首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 98 毫秒
1.
Pneumonia caused by Pseudomonas aeruginosa carries a high rate of morbidity and mortality. A lung-protective strategy using low tidal volume (V(T)) ventilation for acute lung injury improves patient outcomes. The goal of this study was to determine whether low V(T) ventilation has similar utility in severe P. aeruginosa infection. A cytotoxic P. aeruginosa strain, PA103, was instilled into the left lung of rats anesthetized with pentobarbital. The lung-protective effect of low V(T) (6 ml/kg) with or without high positive end-expiratory pressure (PEEP, 10 or 3 cmH(2)O) was then compared with high V(T) with low PEEP ventilation (V(T) 12 ml/kg, PEEP 3 cmH(2)O). Severe lung injury and septic shock was induced. Although ventilatory mode had little effect on the involved lung or septic physiology, injury to noninvolved regions was attenuated by low V(T) ventilation as indicated by the wet-to-dry weight ratio (W/D; 6.13 +/- 0.78 vs. 3.78 +/- 0.26, respectively) and confirmed by histopathological examinations. High PEEP did not yield a significant protective effect (W/D, 4.03 +/- 0.32) but, rather, caused overdistension of noninvolved lungs. Bronchoalveolar lavage revealed higher concentrations of TNF-alpha in the fluid of noninvolved lung undergoing high V(T) ventilation compared with those animals receiving low V(T). We conclude that low V(T) ventilation is protective in noninvolved regions and that the application of high PEEP attenuated the beneficial effects of low V(T) ventilation, at least short term. Furthermore, low V(T) ventilation cannot protect the involved lung, and high PEEP did not significantly alter lung injury over a short time course.  相似文献   

2.
Although mechanical ventilation (MV) is an important supportive strategy for patients with acute respiratory distress syndrome, MV itself can cause a type of acute lung damage termed ventilator-induced lung injury (VILI). Because nitric oxide (NO) has been reported to play roles in the pathogenesis of acute lung injury, the present study explores the effects on VILI of NO derived from chronically overexpressed endothelial nitric oxide synthase (eNOS). Anesthetized eNOS-transgenic (Tg) and wild-type (WT) C57BL/6 mice were ventilated at high or low tidal volume (Vt; 20 or 7 ml/kg, respectively) for 4 h. After MV, lung damage, including neutrophil infiltration, water leakage, and cytokine concentration in bronchoalveolar lavage fluid (BALF) and plasma, was evaluated. Some mice were given N(omega)-nitro-L-arginine methyl ester (L-NAME), a potent NOS inhibitor, via drinking water (1 mg/ml) for 1 wk before MV. Histological analysis revealed that high Vt ventilation caused severe VILI, whereas low Vt ventilation caused minimal VILI. Under high Vt conditions, neutrophil infiltration and lung water content were significantly attenuated in eNOS-Tg mice compared with WT animals. The concentrations of macrophage inflammatory protein-2 in BALF and plasma, as well as plasma tumor necrosis factor-alpha and monocyte chemoattractant protein-1, also were decreased in eNOS-Tg mice. L-NAME abrogated the beneficial effect of eNOS overexpression. In conclusion, chronic eNOS overexpression may protect the lung from VILI by inhibiting the production of inflammatory chemokines and cytokines that are associated with neutrophil infiltration into the air space.  相似文献   

