首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 789 毫秒
1.
Extraordinary viral sequence diversity and rapid viral genetic evolution are hallmarks of hepatitis C virus (HCV) infection. Viral sequence evolution has previously been shown to mediate escape from cytotoxic T-lymphocyte (CTL) and neutralizing antibody responses in acute HCV infection. HCV evolution continues during chronic infection, but the pressures driving these changes are poorly defined. We analyzed plasma virus sequence evolution in 5.2-kb hemigenomes from multiple longitudinal time points isolated from individuals in the Irish anti-D cohort, who were infected with HCV from a common source in 1977 to 1978. We found phylogenetically distinct quasispecies populations at different plasma time points isolated late in chronic infection, suggesting ongoing viral evolution and quasispecies replacement over time. We saw evidence of early pressure driving net evolution away from a computationally reconstructed common ancestor, known as Bole1b, in predicted CTL epitopes and E1E2, with balanced evolution toward and away from the Bole1b amino acid sequence in the remainder of the genome. Late in chronic infection, the rate of evolution toward the Bole1b sequence increased, resulting in net neutral evolution relative to Bole1b across the entire 5.2-kb hemigenome. Surprisingly, even late in chronic infection, net amino acid evolution away from the infecting inoculum sequence still could be observed. These data suggest that, late in chronic infection, ongoing HCV evolution is not random genetic drift but rather the product of strong pressure toward a common ancestor and concurrent net ongoing evolution away from the inoculum virus sequence, likely balancing replicative fitness and ongoing immune escape.  相似文献   

2.
HIV/HCV coinfected individuals under highly active antiretroviral therapy (HAART) represent an interesting model for the investigation of the role played by the immune system in driving the evolution of the HCV quasispecies. We prospectively studied the intra-host evolution of the HCV heterogeneity in 8 coinfected subjects, selected from a cohort of 32 patients initiating HAART: 5 immunological responders (group A) and 3 immunological non-responders (group B), and in two HCV singly infected controls not assuming drugs (group C). For all these subjects at least two serial samples obtained at the first observation (before HAART) and more than 1 year later, underwent clonal sequence analysis of partial E1/E2 sequences, encompassing the whole HVR1. Evolutionary rates, dated phylogenies and population dynamics were co-estimated by using a Bayesian Markov Chain Monte Carlo approach, and site specific selection pressures were estimated by maximum likelihood-based methods. The intra-host evolutionary rates of HCV quasispecies was 10 times higher in subjects treated with HAART than in controls without immunodeficiency (1.9 and 2.3 × 10(-3) sub/site/month in group A and B and 0.29 × 10(-3) sub/site/month in group C individuals). The within-host Bayesian Skyline plot analysis showed an exponential growth of the quasispecies populations in immunological responders, coinciding with a peak in CD4 cell counts. On the contrary, quasispecies population remained constant in group B and in group C controls. A significant positive selection pressure was detected in a half of the patients under HAART and in none of the group C controls. Several sites under significant positive selection were described, mainly included in the HVR1. Our data indicate that different forces, in addition to the selection pressure, drive an exceptionally fast evolution of HCV during HAART immune restoration. We hypothesize that an important role is played by the enlargement of the viral replicative space.  相似文献   

