首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A major use of small-sided games (SSGs) in soccer training is the concomitant development of game-specific aerobic fitness. We hypothesize that the SSG formats of 2 vs. 2, 3 vs. 3, and 4 vs. 4 players reveal game-like intensities and therefore are most adequate to increase game-specific aerobic fitness. Heart rate (HR), percentage of maximum heart rate (HRmax), blood lactate concentration (La), and time-motion characteristics of 17 elite male youth soccer players (aged 14.9 ± 0.7 years, V[Combining Dot Above]O2max 61.4 ± 4.5 ml·kg·min, HRmax 199.6 ± 7.3 b·min) were collected by global positioning systems while performing the SSG formats. Repeated-measures analysis of variance and effect sizes were calculated to demonstrate the differences between SSG formats. Highest physiological responses were obtained in 2 vs. 2 (HR: 186 ± 7 b·min, HRmax: 93.3 ± 4.2%, La: 5.5 ± 2.4 mmol·L) followed by 3 vs. 3 (HR: 184 ± 8 b·min, HRmax: 91.5 ± 3.3%, La: 4.3 ± 1.7 mmol·L) and 4 vs. 4 (HR: 179 ± 7 b·min, HRmax 89.7 ± 3.4%, La: 4.4 ± 1.9 mmol·L). Pronounced differences were found for most physiological parameters and for time spent in the speed zones "walking" (<5.3 km·h), "moderate-speed running" (10.3-13.9 km·h), and "maximum sprinting" (≥26.8 km·h). The findings suggest that all the formats reveal game-like intensities and are suitable for aerobic fitness improvements. However, we found pronounced demands on the anaerobic energy supply in 2 vs. 2, whereas 3 vs. 3 and 4 vs. 4 remain predominantly on an aerobic level and differ mainly in the HR response. We suggest using 3 vs. 3 for soccer-specific aerobic fitness training.  相似文献   

2.
The purpose of this study was to identify the variation of heart rate (HR), rating of perceived exertion (RPE), and technical actions between 2 soccer small-sided games (SSGs; 3 × 3 and 4 × 4) in 3 game type constraints (when playing only offense [OFF], playing only defense [DEF], and both situations [GAME]). Sixteen high-level young male players were analyzed (age 15.75 ± 0.45 years; height 172.4 ± 4.83 cm; body mass 64.5 ± 6.44 kg; HRmax199.1 ± 9.08 b·min(-1); and 8.06 ± 1.98 years of soccer practice). All tasks were performed in 4 periods of 4 minutes interspersed with 2 minutes of active recovery. The HR was measured continuously and then analyzed by the time spent into 4 training zones according to individual %HRmax (zone 1 <75%; zone 2 75-84.9%; zone 3 85-89.9%; and zone 4 ≥90%). Results identified that players were most frequently in zones 2 and 3. The 3 × 3 SSGs elicited higher HR and RPE and the most intense situation was GAME. Despite the known higher frequencies from technical actions in SSGs with fewer players, player effectiveness in 3 × 3 and 4 × 4 was identical. The use of GAME, OFF, and DEF game type constraints should be carefully planned. Using the 3 × 3 format seems more adequate when aiming for aerobic performance optimal effects; however, DEF situations should only be used to promote aerobic recovery effects. The inclusion of an additional player in SSGs had different interactions in game type constraints, and only GAME presented adequate intensity.  相似文献   