3.
Patients with chronic heart failure have an abnormal pattern of exercise ventilation (Ve), characterized by small tidal volumes (Vt), increased alveolar ventilation, and elevated physiological dead space (Vd/Vt). To investigate whether increased lung water in isolation could reproduce this pattern of exercise ventilation, 30 ml/kg of saline were rapidly infused into nine normal subjects, immediately before a symptom-limited incremental exercise test. Saline infusion significantly reduced forced vital capacity, 1-s forced expiratory volume, and alveolar volume (P < 0.01 for all). After saline, exercise ventilation assessed by the Ve/Vco(2) slope increased from 24.9 +/- 2.4 to 28.0 +/- 2.9 l/l, (P < 0.0002), associated with a small decrease in arterial Pco(2), but without changes in Vt, Vd/Vt, or alveolar-arterial O(2) difference. A reduction in maximal O(2) uptake of 175 +/- 184 ml/min (P < 0.02) was observed in the postsaline infusion exercise studies, associated with a consistent reduction in maximal exercise heart rate (8.1 +/- 5.9 beats/min, P < 0.01), but without a change in the O(2) pulse. Therefore, infusion of saline to normal subjects before exercise failed to reproduce either the increase in Vd/Vt or the smaller exercise Vt described in heart failure patients. The observed increase in Ve can be attributed to dilution acidosis from infusion of the bicarbonate-free fluid and/or to afferent signals from lung and exercising muscles. The reduction in maximal power output, maximal O(2) uptake, and heart rate after saline infusion may be linked to accumulation of edema fluid in exercising muscle, impairing the diffusion of O(2) to muscle mitochondria.  相似文献   

4.
The use of positive pressure mechanical ventilation can cause ventilator-induced lung injury (VILI). We hypothesized that hyperoxia in combination with large tidal volumes (VT) would accentuate noncardiogenic edema and neutrophil infiltration in VILI and be dependent on stretch-induced macrophage inflammatory protein-2 (MIP-2) production. In rats ventilated with VT 20 ml/kg, there was pulmonary edema formation that was significantly increased by hyperoxia. Total lung neutrophil infiltration and MIP-2 in bronchoalveolar lavage (BAL) fluid were significantly elevated, in animals exposed to high VT both on room air (RA) and with hyperoxia. Hyperoxia markedly augmented the migration of neutrophils into the alveoli. Anti-MIP-2 antibody blocked migration of neutrophils into the alveoli in RA by 51% and with hyperoxia by 65%. We concluded that neutrophil migration into the alveoli was dependent on stretch-induced MIP-2 production. Hyperoxia significantly increased edema formation and neutrophil migration into the alveoli with VT 20 ml/kg, although BAL MIP-2 levels were nearly identical to VT 20 ml/kg with RA, suggesting that other mechanisms may be involved in hyperoxia-augmented neutrophil alveolar content in VILI.  相似文献   

5.
Ischemia-reperfusion not only damages the affected organ but also leads to remote organ injuries. Hepatic inflow interruption usually occurs during hepatic surgery. To investigate the influence of liver ischemia-reperfusion on lung injury and to determine the contribution of tidal volume settings on liver ischemia-reperfusion-induced lung injury, we studied anesthetized and mechanically ventilated rats in which the hepatic inflow was transiently interrupted twice for 15 min. Two tidal volumes, 6 ml/kg as a low tidal volume (IR-LT) and 24 ml/kg as a high tidal volume (IR-HT), were assessed after liver ischemia-reperfusion, as well as after a sham operation, 6 ml/kg (NC-LT) and 24 ml/kg (NC-HT). Both the IR-HT and IR-LT groups had a gradual decline in the systemic blood pressure and a significant increase in plasma TNF-alpha concentrations. Of the four groups, only the IR-HT group developed lung injury, as assessed by an increase in the lung wet-to-dry weight ratio, the presence of significant histopathological changes, such as perivascular edema and intravascular leukocyte aggregation, and an increase in the bronchoalveolar lavage fluid TNF-alpha concentration. Furthermore, only in the IR-HT group was airway pressure increased significantly during the 6-h reperfusion period. These findings suggest that liver ischemia-reperfusion caused systemic inflammation and that lung injury is triggered when high tidal volume ventilation follows liver ischemia-reperfusion.  相似文献   