3.
The hepatitis C virus (HCV) is a frequent cause of chronic liver disease. A mechanism proposed as being responsible for virus persistence is evasion of the host immune response through a high mutation rate in crucial regions of the viral genome. We have sequenced the hypervariable region 1 (HVR1) of the virus isolated from three serum samples, collected during 18 months of follow-up, from an asymptomatic HCV-infected patient. A synthetic peptide of 27 amino acids, corresponding to the HVR1 sequence found to be predominant in both the second and third samples, was used as the antigen for detection of antibodies by enzyme-linked immunosorbent assay (ELISA). We observed reactivity against this HVR1 sequence in the first serum sample before the appearance of the viral isolate in the bloodstream; the reactivity increased in the second and third samples while the cognate viral sequence became predominant. Moreover, our results show that antibodies from all three samples recognize a region mapping at the carboxyl-terminal part of the HVR1 and are cross-reactive with the HVR1 sequence previously found in the same patient. The presence of anti-HVR1 antibodies was investigated in a further 142 HCV patients: 121 viremic and 21 nonviremic. Two synthetic peptides were used, the first corresponding to the sequence derived from the patient described above and the second one synthesized according to the sequence of the HCV BK strain. A high frequency of positive reactions against both HVR1 variants was detected in the samples from the viremic individuals. Finally, antibodies cross-reactive with both variants were shown to be present by competitive ELISA in 6 of 10 viremic patients. The potential negative implications of this observation for the host are discussed.  相似文献   

4.
Chronic hepatitis C virus (HCV) infection is a major cause of liver disease. The HCV polyprotein contains a hypervariable region (HVR1) located at the N terminus of the second envelope glycoprotein E2. The strong variability of this 27-amino-acid region is due to its apparent tolerance of amino acid substitutions together with strong selection pressures exerted by anti-HCV immune responses. No specific function has so far been attributed to HVR1. However, its presence at the surface of the viral particle suggests that it might be involved in viral entry. This would imply that HVR1 is not randomly variable. We sequenced 460 HVR1 clones isolated at various times from six HCV-infected patients receiving alpha interferon therapy (which exerts strong pressure towards quasispecies genetic evolution) and analyzed their amino acid sequences together with those of 1,382 nonredundant HVR1 sequences collected from the EMBL database. We found that (i) despite strong amino acid sequence variability related to strong pressures towards change, the chemicophysical properties and conformation of HVR1 were highly conserved, and (ii) HVR1 is a globally basic stretch, with the basic residues located at specific sequence positions. This conservation of positively charged residues indicates that HVR1 is involved in interactions with negatively charged molecules such as lipids, proteins, or glycosaminoglycans (GAGs). As with many other viruses, possible interaction with GAGs probably plays a role in host cell recognition and attachment.  相似文献   

5.
Hepatic fibrosis is the primary mediator of disease due to chronic infection with hepatitis C virus (HCV). HCV exists as a quasispecies in each infected individual, and longitudinal viral sequence changes may reveal viral dynamics and the selection pressures applied by the host immune system. Thus, we hypothesized that patterns of sequence change might reveal the immunopathogenesis of fibrosis progression. We tested this hypothesis by studying individuals enrolled in a prospective study of chronic HCV-related hepatic fibrosis with little or no fibrosis at first biopsy (stage 0 or 1) and a second planned liver biopsy sample obtained 4 years later. Serum was obtained from five individuals with fast progression (FP; defined as a >2-stage change between visits) and 10 carefully matched individuals with slow progression (SP; defined as a <2-stage change between visits). We sequenced multiple cloned hemigenomic cDNAs from each person spanning six genes (core through NS3). Phylogenetic analysis revealed temporal shifts in phylogenetic clustering over time, suggesting frequent quasispecies replacement rather than simple diversification. In addition, mixed infections were detected in three subjects, with coexistence in two subjects (one FP, one SP) of subtypes 1a and 1b throughout the 4-year biopsy interval. Subjects with FP had a higher rate of evolution than subjects with SP, with a preponderance of synonymous changes, suggesting purifying selection, except in hypervariable region 1, where positive selection pressure is frequently detected. Thus, in a small but carefully matched cohort we found evidence for rapid neutral evolution of HCV in persons with rapid progression of hepatic fibrosis, suggesting higher turnover of infected cells.  相似文献   