3.
Limited data exist concerning the dietary practices of young professional soccer players that compete within the United Kingdom. Therefore, the purpose of this study was to investigate the nutritional and activity habits of professional male soccer players (n = 10; age: 17 ± 1 years, height: 1.72 ± 0.01 m, mass: 67.5 ± 1.8 kg, estimated maximal aerobic capacity: 57.8 ± 0.9 ml·kg·min) who played for the youth team of a UK-based Championship club. All players recorded their 7-day dietary intake and activity habits during a competitive week that included a match day, 4- training days, and 2 rest days in the first half of the 2009/2010 playing season. The intake of carbohydrates (5.9 ± 0.4 g·kg·d), proteins (1.7 ± 0.1 g·kg·d), and fats (1.5 ± 0.1 g·kg·d) represented 56 ± 1, 16 ± 1, and 31 ± 1% of the mean daily energy intake respectively. The intake of fiber was found to be significantly lower than Recommended Nutrient Intake (RNI) values (67% of RNI, p < 0.001), whereas all other analyzed micronutrients met or exceeded recommended values. A mean daily energy deficit of 788 ± 174 kcal existed because daily energy expenditures exceeded that of intake (3,618 ± 61 vs. 2831 ± 164 kcal, p = 0.001). The mean daily fluid intake was 3.2 ± 0.3 L. Consequently, the nutritional practices of the sampled group of professional youth soccer players were inadequate to sustain optimized performance throughout training and match play. Youth soccer players should therefore seek to ensure that their diets contain adequate energy through increased total caloric intake, while also optimizing the proportion of energy derived from carbohydrates and ensuring that enough fiber-rich foods are consumed.  相似文献   

4.
This study evaluated changes in markers of acid-base balance that occurred during simulated soccer match play. Sixteen academy soccer players participated in a soccer match simulation that consisted of 90 minutes of soccer-specific exercise with skills throughout. Blood samples were obtained before exercise (preexercise), every 15 minutes during the simulation (15, 30, 45, 60, 75, and 90 minutes), and 10 minutes into the half-time break (half time). Blood lactate concentrations were elevated throughout exercise (preexercise: 1.5 ± 0.12 mmol·L; 90 minutes: 6.1 ± 0.7 mmol·L, time effect: p < 0.01, partial-eta = 0.740). Relative to preexercise values, actual blood bicarbonate (preexercise: 28.02 ± 0.92 mmol·L; 90 minutes: 21.73 ± 0.65 mmol·L, time effect = p < 0.01, partial-eta = 0.680), standard blood bicarbonate (preexercise: 25.97 ± 0.43 mmol·L; 90 minutes: 22.87 ± 0.31 mmol·L, time effect = p < 0.01, partial-eta = 0.667), base excess (preexercise: 2.40 ± 0.54 mmol·L, 90 minutes: -1.57 ± 0.39 mmol·L, time effect = p < 0.01, partial-eta = 0.664), and pH (preexercise: 7.44 ± 0.01 units; 90 minutes: 7.39 ± 0.01 units, time effect = p < 0.01, partial-eta = 0.542) were depressed throughout the exercise. Interestingly, blood bicarbonate, base excess, and pH recovered at half time (p > 0.05). This is the first study to provide data concerning the acid-base balance of familiarized soccer players during exercise that simulates soccer match play. These findings suggest that (a) blood pH is reduced during soccer-specific exercise and (b) although buffering capacity is reduced throughout exercise, it returns to normal during half time. Further research is warranted to develop interventions that can maintain acid-base balance throughout the full duration of a soccer match.  相似文献   

5.
The purposes of this study were to examine the activity profile of elite adolescent players during regular team handball games and to compare the physical and motor performance of players between the first and second halves of a match. Activity patterns (video analysis) and heart-rate (HR) responses (telemetry) were monitored in top national-division adolescent players (18 men, aged 15.1 ± 0.6 years) throughout 6 regulation games (25-minute halves with a 10-minute interval). The total distance covered averaged 1,777 ± 264 m per game (7.4% less in the second than in the first half, p > 0.05). Players ran 170 ± 24 m at high intensity and 86 ± 12 m at maximal speed, with 32 ± 6 bouts of running (duration 2.3 ± 0.3 seconds) at speeds > 18 km·h(-1); they stood still for 16% of the playing time. The mean HR during play was 172 ± 2 b·min(-1) (82 ± 3% of maximal HR). Blood lactate concentrations at the end of the first and second halves were 9.7 ± 1.1 and 8.3 ± 0.9 mmol·L(-1), respectively (difference p < 0.05). We conclude that adolescent handball players cover less distance and engage in fewer technical actions in the second half of a match. This indicates that team handball is physiologically very demanding. The practical implication is that coaches should seek to sustain performance in the second period of a game by modifying playing tactics and maximizing both aerobic and anaerobic fitness during training sessions.  相似文献   

