首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Microglia have a swelling-activated Cl- current (which we call IClswell), and while some of its biophysical properties and functional roles have been elucidated, its molecular identity is unknown. To relate this current to cell functions and determine whether it is regulated by mechanisms other than cell swelling, it is important to establish both biophysical and pharmacological fingerprints. Here, we used rat microglia and a cell line derived from them (MLS-9) to study biophysical, regulatory and pharmacological properties of IClswell. The whole-cell current was activated in response to a hypo-osmotic bath solution, but not by voltage, and was time-independent during long voltage steps. The halide selectivity sequence was I->Br->Cl- (Eisenman sequence I) and importantly, the excitatory amino acid, glutamate was permeant. Current activation required internal ATP, and was not affected by the guanine nucleotides, GTP?S or GDP?S, or physiological levels of internal Mg2+. The same current was activated by a low intracellular ionic strength solution without an osmotic gradient. IClswell was reversibly inhibited by known Cl- channel blockers (NPPB, flufenamic acid, glibenclamide, DCPIB), and by the glutamate release inhibitor, riluzole. Cell swelling evoked glutamate release from primary microglia and MLS-9 cells, and this was inhibited by the blockers (above), and by IAA-94, but not by tamoxifen or the Na+/K+/Cl- symport inhibitor, bumetanide. Together, these results confirm the similarity of IClswell in the two cell types, and point to a role for this channel in inflammation-mediated glutamate release in the CNS.  相似文献   

2.
Osteoclasts are specialized macrophage derivatives that secrete acid and proteinases to mobilize bone for mineral homeostasis, growth, and replacement or repair. Osteoclast differentiation generally requires the monocyte growth factor m‐CSF and the TNF‐family cytokine RANKL, although differentiation is regulated by many other cytokines and by intracellular signals, including Ca2+. Studies of osteoclast differentiation in vitro were performed using human monocytic precursors stimulated with m‐CSF and RANKL, revealing significant loss in both the expression and function of the required components of store‐operated Ca2+ entry over the course of osteoclast differentiation. However, inhibition of CRAC using either the pharmacological agent 3,4‐dichloropropioanilide (DCPA) or by knockdown of Orai1 severely inhibited formation of multinucleated osteoclasts. In contrast, no effect of CRAC channel inhibition was observed on expression of the osteoclast protein tartrate resistant acid phosphatase (TRAP). Our findings suggest that despite the fact that they are down‐regulated during osteoclast differentiation, CRAC channels are required for cell fusion, a late event in osteoclast differentiation. Since osteoclasts cannot function properly without multinucleation, selective CRAC inhibitors may have utility in management of hyperresorptive states. J. Cell. Physiol. 226: 1082–1089, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
Glutamate released by activated microglia induces excitoneurotoxicity and may contribute to neuronal damage in neurodegenerative diseases, including Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis, and multiple sclerosis. In addition, tumor necrosis factor-alpha (TNF-alpha) secreted from activated microglia may elicit neurodegeneration through caspase-dependent cascades and silencing cell survival signals. However, direct neurotoxicity of TNF-alpha is relatively weak, because TNF-alpha also increases production of neuroprotective factors. Accordingly, it is still controversial how TNF-alpha exerts neurotoxicity in neurodegenerative diseases. Here we have shown that TNF-alpha is the key cytokine that stimulates extensive microglial glutamate release in an autocrine manner by up-regulating glutaminase to cause excitoneurotoxicity. Further, we have demonstrated that the connexin 32 hemichannel of the gap junction is another main source of glutamate release from microglia besides glutamate transporters. Although pharmacological blockade of glutamate receptors is a promising therapeutic candidate for neurodegenerative diseases, the associated perturbation of physiological glutamate signals has severe adverse side effects. The unique mechanism of microglial glutamate release that we describe here is another potential therapeutic target. We rescued neuronal cell death in vitro by using a glutaminase inhibitor or hemichannel blockers to diminish microglial glutamate release without perturbing the physiological glutamate level. These drugs may give us a new therapeutic strategy against neurodegenerative diseases with minimum adverse side effects.  相似文献   