6.
Hepatitis C virus (HCV) persists in the majority of those infected despite host immune responses. Evidence has accrued that selectively fixed mutations in the envelope genes (E1 and E2) are associated with viral persistence, particularly those that occur within the first hypervariable region of E2 (HVR1). However, the individual amino acid residues under selection have not been identified, nor have their selection pressures been measured, despite the importance of this information for understanding disease pathogenesis and for vaccine design. We performed a high-resolution analysis of published gene sequence data from individuals undergoing acute HCV infection, employing two phylogenetic methods to determine site-specific selection pressures. Strikingly, we found a statistically significant association between the number of sites selected and disease outcome, with the fewest selected sites in fulminant HCV cases and the greatest number of selected sites in rapid progressors, reflecting the duration and intensity of the arms race between host and virus. Moreover, sites outside the HVR1 appear to play a major role in viral evolution and pathogenesis, although there was no association between viral persistence and specific mutations in E1 and E2. Our analysis therefore allows fine dissection of immune selection pressures, which may be more diverse than previously thought. Such analyses could play a similarly informative role in studies of other persistent virus infections, such as human immunodeficiency virus.  相似文献   

7.
8.
Sustained hepatitis C virus (HCV) RNA clearance is achieved in 8 to 12% of patients with chronic HCV infection treated with alpha interferon (IFN-alpha) at the approved dose of 3 MU three times a week for 6 months and in about 25% of those receiving this treatment for 12 months. We used single-strand conformation polymorphism analysis combined with cloning and sequencing strategies to characterize the genetic evolution of HCV second envelope gene hypervariable region 1 (HVR1) quasispecies during and after IFN therapy in patients who failed to clear HCV RNA. Sustained HCV RNA clearance was achieved in 6% of patients. Profound changes in HVR1 quasispecies major variants were estimated to occur in 70% of the patients during and after therapy. These changes were evolutionary and were characterized by shifts in the virus population, related to selection and subsequent diversification of minor pretreatment variants. The quasispecies changes appeared to be induced by changes in the host environment likely resulting from the IFN-induced enhancement and post-IFN attenuation of neutralizing and possibly cytotoxic responses against HVR1. The remaining patients had no apparent changes in HVR1 quasispecies major variants, suggesting selection of major pretreatment variants, but some changes were observed in other genomic regions. We conclude that IFN-alpha administration and withdrawal profoundly alters the nature of circulating HCV quasispecies, owing to profound changes in virus-host interactions, in patients in whom sustained HCV RNA clearance fails to occur. These changes are associated with profound alterations of the natural outcome of HCV-related liver disease, raising the hypothesis of a causal relationship.  相似文献   

9.
Sexual partners of patients infected with the hepatitis C virus (HCV) often have detectable HCV-specific T-cell responses in the absence of seroconversion, suggesting unapparent, spontaneously resolving infection. To determine whether differences in the evolutionary potential of bottlenecked inoculum may explain the low rate of HCV persistence after sexual exposure, we have investigated changes in the entire HCV nonstructural 3 (NS3) gene over time in a chronic carrier and compared his viral quasispecies with that of the acute-phase isolate of his sexual partner, who developed acute resolving hepatitis C. The overall rate of accumulation of mutations, estimated by regression analysis of six consecutive consensus NS3 sequences over 8 years, was 1.5 x 10(-3) mutations per site per year, with small intersample fluctuations related to changes in environmental conditions. Comparison of quasispecies parameters in one isolate of the chronic carrier with those of the acute-phase isolate of the infected partner revealed a higher heterogeneity and lower proportion of nonsynonymous mutations in the former. All NS3 sequences from the acute-phase isolate clustered with a single sequence from the chronic isolate, despite complete HLA mismatch between the patients, suggesting bottlenecking during transmission. The low risk of viral persistence after sexual exposure to HCV may be related to the selection of a limited number of viral particles carrying a particular combination of mutations which may further limit the potential of a relatively homogeneous quasispecies to rapidly diversify and overcome the immune response of the exposed host.  相似文献   

