首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using an atomic force microscope, we have studied three-dimensional molecular topography and calcium-sensitive conformational changes of individual hemichannels. Full-length (non-truncated) Cx43 hemichannels (connexons), when reconstituted in lipid bilayer, appear as randomly distributed individual particles and clusters. They show a lack of preferential orientation of insertion into lipid membrane; in a single bilayer, connexons with protrusion of either the extracellular face or the large non-truncated cytoplasmic face are observed. Extracellular domains of these undocked hemichannels are structurally different from hemichannels in the docked gap junctional plaques examined after their exposure by force dissection or chemical dissection. Calcium induced a reversible change in the extracellular pore diameter. Hemichannels imaged in a physiological buffer with 1.8 mm Ca(+2) had the pore diameter of approximately 1.8 nm, consistent with the closed channel conformation. Reducing Ca(+2) concentration to approximately 1.4, 1, and 0 mm, which changes hemichannels from the closed to open conformation, increased the pore diameter to approximately 2.5 nm for approximately 27, 74, and 100% of hemichannels, respectively. Thus, open/close probability of the hemichannel appears to be [Ca(2+)]-dependent. Computational analysis of the atomic force microscopy phase mode imaging reveals a significantly higher interfacial energy for open hemichannels that results from the interactions between the atomic force microscope probe and the hydrophobic domains. Thus, hydrophobic extracellular domains of connexins regulate calcium-dependent conformational changes.  相似文献   

2.
Gap junction channels mediate communication between adjacent cells. Using atomic force microscopy (AFM), we have imaged conformational changes of the cytoplasmic and extracellular surfaces of native connexin 26 gap junction plaques. The cytoplasmic domains of the gap junction surface, imaged at submolecular resolution, form a hexameric pore protruding from the membrane bilayer. Exhibiting an intrinsic flexibility, these cytoplasmic domains, comprising the C-terminal connexin end, reversibly collapse by increasing the forces applied to the AFM stylus. The extracellular connexon surface was imaged after dissection of the gap junction with the AFM stylus. Upon injection of Ca(2+) into the buffer solution, the extracellular channel entrance reduced its diameter from 1.5 to 0.6 nm, a conformational change that is fully reversible and specific among the divalent cations tested. Ca(2+) had a profound effect on the cytoplasmic surface also, inducing the formation of microdomains. Consequently, the plaque height increased by 0.6 nm to 18 nm. This suggests that calcium ions induce conformational changes affecting the structure of both the hemichannels and the intact channels forming cell-cell contacts.  相似文献   

3.
Pannexins are homologous to innexins, the invertebrate gap junction family. However, mammalian pannexin1 does not form canonical gap junctions, instead forming hexameric oligomers in single plasma membranes and intracellularly. Pannexin1 acts as an ATP release channel, whereas less is known about the function of Pannexin2. We purified cellular membranes isolated from MDCK cells stably expressing rat Pannexin1 or Pannexin2 and identified pannexin channels (pannexons) in single membranes by negative stain and immunogold labeling. Protein gel and Western blot analysis confirmed Pannexin1 (Panx1) or Pannexin2 (Panx2) as the channel-forming proteins. We expressed and purified Panx1 and Panx2 using a baculovirus Sf9 expression system and obtained doughnut-like structures similar to those seen previously in purified connexin hemichannels (connexons) and mammalian membranes. Purified pannexons were comparable in size and overall appearance to Connexin46 and Connexin50 connexons. Pannexons and connexons were further analyzed by single-particle averaging for oligomer and pore diameters. The oligomer diameter increased with increasing monomer molecular mass, and we found that the measured oligomeric pore diameter for Panxs was larger than for Connexin26. Panx1 and Panx2 formed active homomeric channels in Xenopus oocytes and in vitro vesicle assays. Cross-linking and native gels of purified homomeric full-length and a C-terminal Panx2 truncation mutant showed a banding pattern more consistent with an octamer. We purified Panx1/Panx2 heteromeric channels and found that they were unstable over time, possibly because Panx1 and Panx2 homomeric pannexons have different monomer sizes and oligomeric symmetry from each other.  相似文献   