6.
Firefighters are required to perform a variety of strenuous occupational tasks that require high levels of both aerobic and anaerobic fitness. Thus, it is critical that firefighters train at an appropriate intensity to develop adequate levels of aerobic and anaerobic fitness. Circuit training is a unique training method that stresses both energy systems and therefore may be a viable training method to enhance firefighter preparedness. Thus, the purpose of this study was to compare the aerobic and anaerobic intensities of a circuit-based workout to physiological data previously reported on firefighters performing fire suppression and rescue tasks. Twenty career firefighters performed a workout that included 2 rotations of 12 exercises that stressed all major muscle groups. Heart rate was recorded at the completion of each exercise. Blood lactate was measured before and approximately 5 minutes after the workout. The workout heart rate and post-workout blood lactate responses were statistically compared to data reported on firefighters performing fire suppression and rescue tasks. The mean circuit-training heart rate was similar to previously reported heart rate responses from firefighters performing simulated smoke-diving tasks (79 ± 5 vs. 79 ± 6% maximum heart rate [HRmax], p = 0.741), but lower than previously reported heart rate responses from firefighters performing fire suppression tasks (79 ± 5 vs. 88 ± 6% HRmax, p < 0.001). The workout produced a similar peak blood lactate compared to that when performing firefighting tasks (12 ± 3 vs. 13 ± 3 mmol·L(-1), p = 0.084). In general, the circuit-based workout produced a lower cardiovascular stress but a similar anaerobic stress as compared to performing firefighting tasks. Therefore, firefighters should supplement low-intensity circuit-training programs with high-intensity cardiovascular and resistance training (e.g., ≥85% 1-repetition maximum) exercises to adequately prepare for the variable physical demands of firefighting.  相似文献   

7.
Anterior cruciate ligament (ACL) neuromuscular training programs have demonstrated beneficial effects in reducing ACL injuries, yet further evaluation of their effects on biomechanical measures across a sports team season is required to elucidate the specific factors that are modifiable. The purpose of this study was to evaluate the effects of a 10-week off-season neuromuscular training program on lower extremity kinematics. Twelve Division I female soccer players (age: 19.2 ± 0.8 years, height: 1.67 ± 0.1 m, weight: 60.2 ± 6.5 kg) performed unanticipated dynamic trials of a running stop-jump task pretraining and posttraining. Data collection was performed using an 8-camera Vicon system (Los Angeles, CA, USA) and 2 Bertec (Columbus, OH, USA) force plates. The 10-week training program consisted of resistance training 2 times per week and field training, consisting of plyometric, agility, and speed drills, 2 times per week. Repeated measures analyses of variance (ANOVAs) were used to assess the differences between pretraining and posttraining kinetics and kinematics of the hip, knee, and ankle at initial contact (IC), peak knee flexion (PKF), and peak stance. Repeated measures ANOVAs were also used to assess isometric strength differences pretraining and posttraining. The alpha level was set at 0.05 a priori. The training program demonstrated significant increases in left hip extension, left and right hip flexion, and right hip adduction isometric strength. At IC, knee abduction angle moved from an abducted to an adducted position (-1.48 ± 3.65° to 1.46 ± 3.86°, p = 0.007), and hip abduction angle increased (-6.05 ± 4.63° to -10.34 ± 6.83°, p = 0.007). Hip abduction angle at PKF increased (-2.23 ± 3.40° to 6.01 ± 3.82°, p = 0.002). The maximum knee extension moment achieved at peak stance increased from pretraining to posttraining (2.02 ± 0.32 to 2.38 ± 0.75 N·m·kg?1, p = 0.027). The neuromuscular training program demonstrated a potential positive effect in altering mechanics that influence the risk of incurring an ACL injury.  相似文献   