10.
Quasispecies is a remarkable characteristic of hepatitis C virus (HCV) and has profound roles in HCV biology and clinical practice. The understanding of HCV quasispecies behavior, in particular in acute HCV infection, is valuable for vaccine development and therapeutic interference. However, acute HCV infection is seldom encountered in clinic practice due to its silent onset. In the present study, we reported a unique case of de novo HCV infection associated with the transplantation of bone marrow from a HCV-positive donor. HCV quasispecies diversity was determined in both the donor and the recipient over a 4-year follow-up, accompanied with simultaneous measurement of HCV neutralizing antibody. Detailed genetic and phylogenetic analyses revealed a divergent quasispecies evolution, which was not related to dynamic changes of HCV neutralizing antibody. Instead, our data suggested an essential role of the fitness adaptation of founder viral population in driving such an evolutionary pattern.  相似文献   

11.
Sequence evolution of the hypervariable region 1 (HVR1) in the N terminus of E2/NS1 of hepatitis C virus (HCV) was studied retrospectively in six chimpanzees inoculated with the same genotype 1b strain, containing a unique predominant HVR1 sequence. Immediately after inoculation, all animals contained the same HVR predominant sequence. Two animals developed an acute self-limiting infection. Anti-HVR1 immunoglobulin G (IgG) was produced 40 to 60 days after inoculation and rapidly disappeared after normalization of transaminases. Another chimpanzee, previously infected with human immunodeficiency virus type 1, showed a delayed response to HVR1 epitopes after superinfection with HCV. No sequence variation of HVR1 was observed in these two animals during the transient viremia in the acute phase. Three other chimpanzees developed a chronic HCV infection. During follow up, sequence evolution occurred in two animals and their anti-HVR1 response remained at varying but detectable levels. The first mutations occurred immediately after the production of anti-HVR1 during the acute phase. However, IgM anti-HVR1 was not detectable. Remarkably, HVR1 sequences remained conserved for more than 6 years in another chronically infected animal. This correlated with the complete absence of detectable anti-HVR1 during this period. Seven years after inoculation, anti-HVR1 IgG was produced and coincided with an HVR1 alteration. These results strongly suggest the involvement of neutralizing anti-HVR antibodies in sequence evolution of HVR1 through immune selection.  相似文献   

12.
The aim of this study was to investigate the quasispecies heterogeneity of hepatitis C virus (HCV) in the plasma, cryoprecipitate, and peripheral lymphocytes of chronically infected HCV patients with mixed cryoglobulinemia (MC). We studied 360 clones from 10 HCV-positive patients with MC and 8 age-, gender- and HCV genotype-matched subjects with chronic HCV infection but without MC. A partial nucleotide sequence encompassing the E1/E2 region, including hypervariable region 1 (HVR1), was amplified and cloned from plasma, cryoprecipitates, and peripheral blood mononuclear cells (PBMC), and the genetic diversity and complexity and synonymous and nonsynonymous substitution rates were determined. Heterogeneous selection pressure at codon sites was evaluated. Compartmentalization was estimated by phylogenetic and phenetic (Mantel's test) approaches. The patients with MC had 3.3 times lower nonsynonymous substitution rates (1.7 versus 5.7 substitutions/100 sites). Among the subjects with HCV genotype 1, the MC patients had significantly less complexity than the controls, whereas the diversity and complexity were similar in the genotype 2 patients and controls. Site-specific selection analysis confirmed the low frequency of MC patients showing positive selection. There was a significant correlation between positive selection and the infecting HCV genotype. The quasispecies were less heterogeneous in PBMC than in plasma. Significant compartmentalization of HCV quasispecies was observed in the PBMC of four of nine subjects (three with MC) and seven of nine cryoprecipitates. In one subject with MC, we detected a 5-amino-acid insertion at codons 385 to 389 of HVR1. Our results suggest reduced quasispecies heterogeneity in MC patients that is related to a low selection pressure which is probably due to an impaired immune response, the HCV genotype, and/or the duration of the infection. The frequent HCV quasispecies compartmentalization in patients' PBMC suggests a possible pathogenetic significance.  相似文献   