6.
Lung morpho-functional alterations and inflammatory response to various types of mechanical ventilation (MV) have been assessed in normal, anesthetized, open-chest rats. Measurements were taken during protective MV [tidal volume (Vt) = 8 ml/kg; positive end-expiratory pressure (PEEP) = 2.6 cmH(2)O] before and after a 2- to 2.5-h period of ventilation on PEEP (control group), zero EEP without (ZEEP group) or with administration of dioctylsodiumsulfosuccinate (ZEEP-DOSS group), on negative EEP (NEEP group), or with large Vt (26 ml/kg) on PEEP (Hi-Vt group). No change in lung mechanics occurred in the Control group. Relative to the initial period of MV on PEEP, airway resistance increased by 33 +/- 4, 49 +/- 9, 573 +/- 84, and 13 +/- 4%, and quasi-static elastance by 19 +/- 3, 35 +/- 7, 248 +/- 12, and 20 +/- 3% in the ZEEP, NEEP, ZEEP-DOSS, and Hi-Vt groups. Relative to Control, all groups ventilated from low lung volumes exhibited histologic signs of bronchiolar injury, more marked in the NEEP and ZEEP-DOSS groups. Parenchymal and vascular injury occurred in the ZEEP-DOSS and Hi-Vt groups. Pro-inflammatory cytokine concentration in the bronchoalveolar lavage fluid (BALF) was similar in the Control and ZEEP group, but increased in all other groups, and higher in the ZEEP-DOSS and Hi-Vt groups. Interrupter resistance was correlated with indexes of bronchiolar damage, and cytokine levels with vascular-alveolar damage, as indexed by lung wet-to-dry ratio. Hence, protective MV from resting lung volume causes mechanical alterations and small airway injury, but no cytokine release, which seems mainly related to stress-related damage of endothelial-alveolar cells. Enhanced small airway epithelial damage with induced surfactant dysfunction or MV on NEEP can, however, contribute to cytokine production.  相似文献   

7.
Lung mechanics, exhaled NO (NOe), and TNF-alpha in serum and bronchoalveolar lavage fluid were assessed in eight closed and eight open chest, normal anesthetized rabbits undergoing prolonged (3-4 h) mechanical ventilation (MV) at low volume with physiological tidal volumes (10 ml/kg). Relative to initial MV on positive end-expiratory pressure (PEEP), MV at low volume increased lung quasi-static elastance (+267 and +281%), airway (+471 and +382%) and viscolelastic resistance (+480 and +294%), and decreased NOe (-42 and -25%) in closed and open chest rabbits, respectively. After restoration of PEEP, viscoelastic resistance returned to control, whereas airway resistance remained elevated (+120 and +31%) and NOe low (-25 and -20%) in both groups of rabbits. Elastance remained elevated (+23%) only in closed-chest animals, being associated with interstitial pulmonary edema, as reflected by increased lung wet-to-dry weight ratio with normal albumin concentration in bronchoalveolar lavage fluid. In contrast, in 16 additional closed- and open-chest rabbits, there were no changes of lung mechanics or NOe after prolonged MV on PEEP only. At the end of prolonged MV, TNF-alpha was practically undetectable in serum, whereas its concentration in bronchoalveolar lavage fluid was low and similar in animals subjected or not subjected to ventilation at low volume (62 vs. 43 pg/ml). These results indicate that mechanical injury of peripheral airways due to their cyclic opening and closing during ventilation at low volume results in changes in lung mechanics and reduction in NOe and that these alterations are not mediated by a proinflammatory process, since this is expressed by TNF-alpha levels.  相似文献   