4.
Bradykinin (BK) has been reported to be a mediator of brain damage in acute insults. Receptors for BK have been identified on microglia, the pathologic sensors of the brain. Here, we report that BK attenuated lipopolysaccharide (LPS)-induced release of tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta from microglial cells, thus acting as an anti-inflammatory mediator in the brain. This effect was mimicked by raising intracellular cAMP or stimulating the prostanoid receptors EP2 and EP4, while it was abolished by a cAMP antagonist, a prostanoid receptor antagonist, or by an inhibitor of the inducible cyclooxygenase (cyclooxygenase-2). BK also enhanced formation of prostaglandin E(2) and expression of microsomal prostaglandin E synthase. Expression of BK receptors and EP2/EP4 receptors were also enhanced. Using physiological techniques, we identified functional BK receptors not only in culture, but also in microglia from acute brain slices. BK reduced LPS-induced neuronal death in neuron-microglia co-cultures. This was probably mediated via microglia as it did not affect TNF-alpha-induced neuronal death in pure neuronal cultures. Our data imply that BK has anti-inflammatory and neuroprotective effects in the central nervous system by modulating microglial function.  相似文献   

5.
When activated by proinflammatory stimuli, microglia release substantial levels of glutamate, and mounting evidence suggests this contributes to neuronal damage during neuroinflammation. Prior studies indicated a role for the Xc exchange system, an amino acid transporter that antiports glutamate for cystine. Because cystine is used for synthesis of glutathione (GSH) synthesis, we hypothesized that glutamate release is an indirect consequence of GSH depletion by the respiratory burst, which produces superoxide from NADPH oxidase. Microglial glutamate release triggered by lipopolysaccharide was blocked by diphenylene iodonium chloride and apocynin, inhibitors of NADPH oxidase. This glutamate release was also blocked by vitamin E and elicited by lipid peroxidation products 4-hydroxynonenal and acrolein, suggesting that lipid peroxidation makes crucial demands on GSH. Although NADPH oxidase inhibitors also suppressed nitrite accumulation, vitamin E did not; moreover, glutamate release was largely unaffected by nitric oxide donors, inhibitors of nitric oxide synthase, or changes in gene expression. These findings indicate that a considerable degree of the neurodegenerative consequences of neuroinflammation may result from conversion of oxidative stress to excitotoxic stress. This phenomenon entails a biochemical chain of events initiated by a programmed oxidative stress and resultant mass-action amino acid transport. Indeed, some of the neuroprotective effects of antioxidants may be due to interference with these events rather than direct protection against neuronal oxidation.  相似文献   

6.
Microglia are the resident immune cells of the CNS, which are important for preserving neural tissue functions, but may also contribute to neurodegeneration. Activation of these cells in infection, inflammation, or trauma leads to the release of various toxic molecules, including reactive oxygen species (ROS) and the excitatory amino acid glutamate. In this study, we used an electrophysiologic approach and a d‐[ 3 H] aspartate (glutamate) release assay to explore the ROS‐dependent regulation of glutamate‐permeable volume‐regulated anion channels (VRACs). Exposure of rat microglia to hypo‐osmotic media stimulated Cl? currents and d ‐[3H]aspartate release, both of which were inhibited by the selective VRAC blocker, DCPIB. Exogenously applied H2O2 potently increased swelling‐activated glutamate release. Stimulation of microglia with zymosan triggered production of endogenous ROS and strongly enhanced glutamate release via VRAC in swollen cells. The effects of zymosan were attenuated by the ROS scavenger, MnTMPyP, and by two inhibitors of NADPH oxidase (NOX), diphenyliodonium and thioridazine. However, zymosan‐stimulated glutamate release was insensitive to other NOX blockers, apocynin and HEBSF. This pharmacologic profile pointed to the potential involvement of apocynin‐insensitive NOX4. Using RT‐PCR we confirmed that NOX4 is expressed in rat microglial cells along with NOX1 and NOX2. To check for potential involvement of phagocytic NOX2, we stimulated this isoform using protein kinase C (PKC) activator, phorbol 12‐myristate 13‐acetate or inhibited it with the broad spectrum PKC blocker, Gö6983. Both agents potently modulated endogenous ROS production by NOX2 but not VRAC activity. Taken together, these data suggest that the anion channel VRAC may contribute to microglial glutamate release and that its activity is regulated by endogenous ROS originating from NOX4.  相似文献   