4.
Many cellular functions are driven by changes in the intracellular Ca(2+) concentration ([Ca(2+)](i)) that are highly organized in time and space. Ca(2+) oscillations are particularly important in this respect and are based on positive and negative [Ca(2+)](i) feedback on inositol 1,4,5-trisphosphate receptors (InsP(3)Rs). Connexin hemichannels are Ca(2+)-permeable plasma membrane channels that are also controlled by [Ca(2+)](i). We aimed to investigate how hemichannels may contribute to Ca(2+) oscillations. Madin-Darby canine kidney cells expressing connexin-32 (Cx32) and Cx43 were exposed to bradykinin (BK) or ATP to induce Ca(2+) oscillations. BK-induced oscillations were rapidly (minutes) and reversibly inhibited by the connexin-mimetic peptides (32)Gap27/(43)Gap26, whereas ATP-induced oscillations were unaffected. Furthermore, these peptides inhibited the BK-triggered release of calcein, a hemichannel-permeable dye. BK-induced oscillations, but not those induced by ATP, were dependent on extracellular Ca(2+). Alleviating the negative feedback of [Ca(2+)](i) on InsP(3)Rs using cytochrome c inhibited BK- and ATP-induced oscillations. Cx32 and Cx43 hemichannels are activated by <500 nm [Ca(2+)](i) but inhibited by higher concentrations and CT9 peptide (last 9 amino acids of the Cx43 C terminus) removes this high [Ca(2+)](i) inhibition. Unlike interfering with the bell-shaped dependence of InsP(3)Rs to [Ca(2+)](i), CT9 peptide prevented BK-induced oscillations but not those triggered by ATP. Collectively, these data indicate that connexin hemichannels contribute to BK-induced oscillations by allowing Ca(2+) entry during the rising phase of the Ca(2+) spikes and by providing an OFF mechanism during the falling phase of the spikes. Hemichannels were not sufficient to ignite oscillations by themselves; however, their contribution was crucial as hemichannel inhibition stopped the oscillations.  相似文献   

5.
Intracellular calcium changes trigger connexin 32 hemichannel opening   总被引:9,自引:0,他引:9  
Connexin hemichannels have been proposed as a diffusion pathway for the release of extracellular messengers like ATP and others, based on connexin expression models and inhibition by gap junction blockers. Hemichannels are opened by various experimental stimuli, but the physiological intracellular triggers are currently not known. We investigated the hypothesis that an increase of cytoplasmic calcium concentration ([Ca2+]i) triggers hemichannel opening, making use of peptides that are identical to a short amino-acid sequence on the connexin subunit to specifically block hemichannels, but not gap junction channels. Our work performed on connexin 32 (Cx32)-expressing cells showed that an increase in [Ca2+]i triggers ATP release and dye uptake that is dependent on Cx32 expression, blocked by Cx32 (but not Cx43) mimetic peptides and a calmodulin antagonist, and critically dependent on [Ca2+]i elevation within a window situated around 500 nM. Our results indicate that [Ca2+]i elevation triggers hemichannel opening, and suggest that these channels are under physiological control.  相似文献   

6.
《FEBS letters》2014,588(8):1205-1211
Connexin hemichannels (connexons) are building blocks of gap junctions but also function as free unapposed channels, which has become an active field of research. Defining functions of hemichannels and their involvement in any biological event requires ruling out possible participation of other channels that share biophysical and regulatory properties, for example pannexins, CALHM1 and P2X receptors. The lack of specific inhibitors for these channels has become an obstacle in elucidating the role of connexin hemichannels. Several experimental approaches are now available to identify hemichannels at the cell surface and to characterize their electrophysiological, permeability and regulatory properties. The use of connexin knockout/knockdown, and the development of peptides that target intracellular connexin domains and specific antibodies directed to extracellular domains have helped to dissect the role of hemichannels in endogenously expressing systems. Moreover, studies of connexin mutants in exogenous expression systems have provided convincing evidence on hemichannels in the pathogenesis of several human genetic diseases. We here present a brief overview of connexin hemichannels as functional channels and itemize a list of aspects to consider when concluding on their involvement.  相似文献   