8.
Low tidal volume (Vt) ventilation is protective against ventilator-induced lung injury but can promote development of atelectasis. Periodic deep inflation (DI) can open the lung, but if delivered too frequently may cause damage via repeated overdistention. We therefore examined the effects of varying DI frequency on lung mechanics, gas exchange, and biomarkers of injury in mice. C57BL/6 males were mechanically ventilated with positive end-expiratory pressure (PEEP) of 2 cmH2O for 2 h. One high Vt group received a DI with each breath (HV). Low Vt groups received 2 DIs after each hour of ventilation (LV) or 2 DIs every minute (LVDI). Control groups included a nonventilated surgical sham and a group receiving high Vt with zero PEEP (HVZP). Respiratory impedance was measured every 4 min, from which tissue elastance (H) and damping (G) were derived. G and H rose progressively during LV and HVZP, but returned to baseline after hourly DI during LV. During LVDI and HV, G and H remained low and gas exchange was superior to that of LV. Bronchoalveolar lavage fluid protein was elevated in HV and HVZP but was not different between LV and LVDI. Lung tissue IL-6 and IL-1beta levels were elevated in HVZP and lower in LVDI compared with LV. We conclude that frequent DI can safely improve gas exchange and lung mechanics and may confer protection from biotrauma. Differences between LVDI and HV suggest that an optimal frequency range of DI exists, within which the benefits of maintaining an open lung outweigh injury incurred from overdistention.  相似文献   

9.
Coagulopathy and alveolar fibrin deposition are common in sick neonates and attributed to the primary disease, as opposed to their ventilatory support. Hypothesizing that high tidal volume ventilation activates the extrinsic coagulation pathway, we air ventilated newborn and adult rats at low (10 ml/kg) or high (30 ml/kg) tidal volume and compared them with age-matched nonventilated controls. Blood was collected at the end of the experiment for measurement of clot time, tissue factor, and other coagulation factor content. Similar measurements were obtained from lung lavage material. The newborn clot time (44+/-1) was lower and plasma tissue factor content higher (103.4+/-0.4) than adults (88+/-4 s and 26.6+/-1.4 units; P<0.01). High, but not low, tidal volume ventilation of newborns for as little as 15 min significantly reduced clot time and increased plasma tissue factor content (P<0.01). High volume ventilation increased plasma factor Xa (0.1+/-0.1 to 1.6+/-0.4 nM; P<0.01) and thrombin (1.3+/-0.2 to 2.2+/-0.4 nM; P<0.05) and decreased antithrombin (0.12+/-0.01 to 0.05+/-0.01; P<0.01) in the newborn. Lung lavage material of high volume-ventilated newborns showed increased (P<0.01) factor Xa and thrombin. No changes in these parameters were observed in adult rats that were high volume ventilated for up to 90 min. Compared with adults, newborn rats have a greater propensity for volutrauma-activated intravascular coagulation. These data suggest that mechanical ventilation promotes neonatal thrombosis via lung tissue factor release.  相似文献   

10.
Variable or noisy ventilation, which includes random breath-to-breath variations in tidal volume (Vt) and frequency, has been shown to consistently improve blood oxygenation during mechanical ventilation in various models of acute lung injury. To further understand the effects of variable ventilation on lung physiology and biology, we mechanically ventilated 11 normal guinea pigs for 3 h using constant-Vt ventilation (n = 6) or variable ventilation (n = 5). After 3 h of ventilation, each animal underwent whole lung lavage for determination of alveolar surfactant content and composition, while protein content was assayed as a possible marker of injury. Another group of animals underwent whole lung lavage in the absence of mechanical ventilation to serve as an unventilated control group (n = 5). Although lung mechanics did not vary significantly between groups, we found that variable ventilation improved oxygenation, increased surfactant levels nearly twofold, and attenuated alveolar protein content compared with animals ventilated with constant Vt. These data demonstrate that random variations in Vt promote endogenous release of biochemically intact surfactant, which improves alveolar stability, apparently reducing lung injury.  相似文献   