13.
To evaluate the possibility that distinct viral quasispecies play a role in the pathogenesis of progressive hepatitis C virus (HCV) infection, we performed a detailed evaluation of HCV quasispecies before and after liver transplantation in five patients infected with HCV genotype 1, three of whom developed severe recurrent hepatitis C and two of whom developed asymptomatic posttransplant infections with high-titered viremia. HCV quasispecies were characterized by using a combination of nucleotide sequencing plus heteroduplex tracking assay of the second envelope gene hypervariable region (HVR). An average of 30 HVR clones were analyzed per specimen; an average of five specimens were analyzed per patient over a 6- to 24-month study period. The complexity of HCV quasispecies in pretransplant serum varied, ranging from one to nine genetically distinct variants for the five patients. However, in all five cases, relatively homogenous quasispecies variants emerged after liver transplantation. In the three patients who developed recurrent hepatitis, quasispecies major variants present in pretransplant serum were efficiently propagated immediately after liver transplantation and were propagated throughout the course of acute and chronic hepatitis. In contrast, in the two asymptomatic cases, we observed rapid depletion of pretransplant quasispecies major variants from posttransplant serum, followed by emergence of new quasispecies variants by posttransplant day 30. Genetic analysis suggested that in these cases, the new quasispecies variants were derived from minor variants present at relatively low clonal frequency (less than 5% of HVR clones) within the pretransplant quasispecies populations. These data demonstrate that quasispecies tracking patterns are associated with the rapidity and severity of HCV-associated liver disease after liver transplantation. Further characterization of HCV quasispecies in animal model systems is warranted.  相似文献   

14.
A series of 29 patients undergoing treatment for chronic hepatitis C virus (HCV) genotype 1 infection with pegylated alpha-2a interferon plus ribavirin were studied for patterns of response to antiviral therapy and viral quasispecies evolution. All patients were treatment naive and had chronic inflammation and fibrosis on biopsy. As part of an analysis of pretreatment variables that might affect the outcome of treatment, genetic heterogeneity within the viral E1-E2 glycoprotein region (nucleotides 851 to 2280) was assessed by sequencing 10 to 15 quasispecies clones per patient from serum-derived PCR products. Genetic parameters were examined with respect to response to therapy based on serum viral RNA loads at 12 weeks (early viral response) and at 24 weeks posttreatment (sustained viral response). Nucleotide and amino acid quasispecies complexities of the hypervariable region 1 (HVR-1) were less in the responder group in comparison to the nonresponder group at 12 weeks, and genetic diversity was also less both within and outside of the HVR-1, with the difference being most pronounced for the non-HVR-1 region of E2. However, these genetic parameters did not distinguish responders from nonresponders for sustained viral responses. Follow-up studies of genetic heterogeneity based on the HVR-1 in selected responders and nonresponders while on therapy revealed greater evolutionary drift in the responder subgroup. The pretreatment population sequences for the NS5A interferon sensitivity determinant region were also analyzed for all patients, but no correlations were found between treatment response and any distinct genetic markers. These findings support previous studies indicating a high level of genetic heterogeneity among chronically infected HCV patients. One interpretation of these data is that early viral responses are governed to some extent by viral factors, whereas sustained responses may be more influenced by host factors, in addition to effects of viral complexity and diversity.  相似文献   

15.
The quasispecies nature of hepatitis C virus (HCV) has been well documented over its whole genome and the most variable domain is located at the 5' end of the second envelope region, the so-called hypervariable region 1 (HVR1). HVR1 has therefore been extensively used as the target for characterizing HCV quasispecies profiles. In this study, we reported our finding that partially mismatched primers preferentially amplify different HVR1 sequences in a heterogeneous virus population. This finding suggests a possible mechanism of bias during the amplification of HVR1 sequences and may be responsible for some conflicting data regarding evolutionary or clinical implications of HCV quasispecies.  相似文献   