7.
8.
9.
Various types of ion channels are involved in the control of neuronal activity. Among them, SK channels represent an interesting therapeutic target. Indeed, they underlie medium duration after hyperpolarizations in many types of neurons, thus inhibiting cell excitability. A thorough knowledge of the physiology of these channels and the discovery of non-peptidic selective modulators able to cross the blood-brain barrier are essential in view of developing future drugs for brain diseases such as those related to a dysfunction of dopaminergic and serotonergic systems.  相似文献   

10.
If swelling of acell is induced by a decrease in external medium tonicity, theregulatory response is more complex than if swelling of similarmagnitude is due to salt uptake. The present results provide anexplanation. In fish erythrocytes, two distinct transport pathways wereswelling activated: a channel of broad specificity and aK+-Clcotransporter. Each was activated by a specific signal: the channel bya decrease in intracellular ionic strength and theK+-Clcotransporter by cell enlargement. A decrease in ionic strength alsoaffectedK+-Clcotransport activity, but by acting as a negative modulator of thecotransport. Thus cells swollen by salt accumulation respond byactivating exclusively theK+-Clcotransport, leading to aCl-dependentK+ loss. By contrast, cellsswollen by electrolyte dilution respond by activating both pathways,leading to a reduced loss of electrolytes and a large loss of taurine.Thus two swelling-sensitive pathways, differently regulated, wouldallow control of the ionic composition of a cell exposed to differentvolume perturbations.

  相似文献   

11.
Glutamate transporters are unusual proteins in that they can function as both a transporter and a chloride channel. With the recent determination of the crystal structure of an archaeal aspartate transporter it is now possible to begin to put together a physical picture of how these proteins are able to carry out their dual functions. In this review we shall discuss our current understanding of the functional states of glutamate transporters and how they may arise. We will also discuss some of the alternate conducting states of glutamate transporters and provide definitions of the various states.  相似文献   

12.
Glutamate transporters are unusual proteins in that they can function as both a transporter and a chloride channel. With the recent determination of the crystal structure of an archaeal aspartate transporter it is now possible to begin to put together a physical picture of how these proteins are able to carry out their dual functions. In this review we shall discuss our current understanding of the functional states of glutamate transporters and how they may arise. We will also discuss some of the alternate conducting states of glutamate transporters and provide definitions of the various states.  相似文献   

13.
Brain inflammation has recently attracted widespread interest because it is a risk factor for the onset and progression of brain diseases. In this study, we report that cyclooxygenase-2 (COX-2) plays a key role in the resolution of brain inflammation by inducing the death of microglia. We previously reported that IL-13, an anti-inflammatory cytokine, induced the death of activated microglia. These results revealed that IL-13 significantly enhanced COX-2 expression and production of PGE(2) and 15-deoxy-Delta(12,14)-PGJ(2) (15d-PGJ(2)) in LPS-treated microglia. Two other anti-inflammatory cytokines, IL-10 and TGF-beta, neither induced microglial death nor enhanced COX-2 expression or PGE(2) or 15d-PGJ(2) production. Therefore, we hypothesized that the effect of IL-13 on COX-2 expression may be linked to death of activated microglia. We found that COX-2 inhibitors (celecoxib and NS398) suppressed the death of microglia induced by a combination of LPS and IL-13 and that exogenous addition of PGE(2) and 15d-PGJ(2) induced microglial death. Agonists of EP2 (butaprost) and peroxisome proliferator-activated receptor gamma (ciglitazone) mimicked the effect of PGE(2) and 15d-PGJ(2), and an EP2 antagonist (AH6809) and a peroxisome proliferator-activated receptor gamma antagonist (GW9662) suppressed microglial death induced by LPS in combination with IL-13. In addition, IL-13 potentiated LPS-induced activation of JNK, and the JNK inhibitor SP600125 suppressed the enhancement of COX-2 expression and attenuated microglial death. Taken together, these results suggest that IL-13 enhanced COX-2 expression in LPS-treated microglia through the enhancement of JNK activation. Furthermore, COX-2 products, PGE(2) and 15d-PGJ(2), caused microglial death, which terminates brain inflammation.  相似文献   