11.
We investigated whether ethchlorvynol (ECV)-induced acute lung injury (ALI) is associated with an increase in leukotriene C4 (LTC4) production. In six pentobarbital sodium-anesthetized dogs, ECV (15 mg/kg iv) introduced into the pulmonary circulation resulted in a 164 +/- 31% increase in extravascular lung water 120 min after ECV administration. Concomitantly, the mean (+/- SE) concentration of LTC4 in arterial plasma measured by radioimmunoassay following 80% EtOH precipitation, XAD-7 extraction and high-pressure liquid chromatography purification was 5.0 +/- 1.3 pg/ml, unchanged from control (pre-ECV) values. In contrast, in pulmonary edema fluid 120 min post-ECV, the LTC4 concentration was 35.2 +/- 10.8 pg/ml, sevenfold greater than those values found in the arterial plasma (P less than 0.01). In six additional dogs, 120 min after unilateral ALI had been induced with ECV (9 mg/kg iv), LTC4 in the bronchoalveolar lavage (BAL) of the uninjured lung was 12.1 +/- 1.5 pg/ml, unchanged from pre-ECV values, whereas, LTC4 in the BAL of the injured lung increased from a control value of 10.2 +/- 1.6 to 24.2 +/- 3.5 pg/ml (P less than 0.01) 120 min after ECV administration. These results demonstrate that, in ECV-induced acute lung injury, LTC4 concentrations in pulmonary edema fluid are considerably greater than those found in arterial plasma in the case of bilateral acute lung injury and significantly greater in the BAL of the injured lung compared with the uninjured lung in the case of unilateral acute lung injury. The results are a necessary first step in support of the hypothesis that leukotrienes participate in the altered permeability of ECV-induced acute lung injury.  相似文献   

12.
A respiration-gated synchrotron radiation computed tomography (SRCT) technique, which allows visualization and direct quantification of inhaled stable xenon gas, was used to study the effect of tidal volume (Vt) on regional lung ventilation. High-resolution maps (pixel size 0.35 x 0.35 mm) of local washin time constants (tau) and regional specific ventilation were obtained in five anesthetized, paralyzed, and mechanically ventilated rabbits in upright body position at the fourth, sixth, and eighth dorsal vertebral levels with a Vt from 4.9 +/- 0.3 to 7.9 +/- 0.4 ml/kg (means +/- SE). Increasing Vt without an increase in minute ventilation resulted in a proportional increase of mean specific ventilation up to 65% in all studied lung levels and reduced the scattering of washin tau values. The tau values had log-normal distributions. The results indicate that an increase in Vt decreases nonuniformity of intraregional ventilatory gas exchange. The findings suggest that (SRCT) provides a new quantitative tool with high spatial discrimination ability for assessment of changes in peripheral pulmonary gas distribution during mechanical ventilation.  相似文献   

13.
Ventilator settings influence the development and outcome of acute lung injury. This study investigates the influence of low versus high tidal volume (V(t)) on oxidative stress-induced lung injury.Isolated rabbit lungs were subjected to one of three ventilation patterns (V(t)-positive end-expiratory pressure, PEEP): LVZP (6 ml/kg-0 cm H(2)O), HVZP (12 ml/kg-0 cm H(2)O), LV5P (6 ml/kg-5 cm H(2)O). These ventilation patterns allowed a comparison between low and high V(t) without dependence on peak inspiratory pressure (PIP). Infusion of hypochlorite (1000 nmol/min) or buffer (control) was started at t=0 min. Pulmonary artery pressure (PAP), PIP and weight were continuously recorded. Capillary filtration coefficient [K(f,c) (10(-4) ml s(-1) cm H(2)O(-1) g(-1))] was gravimetrically determined (-15/30/60/90/120 min).PIP averaged 5.8+/-0.6/13.9+/-0.6/13.9+/-0.4 cm H(2)O in the LVZP, HVZP and LV5P groups. PIP, K(f,c) or PAP did not change in control groups, indicating that none of the ventilation patterns caused lung injury by themselves. Hypochlorite-induced increase in K(f,c) but not hypochlorite-induced increase in PAP, was significantly attenuated in the LVZP-/LV5P- versus the HVZP-group (K(f,c,max.) 1.0+/-0.23/1.4+/-0.40 versus 3.2+/-1.0*). Experiments with hypochlorite were terminated due to excessive edema (>50 g) at 97+/-2.2/94.5+/-4.5 min in the LVZP-/LV5P-group versus 82+/-3.8* min in the HVZP-group (*: P<0.05).Low V(t) attenuated oxidative stress-induced increase in vascular permeability independently from PIP and PEEP.  相似文献   

