Recombinant HTRA1 induced MMP production in IVD cell cultures through a mechanism critically dependent on MEK but independent of IL-1β signaling. The use of a catalytically inactive mutant confirmed these effects to be primarily due to HTRA1 serine protease activity. HTRA1-induced fibronectin proteolysis resulted in the generation of various sized fragments, which when added to IVD cells in culture, caused a significant increase in MMP expression. Furthermore, one of these fragments was identified as being the amino-terminal fibrin- and heparin-binding domain and was also found to be increased within HTRA1-treated IVD cell cultures as well as in disc tissue from patients with IVD degeneration. Our results therefore support a scenario in which HTRA1 promotes IVD degeneration through the proteolytic cleavage of fibronectin and subsequent activation of resident disc cells.  相似文献   

19.
Intervertebral disc (IVD) degenerative diseases are a common problem in the world, and they cause substantial social and economic burdens for people. The current methods for treating IVD degenerative diseases mainly include surgery and conservative treatment, which cannot fundamentally restore the normal structure of the disc. With continuous research on the mechanism of degeneration and the development of regenerative medicine, rapid progress has been made in the field of regenerative medicine regarding the use of stem cell-derived exosomes, which are active biological substances used in intercellular communication, because they show a strong effect in promoting tissue regeneration. The study of exosomes in the field of IVD degeneration has just begun, and many surprising achievements have been made. This paper mainly reviews the biological characteristics of exosomes and highlights the current status of exosomes in the field of IVD degeneration, as well as future developments regarding exosomes.  相似文献   

20.

Introduction

Platelet-rich plasma (PRP) is a fraction of plasma in which several growth factors are concentrated at high levels. The active soluble releasate isolated following platelet activation of PRP (PRP-releasate) has been demonstrated to stimulate the metabolism of IVD cells in vitro. The in vivo effect of PRP-releasate on degenerated IVD remains unknown. The purpose of this study was to determine the reparative effects of autologous PRP-releasate on degenerated intervertebral discs (IVDs).

Methods

To induce disc degeneration, New Zealand white rabbits (n = 12) received anular puncture in two noncontiguous discs. Autologous PRP and PPP (platelet-poor plasma) were isolated from fresh blood using two centrifugation techniques. Four weeks after the initial puncture, releasate isolated from clotted PPP or PRP (PPP- or PRP-releasate), or phosphate-buffered saline (PBS; control) was injected into the punctured discs. Disc height, magnetic resonance imaging (MRI) T2-mapping and histology were assessed.

Results

Anular puncture produced a consistent disc narrowing within four weeks. PRP-releasate induced a statistically significant restoration of disc height (PRP vs. PPP and PBS, P<0.05). In T2-quantification, the mean T2-values of the nucleus pulposus (NP) and anulus fibrosus (AF) of the discs were not significantly different among the three treatment groups. Histologically, the number of chondrocyte-like cells was significantly higher in the discs injected with PRP-releasate compared to that with PBS.

Conclusions

The administration of active PRP-releasate induced a reparative effect on rabbit degenerated IVDs. The results of this study suggest that the use of autologous PRP-releasate is safe and can lead to a clinical application for IVD degeneration.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号