首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
We have cloned and characterized VvNHX1, a gene encoding a vacuolar cation/H(+) antiporter from Vitis vinifera cv. Cabernet Sauvignon. VvNHX1 belongs to the vacuolar NHX protein family and showed high similarity to other known vacuolar antiporters. The expression of VvNHX1 partially complements the salt- and hygromycin-sensitive phenotypes of an ena1-4 nhx1 yeast strain. Immunoblots of vacuoles of yeast expressing a VvNHX1, together with the expression of a VvNHX1-GFP (green fluorescent protein) chimera demonstrated that VvNHX1 localized to the vacuoles. VvNHX1 displayed low affinity K(+)/H(+) and Na(+)/H(+) exchange activities (12.8 and 40.2 mM, respectively). The high levels of expression of VvNHX1 during the véraison and post-véraison stages would indicate that the increase in vacuolar K(+) accumulation, mediated by VvNHX1, is needed for vacuolar expansion. This process, together with the rapid accumulation of reducing sugars, would drive water uptake to the berry and the concomitant berry size increase, typical of the post-véraison stage of growth.  相似文献   

2.
Potassium accumulation is essential for grapevine (Vitis vinifera L.) growth and development, but excessive levels in berries at harvest may reduce wine quality particularly for red wines. In addition to decreasing the free acid levels, potassium also combines with tartaric acid to form largely insoluble potassium bitartrate. This precipitates during winemaking and storage, resulting in an increase in wine pH that is associated with negative impacts on wine colour, flavour, and microbiological stability. For these reasons, a better understanding of potassium transport and accumulation within the vine and berries is important for producing fruit with improved winemaking characteristics. Here two genes encoding KUP/KT/HAK-type potassium transporters that are expressed in grape berries are described. Their function as potassium transporters was demonstrated by complementation of an Escherichia coli mutant. The two transporters are expressed most highly in the berry skin during the first phase of berry development (pre-veraison), with similar patterns in two grapevine varieties. The timing and location of expression of these transporters are consistent with an involvement in potassium accumulation in grape berries.  相似文献   

3.
4.
Vitis vinifera L. berries are non-climacteric fruits that exhibit a double-sigmoid growth pattern, and at the point known as 'veraison', which is just before the beginning of the second period of rapid fruit growth, these berries undergo several abrupt physiological changes. Cell pressure probe was used to examine the in situ turgor (P) of cells in the mesocarp during berry development and in response to plant water deficits. Initial tests comparing attached and detached berries demonstrated that cell P was stable for up to 48 h after detachment from the vine, provided that water loss from the berry was prevented. Cell P at pre-dawn was on the order of 0.25 MPa pre-veraison (PreV) and was reduced by an order of magnitude to 0.02 MPa post veraison (PostV). Cell P declined slightly but significantly with depth from the berry surface PreV, but not PostV. When water was withheld from potted vines, cell P declined about 0.2 Mpa, as pre-dawn vine water potential declined about 0.6 MPa over 12 d, whereas cell P was completely insensitive to a 1.10 MPa decrease in pre-dawn vine water potential after veraison. Rewatering of stressed plants also resulted in a 24 h recovery of cell P before, but not after veraison. The substantial decline in cell P around veraison is consistent with the decline in berry firmness that is known to occur at this time, and the PostV insensitivity of P to changes in vine water status is consistent with current hypotheses that the PostV berry is hydraulically isolated from the vine. The fact that a measurable P of about 0.02 MPa and typical cell hydraulic/osmotic behaviour were exhibited in PostV berries, however, indicates that cell membranes remain intact after veraison, contrary to many current hypotheses that veraison is associated with a general loss of membrane function and cellular compartmentation in the grape berry. We hypothesize that cell P is low in the PostV berry, and possibly other fleshy fruits, because of the presence of regulated quantities of apoplastic solutes.  相似文献   

5.
A potential Carotenoid Cleavage Dioxygenase (CCD) gene was identified among a Vitis vinifera L. EST collection and a full-length cDNA (VvCCD1) was isolated. Recombinant expression of VvCCD1 confirmed that the gene encoded a functional CCD. Experimental evidence was obtained that VvCCD1 cleaves zeaxanthin symmetrically yielding 3-hydroxy-beta-ionone, a C(13)-norisoprenoidic compound, and a C(14)-dialdehyde. Expression of the gene was studied by real-time PCR at different developmental stages of grape berries from Muscat of Alexandria and Shiraz cultivars. A significant induction of the gene expression approaching véraison was observed in both cultivars. In parallel, the C(13)-norisoprenoid level increased from véraison to maturity in both cultivars.  相似文献   