14.
15.
Activated microglia are thought to undergo apoptosis as a self-regulatory mechanism. To better understand molecular mechanisms of the microglial apoptosis, apoptosis-resistant variants of microglial cells were selected and characterized. The expression of lipocalin 2 (lcn2) was significantly down-regulated in the microglial cells that were resistant to NO-induced apoptosis. lcn2 expression was increased by inflammatory stimuli in microglia. The stable expression of lcn2 as well as the addition of rLCN2 protein augmented the sensitivity of microglia to the NO-induced apoptosis, while knockdown of lcn2 expression using short hairpin RNA attenuated the cell death. Microglial cells with increased lcn2 expression were more sensitive to other cytotoxic agents as well. Thus, inflammatory activation of microglia may lead to up-regulation of lcn2 expression, which sensitizes microglia to the self-regulatory apoptosis. Additionally, the stable expression of lcn2 in BV-2 microglia cells induced a morphological change of the cells into the round shape with a loss of processes. Treatment of primary microglia cultures with the rLCN2 protein also induced the deramification of microglia. The deramification of microglia was closely related with the apoptosis-prone phenotype, because other deramification-inducing agents such as cAMP-elevating agent forskolin, ATP, and calcium ionophore also rendered microglia more sensitive to cell death. Taken together, our results suggest that activated microglia may secrete LCN2 protein, which act in an autocrine manner to sensitize microglia to the self-regulatory apoptosis and to endow microglia with an amoeboid form, a canonical morphology of activated microglia in vivo.  相似文献   

16.
17.
Ca(2+)-activated K+[K(Ca)] channels in resting and activated human peripheral blood T lymphocytes were characterized using simultaneous patch-clamp recording and fura-2 monitoring of cytosolic Ca2+ concentration, [Ca2+]i. Whole-cell experiments, using EGTA-buffered pipette solutions to raise [Ca2+]i to 1 microM, revealed a 25-fold increase in the number of conducting K(Ca) channels per cell, from an average of 20 in resting T cells to > 500 channels per cell in T cell blasts after mitogenic activation. The opening of K(Ca) channels in both whole-cell and inside-out patch experiments was highly sensitive to [Ca2+]i (Hill coefficient of 4, with a midpoint of approximately 300 nM). At optimal [Ca2+]i, the open probability of a K(Ca) channel was 0.3-0.5. K(Ca) channels showed little or no voltage dependence from - 100 to 0 mV. Single-channel I-V curves were linear with a unitary conductance of 11 pS in normal Ringer and exhibited modest inward rectification with a unitary conductance of approximately 35 pS in symmetrical 160 mM K+. Permeability ratios, relative to K+, determined from reversal potential measurements were: K+ (1.0) > Rb+ (0.96) > NH4+ (0.17) > Cs+ (0.07). Slope conductance ratios were: NH4+ (1.2) > K+ (1.0) > Rb+ (0.6) > Cs+ (0.10). Extracellular Cs+ or Ba2+ each induced voltage-dependent block of K(Ca) channels, with block increasing at hyperpolarizing potentials in a manner suggesting a site of block 75% across the membrane field from the outside. K(Ca) channels were blocked by tetraethylammonium (TEA) applied externally (Kd = 40 mM), but were unaffected by 10 mM TEA applied inside by pipette perfusion. K(Ca) channels were blocked by charybdotoxin (CTX) with a half-blocking dose of 3-4 nM, but were resistant to block by noxiustoxin (NTX) at 1-100 nM. Unlike K(Ca) channels in Jurkat T cells, the K(Ca) channels of normal resting or activated T cells were not blocked by apamin. We conclude that while K(Ca) and voltage-gated K+ channels in the same cells share similarities in ion permeation, Cs+ and Ba2+ block, and sensitivity to CTX, the underlying proteins differ in structural characteristics that determine channel gating and block by NTX and TEA.  相似文献   