14.
Mechanical ventilation is essential in intensive care units. However, it may itself induce lung injury. Current studies are based on rodents, using exceptionally large tidal volumes for very short periods, often after a "priming" pulmonary insult. Our study deepens a clinically relevant large animal model, closely resembling human physiology and the ventilator setting used in clinic settings. Our aim was to evaluate the pathophysiological mechanisms involved in alveolo/capillary barrier damage due to mechanical stress in healthy subjects. We randomly divided 18 pigs (sedated with medetomidine/tiletamine-zolazepam and anesthetised with thiopental sodium) into three groups (n=6): two were mechanically ventilated (tidal volume of 8 or 20 ml/kg), the third breathed spontaneously for 4 hours, then animals were sacrificed (thiopental overdose). We analyzed every 30' hemogasanalysis and the main circulatory and respiratory parameters. Matrix gelatinase expression was evaluated on bronchoalveolar lavage fluid after surgery and before euthanasia. On autoptic samples we performed zymographic analysis of lung, kidney and liver tissues and histological examination of lung. Results evidenced that high Vt evoked profound alterations of lung mechanics and structure, although low Vt strategy was not devoid of side effects, too. Unexpectedly, also animals that were spontaneously breathing showed a worsening of the respiratory functions.  相似文献   

15.
To examine the hypothesis that combined treatment with tracheal gas insufflation (TGI) and partial liquid ventilation (PLV) may improve pulmonary outcome relative to either treatment alone in acute lung injury (ALI), saline lavage lung injury was induced in 24 anesthetized, ventilated juvenile rabbits that were then randomly assigned to receive (n = 6/group) 1) conventional mechanical ventilation (CMV) alone, 2) continuous TGI at 0.5 l/min, 3) PLV with perfluorochemical liquid, and 4) combined TGI and PLV (TGI + PLV), and subsequently ventilated with minimized pressures and tidal volume (Vt) to keep arterial Po(2) (Pa(O(2))) >100 Torr and arterial Pco(2) (Pa(CO(2))) at 45-60 Torr for 4 h. Gas exchange, lung mechanics, myeloperoxidase, IL-8, and histomorphometry [including expansion index (EI)] were assessed. The CMV group showed no improvement in lung mechanics and gas exchange; all treated groups had significant increases in compliance, Pa(O(2)), ventilation efficacy index (VEI), and EI, and decreases in PaCO(2), oxygenation index, physiological dead space-to-Vt ratio (Vd/Vt), myeloperoxidase, and IL-8, relative to the CMV group. TGI resulted in lower peak inspiratory pressure, Vt, Vd/Vt, and greater VEI vs. PLV group; PLV resulted in greater compliance, Pa(O(2)), and EI vs. TGI. TGI + PLV resulted in decreased peak inspiratory pressure, Vt, Vd/Vt, and increased VEI compared with TGI, improved compliance and EI compared with PLV, and a further increase in Pa(O(2)) and oxygenation index and a decrease in PaCO(2) vs. either treatment alone. These results indicate that combined treatment of TGI and PLV results in improved pulmonary outcome than either treatment alone in this animal model of ALI.  相似文献   