8.
The purpose of this study was to compare the blood lactate (La-), heart rate (HR) and percentage of maximum HR (%HRmax) responses among the small-sided games (SSGs) in elite young soccer players. Sixteen players (average age 15.7 6 0.4 years; height 176.8 6 4.6 cm; body mass 65.5 6 5.6 kg; VO2max 53.1 6 5.9 ml · kg(-1) · min(-1); HRmax 195.9 6 7.4 b · min(-1)) volunteered to perform the YoYo intermittent recovery test and 6 bouts of soccer drills including 1-a-side, 2-a-side, 3-a-side, and 4-a-side games without a goalkeeper in random order at 2-day intervals. The differences in La-, HR and%HRmax either among the SSGs or among the bouts were identified using 4 x 6 (games x exercise bouts) 2-way analysis of variance with repeated measures. Significant differences were found on La-, HR, and %HRmax among the bouts (p ≤ 0.05). The 3-a-side and 4-a-side games were significantly higher than 1-a-side and 2-a-side games on HR and %HRmax (p ≤ 0.05), whereas the 1-a-side game significantly resulted in higher La- responses compared to other SSGs. This study demonstrated that physiological responses during the 1-a-side and 2-a-side games were different compared to 3-a-side and 4-a-side games. Therefore, it can be concluded that a decreased number of players results in increased intensity during SSGs including 6 bouts. These results suggest that coaches should pay attention on choosing the SSG type and the number of bouts to improve desired physical conditioning of elite young soccer players in soccer training.  相似文献   

9.
The purpose of the present study was to examine the effects of competitive level and team tactic on game demands in men's basketball. Sixteen international-level male basketball players (INPs) and 22 national-level male basketball players (NLPs) were studied during 6 games. Time-motion analysis was performed to track game activities. Game physiological demands were assessed by monitoring heart rate (HR) and blood-lactate concentration. Results showed that INPs sprinted significantly more and performed more high-intensity shuffling than did NLPs (p < 0.05). Game-activity changes and frequency of high-intensity bouts were similar in man-to-man and zone-marking games (1,053 vs. 1,056 and 253 vs. 224, respectively, p > 0.05). Time spent in the maximal (>95% of HRmax) and high-intensity zone (85-95% of HRmax) was greater in the INPs than in the NLPs (17.8 vs. 15.2%, p < 0.01 and 59.1 vs. 54.4%, p < 0.05, respectively). No significant differences in mean HR were evident between man-to-man and zone-marking games (93.3 ± 2.1 vs. 92.8 ± 1.8% of HRmax, p > 0.05). Blood-lactate concentration was higher in the INPs than in the NLPs (6.60 ± 1.22 vs. 5.66 ± 1.19 mmol·L?1 at halftime and 5.65 ± 1.21 vs. 4.43 ± 1.43 mmol·L?1 at full time, p < 0.05). No mean or peak blood-lactate concentration differences resulted between man-to-man and zone-marking games (5.15 ± 1.32 vs. 5.83 ± 1.10 and 5.90 ± 1.25 vs. 6.30 ± 1.27 mmol·L?1, respectively, p > 0.05). These results suggest an effect of competitive level over game demands in men's basketball. No marking strategy effect was evident. Basketball coaches and fitness trainers should develop the ability to repeatedly perform high-intensity activity during the game. Repeated sprinting and high-intensity shuffling ability should be trained to successfully play man-to-man and zone defense, respectively.  相似文献   