6.
Fluorescein diacetate (FDA) was used as a vital stain to assaymembrane integrity (cell viability) in mesocarp tissue of thedeveloping grape (Vitis vinifera L.) berry in order to testthe hypothesis that there is a substantial loss of compartmentationin these cells during ripening. This technique was also usedto determine whether loss of viability was associated with symptomsof a ripening disorder known as berry shrivel. FDA fluorescenceof berry cells was rapid, bright, and stable for over 1 h atroom temperature. Confocal microscopy detected FDA stainingthrough two to three intact surface cell layers (300–400µm) of bisected berries, and showed that the fluorescencewas confined to the cytoplasm, indicating the maintenance ofintegrity in both cytoplasmic as well as vacuolar membranes,and the presence of active cytoplasmic esterases. FDA clearlydiscriminated between living cells and freeze-killed cells,and exhibited little, if any, non-specific staining. Propidiumiodide and DAPI, both widely used to assess cell viability,were unable to discriminate between living and freeze-killedcells, and did not specifically stain the nuclei of dead cells.For normally developing berries under field conditions therewas no evidence of viability loss until about 40 d after veraison,and the majority (80%) of mesocarp cells remained viable pastcommercial harvest (26 °Brix). These results are inconsistentwith current models of grape berry development which hypothesizethat veraison is associated with a general loss of compartmentationin mesocarp cells. The observed viability loss was primarilyin the locule area around the seeds, suggesting that a localizedloss of viability and compartmentation may occur as part ofnormal fruit development. The cell viability of berry shrivel-affectedberries was similar to that of normally developing berries untilthe onset of visible symptoms (i.e. shrivelling), at which timeviability declined in visibly shrivelled berries. Berries withextensive shrivelling exhibited very low cell viability (15%). Key words: Apoplast, berry shrivel, compartmentation, DAPI, FDA, fluorescence, fruit ripening, locule, propidium iodide Received 19 September 2007; Revised 16 December 2007 Accepted 26 December 2007  相似文献   

7.
Literature investigations indicate that the grapes have quite complex fertilisation biology. This complexity necessitates extensive investigations to obtain reliable knowledge for both well‐organised hybridisation studies and maximising grape yield. Therefore, this study was conducted to investigate the influences of self‐, free‐ and cross‐pollination on berry and seed characteristics in grape. Five different pollination treatments were applied to ‘Narince’, the most widely known and popular white wine grape in Turkey. Pollen tests indicated that all the cultivars had satisfactory in vitro pollen viability percentages. Free‐pollination produced a significantly higher percentage berry set. Among the pollinizers, the use of pollen of ‘Thompson Seedless’ and ‘Cardinal’ varieties resulted in higher berry set percentage in ‘Narince’. The free‐pollination was also superior in giving the highest weight, length and width of the berry, as well as number of seeds per berry. These findings revealed that there were strong xenial and metaxenial effects in the studied grape cultivars. Among the pollinizer cultivars, the most effective pollinator was ‘Thompson Seedless’. Hence, for better berry set and quality, the use of ‘Thompson Seedless’ as a pollinizer may be an attractive option in both grape production and breeding studies.  相似文献   

8.
We investigated the interactions of abscisic acid (ABA) in the responses of grape leaf tissues to contrasting ultraviolet (UV)-B treatments. One-year-old field-grown plants of Vitis vinifera L. were exposed to photosynthetically active radiation (PAR) where solar UV-B was eliminated by using polyester filters, or where PAR was supplemented with UV-B irradiation. Treatments combinations included weekly foliar sprays of ABA or a water control. The levels of UV-B absorbing flavonols, quercetin and kaempferol were significantly decreased by filtering out UV-B, while applied ABA increased their content. Concentration of two hydroxycinnamic acids, caffeic and ferulic acids, were also increased by ABA, but not affected by plus UV-B (+UV-B) treatments. Levels of carotenoids and activities of the antioxidant enzymes, catalase, ascorbate peroxidase and peroxidase were elevated by +ABA treatments, but only if +UV-B was given. Cell membrane β -sitosterol was enhanced by ABA independently of +UV-B. Changes in photoprotective compounds, antioxidant enzymatic activities and sterols were correlated with lessened membrane harm by UV-B, as assessed by ion leakage. Oxidative damage expressed as malondialdehyde content was increased under +UV-B treatments. Our results suggest that the defence system of grape leaf tissues against UV-B is activated by UV-B irradiation with ABA acting downstream in the signalling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号