7.
Opening of connexin hemichannels in the plasma membrane is highly regulated. Generally, depolarization and reduced extracellular Ca2+ promote hemichannel opening. Here we show that hemichannels formed of Cx50, a principal lens connexin, exhibit a novel form of regulation characterized by extraordinary sensitivity to extracellular monovalent cations. Replacement of extracellular Na+ with K+, while maintaining extracellular Ca2+ constant, resulted in >10-fold potentiation of Cx50 hemichannel currents, which reversed upon returning to Na+. External Cs+, Rb+, NH4+, but not Li+, choline, or TEA, exhibited a similar effect. The magnitude of potentiation of Cx50 hemichannel currents depended on the concentration of extracellular Ca2+, progressively decreasing as external Ca2+ was reduced. The primary effect of K+ appears to be a reduction in the ability of Ca2+, as well as other divalent cations, to close Cx50 hemichannels. Cx46 hemichannels exhibited a modest increase upon substituting Na+ with K+. Analyses of reciprocal chimeric hemichannels that swap NH2- and COOH-terminal halves of Cx46 and Cx50 demonstrate that the difference in regulation by monovalent ions in these connexins resides in the NH2-terminal half. Connexin hemichannels have been implicated in physiological roles, e.g., release of ATP and NAD+ and in pathological roles, e.g., cell death through loss or entry of ions and signaling molecules. Our results demonstrate a new, robust means of regulating hemichannels through a combination of extracellular monovalent and divalent cations, principally Na+, K+, and Ca2+.  相似文献   

8.
《The Journal of cell biology》1994,126(4):1047-1058
Gap junctions contain numerous channels that are clustered in apposed membrane patches of adjacent cells. These cell-to-cell channels are formed by pairing of two hemichannels or connexons, and are also referred to as connexon pairs. We have investigated various detergents for their ability to separately solubilize hemichannels or connexon pairs from isolated ovine lens fiber membranes. The solubilized preparations were reconstituted with lipids with the aim to reassemble native-type gap junctions and to provide a model system for the characterization of the molecular interactions involved in this process. While small gap junction structures were obtained under a variety of conditions, large native-type gap junctions were assembled using a novel two-step procedure: in the first step, hemichannels that had been solubilized with octylpolyoxyethylene formed connexon pairs by dialysis against n-decyl-beta-D-maltopyranoside. In the second step, connexon pairs were reconstituted with phosphatidylcholines by dialysis against buffer containing Mg2+. This way, double-layered gap junctions with diameter < or = 300 nm were obtained. Up to several hundred channels were packed in a noncrystalline arrangement, giving these reconstituted gap junctions an appearance that was indistinguishable from that of the gap junctions in the lens fiber membranes.  相似文献   

9.
Deoxycholate-extracted rat liver gap junction was studied by high-resolution low-dose electron microscopy. Communicating channels between two adjoining cells supposedly form along the common axis of two apposed hexameric trans-membrane protein assemblies. These double hexamers are often arranged in large plaques on an ordered hexagonal net (8-9 nm lattice constant) and seem able to undergo structural alteration as a possible permeability control mechanism. Calcium is widely reported to uncouple gap junction, and we observed this alteration on exposure to Ca++ down to 10(-4) M concentration. When EGTA was added at matching concentrations, the alteration was reversible several times over one hour, but with considerable variability. It was imaged in the absence of any negative stain to avoid ionic and other complications. The resulting lack of contrast plus low-dose "shot" noise required digital Fourier filtering and reconstruction, but no detail was recovered below 1.8 nm. In other experiments with negative stain at neutral pH, gap junction connexons were apparently locked in the "closed" configuration and no transition could be induced. However, recovery of repeating detail to nearly 1.0 nm was possible, reproducibly showing a fine connective matrix between connexons . Whether this was formed by unfolded portions of the 28,000-dalton gap junction protein is not known, but its existence could explain the observed lattice invariance during the connexon structural transition.  相似文献   