10.
ABSTRACT: Oberacker, LM, Davis, SE, Haff, GG, Witmer, CA, and Moir, GL. The Yo-Yo IR2 test: physiological response, reliability, and application to elite soccer. J Strength Cond Res 26(10): 2734-2740, 2012-The purpose of this study was to compare the effects of resistance training performed on either a stable or unstable surface on performance tests in female soccer players. Nineteen National Collegiate Athletic Association Division II female soccer players were assigned to either an unstable training group (UST: 19.0 ± 0.47 years; 1.69 ± 6.4 m; 67.8 ± 7.7 kg) or a stable training group (ST: 19.6 ± 0.49 years; 1.64 ± 3.2 m; 62.7 ± 6.27 kg). Player positions were distributed evenly between the groups. Both the groups followed a 5-week periodized resistance training program designed to develop maximum muscular strength. The groups performed the same exercises during each workout, with the UST performing 2 of the exercises in each session on an unstable surface. Pretraining and posttraining measures of straight-line sprint speed, planned and reactive agility, aerobic capacity, and countermovement vertical jump (CMJ) were taken. Significant main effects for time were reported for straight-line sprint speed, planned agility, and reactive agility with both groups demonstrating improvements during the posttraining testing session. The ST demonstrated a significant increase in CMJ during the posttraining session (change in mean: 0.04 m) in contrast to the decline demonstrated by the UST (change in mean: -0.01 m). Performing resistance training exercises on an unstable surface confers no advantage over traditional resistance training exercises for improving the speed, agility, and aerobic capacity of female soccer players. Furthermore, the use of an unstable surface may inhibit the effects of resistance training on vertical jump height, an important variable in soccer performance.  相似文献   

11.
The purpose of this study was to compare heart rate (HR) responses within and between physical controlled (short-duration intermittent running) and physical integrated (sided games) training methods in elite soccer players. Ten adult male elite soccer players (age, 26 +/- 2.9 years; body mass, 78.3 +/- 4.4 kg; maximum HR [HRmax], 195.4 +/- 4.9 b x min(-1) and velocity at maximal aerobic speed (MAS), 17.1 +/- 0.8 km x h(-1)) performed different short-duration intermittent runs, e.g., 30-30 (30 seconds of exercise interspersed with 30 seconds of recovery) with active recovery, and 30-30, 15-15, 10-10, and 5-20 seconds with passive recovery, and different sided games (1 versus 1, 2 versus 2, 4 versus 4, 8 versus 8 with and without a goalkeeper, and 10 versus 10). In both training methods, HR was measured and expressed as a mean percentage of HR reserve (%HRres). The %HRres in the 30-30-second intermittent run at 100% MAS with active recovery (at 9 km.h with corresponding distance) was significantly higher than that with passive recovery (85.7% versus 77.2% HRres, respectively, p < 0.001) but also higher than the 1 versus 1 (p < 0.01), 4 versus 4 (p 相似文献   

12.
The purpose of this study was to examine the seasonal changes in body composition and aerobic performance in elite soccer players. Twelve elite professional soccer players (aged 25 6 5 years, weight 75.7 6 5.3 kg, height 1.79 6 0.06 m) were measured for body fat (%), maximum oxygen consumption (VO2max), running velocity at VO2max (VO2max), running velocity at a fixed blood lactate concentration of 4 mmol · L21 (v-4 mM) at the start of the preseason period, at the beginning of the competitive period, and at midseason. VO2max, v-4 mM, and vVO2max increased significantly (p , 0.05) by 4.5, 10.5, and 7.8,respectively, after the preseason period. Thereafter, the aerobic performance parameters remained relatively constant, with no significant changes throughout the competitive period. The results of this study suggest that moderate improvements were observed in VO2max, and the %VO2max at 4 v-4 mM, whereas higher improvements were observed in VO2max and v-4 mmol · L21 after the preseason training period. On the other hand, during the competitive period, aerobic performance remained unchanged.In addition, this study suggests that heart rate, lactate, vVO2, and VO2max are useful and practical predictors that help monitor aerobic performance changes during a soccer season.  相似文献   