16.
The initiation of ventilation in preterm, surfactant-deficient sheep without positive end-expiratory pressure (PEEP) causes airway injury and lung inflammation. We hypothesized that PEEP and surfactant treatment would decrease the lung injury from initiation of ventilation with high tidal volumes. Fetal sheep at 128-day gestational age were randomized to ventilation with: 1) no PEEP, no surfactant; 2) 8-cmH(2)O PEEP, no surfactant; 3) no PEEP + surfactant; 4) 8-cmH(2)O PEEP + surfactant; or 5) control (2-cmH(2)O continuous positive airway pressure) (n = 6-7/group). After maternal anesthesia and hysterotomy, the head and chest were exteriorized, and the fetus was intubated. While maintaining placental circulation, the fetus was ventilated for 15 min with a tidal volume escalating to 15 ml/kg using heated, humidified, 100% nitrogen. The fetus then was returned to the uterus, and tissue was collected after 30 min for evaluation of early markers of lung injury. Lambs receiving both surfactant and PEEP had increased dynamic compliance, increased static lung volumes, and decreased total protein and heat shock proteins 70 and 60 in bronchoalveolar lavage fluid compared with other groups. Ventilation, independent of PEEP or surfactant, increased mRNA expression of acute phase response genes and proinflammatory cytokine mRNA in the lung tissue compared with controls. PEEP decreased mRNA for cytokines (2-fold) compared with groups receiving no PEEP. Surfactant administration further decreased some cytokine mRNAs and changed the distribution of early growth response protein-1 expression. The use of PEEP during initiation of ventilation at birth decreased early mediators of lung injury. Surfactant administration changed the distribution of injury and had a moderate additive protective effect.  相似文献   

17.
Tidal volume reduction during mechanical ventilation reduces mortality in patients with acute lung injury and the acute respiratory distress syndrome. To determine the mechanisms underlying the protective effect of low tidal volume ventilation, we studied the time course and reversibility of ventilator-induced changes in permeability and distal air space edema fluid clearance in a rat model of ventilator-induced lung injury. Anesthetized rats were ventilated with a high tidal volume (30 ml/kg) or with a high tidal volume followed by ventilation with a low tidal volume of 6 ml/kg. Endothelial and epithelial protein permeability were significantly increased after high tidal volume ventilation but returned to baseline levels when tidal volume was reduced. The basal distal air space fluid clearance (AFC) rate decreased by 43% (P < 0.05) after 1 h of high tidal volume but returned to the preventilation rate 2 h after tidal volume was reduced. Not all of the effects of high tidal volume ventilation were reversible. The cAMP-dependent AFC rate after 1 h of 30 ml/kg ventilation was significantly reduced and was not restored when tidal volume was reduced. High tidal volume ventilation also increased lung inducible nitric oxide synthase (NOS2) expression and air space total nitrite at 3 h. Inhibition of NOS2 activity preserved cAMP-dependent AFC. Because air space edema fluid inactivates surfactant and reduces ventilated lung volume, the reduction of cAMP-dependent AFC by reactive nitrogen species may be an important mechanism of clinical ventilator-associated lung injury.  相似文献   

18.
Lung injury due to mechanical ventilation is associated with an impairment of endogenous surfactant. It is unknown whether this impairment is a consequence of or an active contributor to the development and progression of lung injury. To investigate this issue, the present study addressed three questions: Do alterations to surfactant precede physiological lung dysfunction during mechanical ventilation? Which components are responsible for surfactant's biophysical dysfunction? Does exogenous surfactant supplementation offer a physiological benefit in ventilation-induced lung injury? Adult rats were exposed to either a low-stretch [tidal volume (Vt) = 8 ml/kg, positive end-expiratory pressure (PEEP) = 5 cmH2O, respiratory rate (RR) = 54-56 breaths/min (bpm), fractional inspired oxygen (Fi(O2)) = 1.0] or high-stretch (Vt = 30 ml/kg, PEEP = 0 cmH2O, RR = 14-16 bpm, Fi(O2) = 1.0) ventilation strategy and monitored for either 1 or 2 h. Subsequently, animals were lavaged and the composition and function of surfactant was analyzed. Separate groups of animals received exogenous surfactant after 1 h of high-stretch ventilation and were monitored for an additional 2 h. High stretch induced a significant decrease in blood oxygenation after 2 h of ventilation. Alterations in surfactant pool sizes and activity were observed at 1 h of high-stretch ventilation and progressed over time. The functional impairment of surfactant appeared to be caused by alterations to the hydrophobic components of surfactant. Exogenous surfactant treatment after a period of high-stretch ventilation mitigated subsequent physiological lung dysfunction. Together, these results suggest that alterations of surfactant are a consequence of the ventilation strategy that impair the biophysical activity of this material and thereby contribute directly to lung dysfunction over time.  相似文献   