10.
ATP is an electrically charged molecule that functions both in the supply of energy necessary for cellular activity and as an intercellular signaling molecule. Although controlled ATP secretion occurs via exocytosis of granules and vesicles, in some cells, and under certain conditions, other mechanisms control ATP release. Gap junctions, intercellular channels formed by connexins that link the cytoplasm of two adjacent cells, control the passage of ions and molecules up to 1 kDa. The channel is formed by two moieties called hemichannels, or connexons, and it has been suggested that these may represent an alternative pathway for ATP release. We have investigated the release of ATP through hemichannels from Xenopus oocytes that are formed by Connexin 38 (Cx38), an endogenous, specific type of connexin. These hemichannels generate an inward current that is reversibly activated by calcium-free solution and inhibited by octanol and flufenamic acid. This calcium-sensitive current depends on Cx38 expression: it is decreased in oocytes injected with an antisense oligonucleotide against Cx38 mRNA (ASCx38) and is increased in oocytes overexpressing Cx38. Moreover, the activation of these endogenous connexons also allows transfer of Lucifer Yellow. We have found that the release of ATP is coincident with the opening of hemichannels: it is calcium-sensitive, is inhibited by octanol and flufenamic acid, is inhibited in ASCx38 injected oocytes, and is increased by overexpression of Cx38. Taken together, our results suggest that ATP is released through activated hemichannels in Xenopus oocytes.  相似文献   

11.
Gap-junctional channels are formed by two connexons or gap-junctional hemichannels in series, with each connexon conformed by six connexin molecules. As with other membrane proteins, structural information on connexons can potentially be obtained with techniques that take advantage of the highly specific thiol chemistry by positioning Cys residues at locations of interest, ideally in an otherwise Cys-less protein. It has been shown that conserved Cys residues located in the extracellular loops of connexins are essential for the docking of connexons from adjacent cells, preventing the formation of functional gap-junctional channels. Here we engineered a Cys-less version of connexin 43 (Cx43) and assessed its function using a Xenopus oocyte expression system. The Cys-less protein was expressed at the plasma membrane and did not form gap-junctional channels but formed hemichannels that behave similarly to those formed by Cx43 in terms of permeation to carboxyfluorescein. The carboxyfluorescein permeability of Cys-less hemichannels was increased by protein kinase C inhibition, like the wild-type Cx43 hemichannels. We generated a protein with a single Cys in a position (residue 34) thought to face the channel pore and show that thiol modification of the Cys abolishes the carboxyfluorescein permeability. We conclude that Cysless Cx43 forms regulated functional hemichannels, and therefore Cys-less Cx43 is a useful tool for future structural studies.  相似文献   

12.
The extracellular surface of the gap junction cell-to-cell channels was imaged in phosphate-buffered saline with an atomic force microscope. The fully hydrated isolated gap junction membranes adsorbed to mica were irregular sheets approximately 1-2 microns across and 13.2 (+/- 1.3) nm thick. The top bilayer of the gap junction was dissected by increasing the force applied to the tip or sometimes by increasing the scan rate at moderate forces. The exposed extracellular surface revealed a hexagonal array with a center-to-center spacing of 9.4 (+/- 0.9) nm between individual channels (connexons). Images of individual connexons with a lateral resolution of < 3.5 nm, and in the best case approximately 2.5 nm, were reliably and reproducibly obtained with high-quality tips. These membrane channels protruded 1.4 (+/- 0.4) nm from the extracellular surface of the lipid membrane, and the atomic force microscope tip reached up to 0.7 nm into the pore, which opened up to a diameter of 3.8 (+/- 0.6) nm on the extracellular side.  相似文献   