13.
The purpose of this study was to quantify the physiological requirements of various boxing exercises such as sparring, pad work, and punching bag. Because it was not possible to measure the oxygen uptake (VO?) of "true" sparring with a collecting gas valve in the face, we developed and validated a method to measure VO? of "true" sparring based on "postexercise" measurements. Nine experienced male amateur boxers (Mean ± SD: age = 22.0 ± 3.5 years, height = 176.0 ± 8.0 cm, weight = 71.4 ± 10.9 kg, number of fights = 13.0 ± 9.5) of regional and provincial level volunteered to participate in 3 testing sessions: (a) maximal treadmill test in the LAB, (b) standardized boxing training in the GYM, and (c) standardized boxing exercises in the LAB. Measures of VO?, heart rate (HR), blood lactate concentration [LA], rated perceived exertion level, and punching frequencies were collected. VO? values of 43.4 ± 5.9, 41.1 ± 5.1, 24.7 ± 6.1, 30.4 ± 5.8, and 38.3 ± 6.5 ml·kg?1·min?1 were obtained, which represent 69.7 ± 8.0, 66.1 ± 8.0, 39.8 ± 10.4, 48.8 ± 8.5, and 61.7 ± 10.3%VO?peak for sparring, pad work, and punching bag at 60, 120, and 180 b·min?1, respectively. Except for lower VO? values for punching the bag at 60 and 120 b·min?1 (p < 0.05), there was no VO? difference between exercises. Similar pattern was obtained for %HRmax with respective values of 85.5 ± 5.9, 83.6 ± 6.3, 67.5 ± 3.5, 74.8 ± 5.9, and 83.0 ± 6.0. Finally, sparring %HRmax and [LA] were slightly higher in the GYM (91.7 ± 4.3 and 9.4 ± 2.2 mmol·L?1) vs. LAB (85.5 ± 5.9 and 6.1 ± 2.3 mmol·L?1). Thus, in this study simulated LAB sparring and pad work required similar VO? (43-41 ml·kg?1·min?1, respectively), which corresponds to ~70%VO?peak. These results underline the importance of a minimum of aerobic fitness for boxers and draw some guidelines for the intensity of training.  相似文献   

14.
The objective of this study was to investigate the potential variations in cardiorespiratory and metabolic parameters and running performance among 3 modes of exercise of the same duration, namely, intermittent running with active recovery (AR) or passive recovery (PR) and continuous running (CR) and whether these variations could affect passive recovery time (PRT). Fifteen male physical education students with a subspecialty in soccer were studied (mean age 22.3 ± 2.5 years, training experience 12.3 ± 2.5 years) in the middle of the playing season. The results showed that during exercise, the highest heart rate (HR) and VO2 values were observed in CR, whereas the lowest values in PR followed by AR. Blood lactate (BLa) concentration was higher in PR by 38% compared to that in AR (p < 0.05). The exercise duration was similar between PR and AR tests and longer than in CR. With regard to PRT, the highest HR (186 ± 9 b · min(-1)), VO2 (55.5 ± 5.2 ml · kg(-1) · min(-1)), and BLa (5.1 ± 1.7 mmol · L(-1)) values were found in CR. No differences in HR and VO2 between PR and AR were detected. However, despite the differences in BLa concentration between AR and PR during exercise, the PRT BLa values between these 2 exercise modes were not different. Among the 3 running protocols, only CR appeared to have fully challenged the cardiorespiratory system inducing maximal HR and VO2 responses during exercise and high BLa values in PRT, yet these responses were not associated with better exercise performance compared to intermittent running. Therefore, intermittent exercise, regardless of implementing passive or active interval, might be the preferable exercise mode particularly in activities extended over 30 minutes.  相似文献   