16.
Viruses like the human immunodeficiency virus (HIV), the hepatitis B virus (HBV), the hepatitis C virus (HCV) and many others undergo numerous rounds of inaccurate reproduction within an infected host. The resulting viral quasispecies is heterogeneous and sensitive to any selection pressure. Here we extend earlier work by showing that for a wide class of models describing the interaction between the virus population and the immune system, virus evolution has a well-defined direction toward increased pathogenicity. In particular, we study virus-induced impairment of the immune response and certain cross-reactive stimulation of specific immune responses. For eight different mathematical models, we show that virus evolution reduces the equilibrium abundance of uninfected cells and increases the rate at which uninfected cells are infected. Thus, in general, virus evolution makes things worse. An idea for combating HIV infection, however, is constructing a virus mutant that could outcompete the existing infection without being pathogenic itself.  相似文献   

17.
Hepatitis C virus infections proceed to chronicity in the majority of cases. In patients, hepatitis C viruses exist as a dynamic and complex quasispecies. The dominant species at any one time arises in response to host immune pressure and other, incompletely understood factors. It is critical to understand all the mechanisms by which dominance is achieved, but this is difficult to study in vivo. Therefore, it would be useful to develop a cell culture system in which naturally occurring quasispecies could be studied. Hepatitis C virus glycoprotein genes E1 and E2 were PCR amplified as a cassette from the plasma of a chronically infected patient and shotgun cloned into a modified 1a/JFH1 infectious cDNA clone. Following transformation of bacteria, plasmids were batch harvested, transcribed, and transfected into Huh7.5 cells to produce a quasispecies of hypervariable region 1 (HVR1) that mimicked that circulating in vivo. Serial passage of the quasispecies in vitro resulted in replacement of the initially dominant species with a new HVR1 species coexisting with selected growth-enhancing mutations located outside HVR1. Antibody raised against one HVR1 sequence neutralized virus with the homologous HVR1 and cross-neutralized virus with a different sequence. Reciprocal swapping of the HVR1 regions between the two dominating species demonstrated that the HVR1 sequence affects the efficiency of replication and of neutralization by anti-HVR1 but that both processes are strongly influenced by regions outside HVR1.  相似文献   

18.
19.
20.
The rate of development of disease varies considerably among human immunodeficiency virus type 1 (HIV-1)-infected children. The reasons for these observed differences are not clearly understood but most probably depend on the dynamic interplay between the HIV-1 quasispecies virus population and the immune constraints imposed by the host. To study the relationship between disease progression and genetic diversity, we analyzed the evolution of viral sequences within six perinatally infected children by examining proviral sequences spanning the C2 through V5 regions of the viral envelope gene by PCR of blood samples obtained at sequential visits. PCR product DNAs from four sample time points per child were cloned, and 10 to 13 clones from each sample were sequenced. Greater genetic distances relative to the time of infection were found for children with low virion-associated RNA burdens and slow progression to disease relative to those found for children with high virion-associated RNA burdens and rapid progression to disease. The greater branch lengths observed in the phylogenetic reconstructions correlated with a higher accumulation rate of nonsynonymous base substitutions per potential nonsynonymous site, consistent with positive selection for change rather than a difference in replication kinetics. Viral sequences from children with slow progression to disease also showed a tendency to form clusters that associated with different sampling times. These progressive shifts in the viral population were not found in viral sequences from children with rapid progression to disease. Therefore, despite the HIV-1 quasispecies being a diverse, rapidly evolving, and competing population of genetic variants, different rates of genetic evolution could be found under different selective constraints. These data suggest that the evolutionary dynamics exhibited by the HIV-1 quasispecies virus populations are compatible with a Darwinian system evolving under the constraints of natural selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号