13.
Only recently, the role of large ionic channels such as Pannexin-1 channels and Connexin hemichannels has been implicated in several physiological and pathological conditions, including HIV infection and associated comorbidities. These channels are in a closed stage in healthy conditions, but in pathological conditions including HIV, Pannexin-1 channels and Connexin hemichannels become open. Our data demonstrate that acute and chronic HIV infection induces channel opening (Pannexin and Connexin channels), ATP release into the extracellular space, and subsequent activation of purinergic receptors in immune and non-immune cells. We demonstrated that Pannexin and Connexin channels contribute to HIV infection and replication, the long-term survival of viral reservoirs, and comorbidities such as NeuroHIV. Here, we discuss the available data to support the participation of these channels in the HIV life cycle and the potential therapeutic approach to prevent HIV-associated comorbidities.  相似文献   

14.
Emerging issues of connexin channels: biophysics fills the gap   总被引:34,自引:0,他引:34  
This summary is a proposed synthesis of available information for the non-specialist. It does not incorporate all the published data, is inconsistent with some, and reflects the biases of the author. Connexin proteins have a common transmembrane topology, with four alpha-helical transmembrane domains, two extracellular loops, a cytoplasmic loop, and cytoplasmic N- and C-terminal domains. The sequences are most conserved in the transmembrane and extracellular domains, yet many of the key functional differences between connexins are determined by amino-acid differences in these largely conserved domains. Each extracellular loop contains three cysteines with invariant spacing (save one isoform) that are required for channel function. The junctional channel is composed of two end-to-end hemichannels, each of which is a hexamer of connexin subunits. Hemichannels formed by some connexin isoforms can function as well-behaved, single-membrane-spanning channels in plasma membrane. In junctional channels, the cysteines in the extracellular loops form intra-monomer disulfide bonds between the two loops, not intermonomer or inter-hemichannel bonds. The end-to-end homophilic binding between hemichannels is via non-covalent interactions. Mutagenesis studies suggest that the docking region contains beta structures, and may resemble to some degree the beta-barrel structure of porin channels. The two hemichannels that compose a junctional channel are rotationally staggered by approximately 30 degrees relative to each other so that the alpha-helices of each connexin monomer are axially aligned with the alpha-helices of two adjacent monomers in the apposed hemichannel. At present there is a published 3D map with 7.5 A resolution in the plane of the membrane, based on electron cryomicroscopy of 2D crystals of junctional channels formed by C-terminal truncated Cx43. The correspondence between the imaged transmembrane alpha-helices and the known transmembrane amino-acid sequences is a matter of debate. Each of the approximately 20 connexin isoforms produces channels with distinct unitary conductances, molecular permeabilities, and electrical and chemical gating sensitivities. The channels can be heteromeric, and subfamilies among connexins largely determine heteromeric specificity, similar to the specificities within the voltage-dependent potassium channel superfamily. The second extracellular loop contains the primary determinants of the specificity of hemichannel-hemichannel docking (analogous to the tetramerization domain of potassium channels). The 7.5 A map shows that each monomer exposes only two transmembrane alpha-helices to the pore lumen. However the conductance state of the imaged structure and the effects of the C-terminal truncation are unknown, so it is possible that other transmembrane domains contribute to the lumen in other functional states of the channel. In the transmembrane region, SCAM and mutagenesis data suggest that parts of the first three transmembrane alpha-helices are exposed to the lumen. Some of these data are contradictory, but may reflect conformational or isoform differences. There is reason to think that the first part of the N-terminal cytoplasmic domain can line the pore in some conformations. In the extracellular part of junctional channels, the N-terminal portion of the first extracellular loop is exposed to the lumen. The unitary conductances through connexin channels vary over an order of magnitude, from 15 pS to over 300 pS. There is a range of charge selectivities among atomic ions, from slightly anion selective to highly cation selective, which does not correlate with unitary conductance. There appear to be substantial ion-ion interactions within the pore, making the GHK model of assessing selectivities of limited value. Pores formed by different connexins have a range of limiting diameters as assessed by uncharged and charged probes, which also does not correlate with unitary conductance (i.e. some have high conductance but have a narrow limiting diameter, and