15.
Because previous research has shown a relationship between maximal squat strength and sprint performance, this study aimed to determine if changes in maximal squat strength were reflected in sprint performance. Nineteen professional rugby league players (height = 1.84 ± 0.06 m, body mass [BM] = 96.2 ± 11.11 kg, 1 repetition maximum [1RM] = 170.6 ± 21.4 kg, 1RM/BM = 1.78 ± 0.27) conducted 1RM squat and sprint tests (5, 10, and 20 m) before and immediately after 8 weeks of preseason strength (4-week Mesocycle) and power (4-week Mesocycle) training. Both absolute and relative squat strength values showed significant increases after the training period (pre: 170.6 ± 21.4 kg, post: 200.8 ± 19.0 kg, p < 0.001; 1RM/BM pre: 1.78 ± 0.27 kg·kg(-1), post: 2.05 ± 0.21 kg·kg(-1), p < 0.001; respectively), which was reflected in the significantly faster sprint performances over 5 m (pre: 1.05 ± 0.06 seconds, post: 0.97 ± 0.05 seconds, p < 0.001), 10 m (pre: 1.78 ± 0.07 seconds, post: 1.65 ± 0.08 seconds, p < 0.001), and 20 m (pre: 3.03 ± 0.09 seconds, post: 2.85 ± 0.11 seconds, p < 0.001) posttraining. Whether the improvements in sprint performance came as a direct consequence of increased strength or whether both are a function of the strength and power mesocycles incorporated into the players' preseason training is unclear. It is likely that the increased force production, noted via the increased squat performance, contributed to the improved sprint performances. To increase short sprint performance, athletes should, therefore, consider increasing maximal strength via the back squat.  相似文献   

16.
17.
The aim of the study was to compare time spent at a high percentage of VO2max (>90% of VO2max) (ts90%), time to achieve 90% of VO2max (ta90%), and time to exhaustion (TTE) for exercise in the severe intensity domain in children and adults. Fifteen prepubertal boys (10.3 ± 0.9 years) and 15 men (23.5 ± 3.6 years) performed a maximal graded exercise to determine VO2max, maximal aerobic power (MAP) and power at ventilatory threshold (PVTh). Then, they performed 4 constant load exercises in a random order at PVTh plus 50 and 75% of the difference between MAP and PVTh (PΔ50 and PΔ75) and 100 and 110% of MAP (P100 and P110). VO2max was continuously monitored. The P110 test was used to determine maximal accumulated oxygen deficit (MAOD). No significant difference was found in ta90% between children and adults. ts90% and TTE were not significantly different between children and adults for the exercises at PΔ50 and PΔ75. However, ts90% and TTE during P100 (p < 0.05 and p < 0.01, respectively) and P110 (p < 0.001) exercises were significantly shorter in children. Children had a significantly lower MAOD than adults (34.3 ± 9.4 ml · kg vs. 53.6 ± 11.1 ml · kg). A positive relationship (p < 0.05) was obtained between MAOD and TTE values during the P100 test in children. This study showed that only for intensities at, or higher than MAP, lower ts90% in children was linked to a reduced TTE, compared to adults. Shorter TTE in children can partly be explained by a lower anaerobic capacity (MAOD). These results give precious information about exercise intensity ranges that could be used in children's training sessions. Moreover, they highlight the implication of both aerobic and anaerobic processes in endurance performances in both populations.  相似文献   

18.
ABSTRACT: Lomax, M. The effect of three recovery protocols on blood lactate clearance after race-paced swimming. J Strength Cond Res 26(10): 2771-2776, 2012-The purpose of the present study was to assess the impact of 3 recovery protocols on blood lactate clearance after maximal intensity swimming. Thirty-three regional standard swimmers were tested throughout the course a year and were required to complete a race-paced 200-m swim in their main stroke or individual medley. After the race-paced swim, swimmers were assigned a self-paced continuous steady rate swim of 20 minutes (self-prescribed); a 20-minute coach-administered modified warm-up consisting of various swimming modes, intensities, and rest intervals (coach prescribed); or a 20-minute land-based recovery consisting of light-intensity walking, skipping, and stretching (land based). Blood lactate concentration was measured from the fingertip before and after the race-paced swim and after the recovery activity. The concentration of blood lactate was higher (p < 0.01) after race-paced swimming (range of 10.5-11.0 mmol·L) compared with baseline (range 1.3-1.4 mmol·L). However, there were no differences (p > 0.05) between the groups (recovery protocols) at these time points. Conversely, differences were observed between groups after the recovery activities (p < 0.01). Specifically, blood lactate concentration was higher after the land-based activity (3.7 ± 1.8 mmol·L) than either the self-prescribed (2.0 ± 1.2 mmol·L) or coach-prescribed (1.8 ± 0.9 mmol·L) swimming protocols. The results of the present study suggest that it does not matter whether a self-paced continuous steady rate swimming velocity or a swimming recovery consisting of various strokes, intensities, and rest intervals is adopted as a recovery activity. As both swimming recoveries removed more blood lactate than the land-based recovery, swimmers should therefore be advised to undertake a swimming-based recovery rather than a land-based recovery.  相似文献   