19.
High-pressure ventilation triggers different inflammatory and matrix remodeling responses within the lung. Although some of them may cause injury, the involvement of these mediators in repair is largely unknown. To identify mechanisms of repair after ventilator-induced lung injury (VILI), mice were randomly assigned to baseline conditions (no ventilation), injury [90 min of high-pressure ventilation without positive end-expiratory pressure (PEEP)], repair (injury followed by 4 h of low-pressure ventilation with PEEP), and ventilated controls (low-pressure ventilation with PEEP for 90 and 330 min). Histological injury and lung permeability increased during injury, but were partially reverted in the repair group. This was accompanied by a proinflammatory response, together with increases in TNF-α and IFN-γ, which returned to baseline during repair, and a decrease in IL-10. However, macrophage inflammatory protein-2 (MIP-2) and matrix metalloproteinases (MMP)-2 and -9 increased after injury and persisted in being elevated during repair. Mortality in the repair phase was 50%. Survivors showed increased cell proliferation, lower levels of collagen, and higher levels of MIP-2 and MMP-2. Pan-MMP or specific MMP-2 inhibition (but not MIP-2, TNF-α, or IL-4 inhibition) delayed epithelial repair in an in vitro wound model using murine or human alveolar cells cultured in the presence of bronchoalveolar lavage fluid from mice during the repair phase or from patients with acute respiratory distress syndrome, respectively. Similarly, MMP inhibition with doxycycline impaired lung repair after VILI in vivo. In conclusion, VILI can be reverted by normalizing ventilation pressures. An adequate inflammatory response and extracellular matrix remodeling are essential for recovery. MMP-2 could play a key role in epithelial repair after VILI and acute respiratory distress syndrome.  相似文献   

20.
Single units of slowly adapting pulmonary stretch receptors (PSRs) were investigated in anesthetized cats during spontaneous breathing on continuous positive airway pressure (2-5 cmH2O), before and after lung lavage and then after instillation of surfactant to determine the PSR response to surfactant replacement. PSRs were classified as high threshold (HT) and low threshold (LT), and their instantaneous impulse frequency (f imp) was related to transpulmonary pressure (Ptp) and tidal volume (Vt). Both the total number of impulses and maximal f imp of HT and LT PSRs decreased after lung lavage (55 and 45%, respectively) in the presence of increased Ptp and decreased Vt. While Ptp decreased markedly and Vt remained unchanged after surfactant instillation, all except one PSR responded with increased total number of impulses and maximal f imp (42 and 26%, respectively). Some HT PSRs ceased to discharge after lung lavage but recovered after surfactant instillation. The end-expiratory activity of LT PSRs increased or was regained after surfactant instillation. After instillation of surfactant, respiratory rate increased further with a shorter inspiratory time, resulting in a lower inspiratory-to-expiratory time ratio. Arterial pH decreased (7.31 +/- 0.04 vs. 7.22 +/- 0.06) and Pco2 increased (5.5 +/- 0.7 vs. 7.2 +/- 1.3 kPa) after lung lavage, but they were the same after as before instillation of surfactant (pH = 7.21 +/- 0.08 and Pco2 = 7.6 +/- 1.4 kPa) during spontaneous breathing. In conclusion, surfactant instillation increased lung compliance, which, in turn, increased the activity of both HT and LT PSRs. A further increase in respiratory rate due to a shorter inspiratory time after surfactant instillation suggests that the partially restored PSR activity after surfactant instillation affected the breathing pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号