vice versa). Channels formed by different connexins have different permeabilities to various cytoplasmic molecules. Where it has been assessed, the selectivity among cytoplasmic molecules is substantial and does not correlate in an obvious manner with the size selectivity data derived from fluorescent tracer studies, suggesting there are chemical specificities within the pore that enhance or reduce permeability to specific cytoplasmic molecules, functionally analogous to the ability of some porins to facilitate transport of specific substrates. For example, heteromeric channels with different stoichiometries or arrangements of isoforms can distinguish among second messengers. The differences in permeability to cytoplasmic molecules have biological consequences; in most cases one connexin cannot fully substitute for another. Voltage and chemical gating mechanisms largely operate within each hemichannel, though there is evidence for inter-hemichannel allosteric effects as well. There are at least two distinct gating mechanisms. One (Vj-gating) is a voltage-driven mechanism that governs rapid transitions between conducting states. Its voltage sensor involves charges in the first several positions of the cytoplasmic N-terminal domain and possibly in the N-terminal part of the first extracellular loop, which may both be exposed to the lumen of the pore in some states. The polarity of Vj-gating sensitivity is connexin-specific, closing with depolarization for some connexins and with hyperpolarization for others. The polarity can be reversed by point mutations at the second position. The lower conductance states induced by Vj-gating correspond to physical restrictions of the pore, and thus restricted or eliminated molecular permeation. Since the channels are not fully closed by Vj-gating, it can be seen as a way to eliminate molecular signaling while leaving electrical signaling operational. A second, independent gating mechanism mediates slow transitions (approximately 10-30 ms) into and out of non-conducting state(s). These transitions can occur in response to voltage ('loop gating'), chemical factors such as pH and lipophiles ('chemical gating'), and the docking of two hemichannels (sometimes called the 'docking gate'). These slow transitions may reflect a common structural change induced by these several effectors (electrical, chemical and homodimerization). Alternatively, they could reflect distinct gating processes responding to one or more of these effectors, that are indistinguishable at the single-channel level and have yet to be resolved mechanistically. The slow or loop gate closes with hyperpolarization. As a result, where Vj-gating closes with depolarization, individual hemichannels can close in response to both polarities of voltage (but only to a subconductance state for the Vj-gating polarity). Because of this, it is difficult to assign a macroscopic voltage sensitivity, or its modification due to mutagenesis, chemical modification or heteromeric interactions, to one or the other of these very distinct voltage-sensitive processes. This distinction can be made reliably only at the single-channel level. The Vj-gating voltage sensor and the loop-gating voltage sensor appear to be independent structures, since the Vj-gating voltage sensitivity can modified without effect on loop gating. For some connexins, certain modifications of the C-terminal domain seem to interfere with the operation of the Vj-gate while leaving loop gating unaffected. In some connexins, but not all, the chemical sensitivity to pH can involve interactions between regions of the C-terminal domain and cytoplasmic loop. Whether these regions exert their effects directly by physically blocking the pore, or by allosteric mechanisms (which may be more consistent with the relatively long time-course of closure) is not clear. For several connexins, truncation of the C-terminal domain eliminates the pH sensitivity, and co-expressing the domain with the truncated connexin restores the pH sensitivity. This has a functional resemblance to the particle-receptor mechanism for N-type inactivation of Shaker channels. What is being protonated is not clear, and may involve cytoplasmic factors, such as endogenous aminosulfonates. For other connexins, the action of pH does not involve the C-terminal domain and seems due to direct protonation of connexin. PKC phosphorylation of serine(s) in the C-terminal domain can affect the substate occupancy of at least one connexin. Phosphorylation of series in the C-terminal domain by MAP kinase appears to facilitate an interaction between it and an unknown receptor domain to eliminate coupling. This process has yet to be studied at the single-channel level. It also has a functional analogy to the particle-receptor model of channel inactivation. Both MAP kinase phosphorylation-induced and pH-induced inhibition can be mediated in truncated connexins by the corresponding free peptide. However, the relation between these two mechanisms are unexplored, as are specific mechanisms of direct endogenous regulation of connexin channel activity. (ABSTRACT TRUNCATED)  相似文献   