18.
Pain is a physiological response to bodily damage and serves as a warning of potential threat. Pain can also transform from an acute response to noxious stimuli to a chronic condition with notable emotional and psychological components that requires treatment. Indeed, the management of chronic pain is currently an important unmet societal need. Several reports have implicated the release of the neurotransmitter adenosine triphosphate (ATP) and subsequent activation of purinergic receptors in distinct pain etiologies. Purinergic receptors are broadly expressed in peripheral neurons and the spinal cord; thus, purinergic signaling in sensory neurons or in spinal circuits may be critical for pain processing. Nevertheless, an outstanding question remains: what are the mechanisms of ATP release that initiate nociceptive signaling? Connexin and pannexin channels are established conduits of ATP release and have been suggested to play important roles in a variety of pathologies, including several models of pain. As such, these large-pore channels represent a new and exciting putative pharmacological target for pain treatment. Herein, we will review the current evidence for a role of connexin and pannexin channels in ATP release during nociceptive signaling, such as neuropathic and inflammatory pain. Collectively, these studies provide compelling evidence for an important role of connexins and pannexins in pain processing.  相似文献   

19.
Mutations in human bestrophin-1 (VMD2) are genetically linked to several forms of retinal degeneration but the underlying mechanisms are unknown. Bestrophin-1 (hBest1) has been proposed to be a Cl(-) channel involved in ion and fluid transport by the retinal pigment epithelium (RPE). To date, however, bestrophin currents have only been described in overexpression systems and not in any native cells. To test whether bestrophins function as Ca(2+)-activated Cl(-) (CaC) channels physiologically, we used interfering RNA (RNAi) in the Drosophila S2 cell line. S2 cells express four bestrophins (dbest1-4) and have an endogenous CaC current. The CaC current is abolished by several RNAi constructs to dbest1 and dbest2, but not dbest3 or dbest4. The endogenous CaC current was mimicked by expression of dbest1 in HEK cells, and the rectification and relative permeability of the current were altered by replacing F81 with cysteine. Single channel analysis of the S2 bestrophin currents revealed an approximately 2-pS single channel with fast gating kinetics and linear current-voltage relationship. A similar channel was observed in CHO cells transfected with dbest1, but no such channel was seen in S2 cells treated with RNAi to dbest1. This provides definitive evidence that bestrophins are components of native CaC channels at the plasma membrane.  相似文献   

20.
Park E  Lee GJ  Choi S  Choi SK  Chae SJ  Kang SW  Pak YK  Park HK 《PloS one》2010,5(12):e15192
Voltage-dependent anion channel (VDAC) is the main protein in mitochondria-mediated apoptosis, and the modulation of VDAC may be induced by the excessive release of extracellular glutamate. This study examined the role of glutamate release on VDAC-mediated apoptosis in an eleven vessel occlusion model in rats. Male Sprague-Dawley rats (250-350 g) were used for the 11 vessel occlusion ischemic model, which were induced for a 10-min transient occlusion. During the ischemic and initial reperfusion episode, the real-time monitoring of the extracellular glutamate concentration was measured using an amperometric microdialysis biosensor and the cerebral blood flow (CBF) was monitored by laser-Doppler flowmetry. To confirm neuronal apoptosis, the brains were removed 72 h after ischemia to detect the neuron-specific nuclear protein and pro-apoptotic proteins (cleaved caspase-3, VDAC, p53 and BAX). The changes in the mitochondrial morphology were measured by atomic force microscopy. A decrease in the % of CBF was observed, and an increase in glutamate release was detected after the onset of ischemia, which continued to increase during the ischemic period. A significantly higher level of glutamate release was observed in the ischemia group. The increased glutamate levels in the ischemia group resulted in the activation of VDAC and pro-apoptotic proteins in the hippocampus with morphological alterations to the mitochondria. This study suggests that an increase in glutamate release promotes VDAC-mediated apoptosis in an 11 vessel occlusion ischemic model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号