19.
The purpose of this study was to investigate the impact of 4 weeks of high-intensity vs. high-volume swim training on lactate threshold (LT) characteristics and performance. Thirteen untrained swimmers with a mean age of 19.0 ± 0.5 undertook an incremental swimming test before and after 4 weeks of training for the determination of LT. Performance was evaluated by a 50-m maximum freestyle test. The swimmers were assigned to 1 of each of 2 training groups. The high-intensity group (n = 6) focused on sprint training (SP) and swam a total of 1,808 ± 210 m. The high-volume group (n = 7) followed the same program as the SP group but swam an additional 1,100 m (38% more) of endurance swimming (SP + End). A training effect was evident in both groups as seen by the similar improvements in sprint performance of the 50-m maximum time (p < 0.01), peak velocity increases and the lower value of lactate at the individual LTs (p < 0.01). Lactate threshold velocity improved only in the SP + End group from 1.20 ± 0.12 m·s(-1) pretraining to 1.32 ± 0.12 m·s(-1) posttraining (p = 0.77, effect size = 1, p < 0.01), expressed by the rightward shifts of the individual lactate-velocity curves, indicating an improvement in the aerobic capacity. Peak lactate and lactate concentrations at LT did not significantly change. In conclusion, this study was able to demonstrate that 4 weeks of either high-intensity or high-volume training was able to demonstrate similar improvements in swimming performance. In the case of lack of significant changes in lactate profiling in response to high-intensity training, we could suggest a dissociation between the 2.  相似文献   

20.
Edvardsen, E, Ingjer, F, and B?, K. Fit women are not able to use the whole aerobic capacity during aerobic dance. J Strength Cond Res 25(12): 3479-3485, 2011-This study compared the aerobic capacity during maximal aerobic dance and treadmill running in fit women. Thirteen well-trained female aerobic dance instructors aged 30 ± 8.17 years (mean ± SD) exercised to exhaustion by running on a treadmill for measurement of maximal oxygen uptake (VO(2)max) and peak heart rate (HRpeak). Additionally, all subjects performed aerobic dancing until exhaustion after a choreographed videotaped routine trying to reach the same HRpeak as during maximal running. The p value for statistical significance between running and aerobic dance was set to ≤0.05. The results (mean ± SD) showed a lower VO(2)max in aerobic dance (52.2 ± 4.02 ml·kg·min) compared with treadmill running (55.9 ± 5.03 ml·kg·min) (p = 0.0003). Further, the mean ± SD HRpeak was 182 ± 9.15 b·min in aerobic dance and 192 ± 9.62 b·min in treadmill running, giving no difference in oxygen pulse between the 2 exercise forms (p = 0.32). There was no difference in peak ventilation (aerobic dance: 108 ± 10.81 L·min vs. running: 113 ± 11.49 L·min). In conclusion, aerobic dance does not seem to be able to use the whole aerobic capacity as in running. For well endurance-trained women, this may result in a lower total workload at maximal intensities. Aerobic dance may therefore not be as suitable as running during maximal intensities in well-trained females.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号