15.
Connexin hemichannels are robustly regulated by voltage and divalent cations. The basis of voltage-dependent gating, however, has been questioned with reports that it is not intrinsic to hemichannels, but rather is derived from divalent cations acting as gating particles that block the pore in a voltage-dependent manner. Previously, we showed that connexin hemichannels possess two types of voltage-dependent gating, termed Vj and loop gating, that in Cx46 operate at opposite voltage polarities, positive and negative, respectively. Using recordings of single Cx46 hemichannels, we found both forms of gating persist in solutions containing no added Mg2+ and EGTA to chelate Ca2+. Although loop gating persists, it is significantly modulated by changing levels of extracellular divalent cations. When extracellular divalent cation concentrations are low, large hyperpolarizing voltages, exceeding −100 mV, could still drive Cx46 hemichannels toward closure. However, gating is characterized by continuous flickering of the unitary current interrupted by occasional, brief sojourns to a quiet closed state. Addition of extracellular divalent cations, in this case Mg2+, results in long-lived residence in a quiet closed state, suggesting that hyperpolarization drives the hemichannel to close, perhaps by initiating movements in the extracellular loops, and that divalent cations stabilize the fully closed conformation. Using excised patches, we found that divalent cations are only effective from the extracellular side, indicative that the binding site is not cytoplasmic or in the pore, but rather extracellular. Vj gating remains essentially unaffected by changing levels of extracellular divalent cations. Thus, we demonstrate that both forms of voltage dependence are intrinsic gating mechanisms in Cx46 hemichannels and that the action of external divalent cations is to selectively modulate loop gating.  相似文献   

16.
Many cardiovascular cells coexpress multiple connexins (Cx), leading to the potential formation of mixed (heteromeric) gap junction hemichannels whose biophysical properties may differ from homomeric channels containing only one connexin type. We examined the potential interaction of connexin Cx43 and Cx40 in HeLa cells sequentially stably transfected with these two connexins. Immunoblots verified the production of comparable amounts of both connexins, cross-linking showed that both connexins formed oligomers, and immunofluorescence showed extensive colocalization. Moreover, Cx40 copurified with (His)(6)-tagged Cx43 by affinity chromatography of detergent-solubilized connexons, demonstrating the presence of both connexins in some hemichannels. The dual whole cell patch-clamp method was used to compare the gating properties of gap junctions in HeLa Cx43/Cx40 cells with homotypic (Cx40-Cx40 and Cx43-Cx43) and heterotypic (Cx40-Cx43) gap junctions. Many of the observed single channel conductances resembled those of homotypic or heterotypic channels. The steady-state junctional conductance (g(j,ss)) in coexpressing cell pairs showed a reduced sensitivity to the voltage between cells (V(j)) compared with homotypic gap junctions and/or an asymmetrical V(j) dependence reminiscent of heterotypic gap junctions. These gating properties could be fit using a combination of homotypic and heterotypic channel properties. Thus, whereas our biochemical evidence suggests that Cx40 and Cx43 form heteromeric connexons, we conclude that they are functionally insignificant with regard to voltage-dependent gating.  相似文献   

17.
Murine connexin 40 (Cx40) and connexin 43 (Cx43) do not form functional heterotypic gap junction channels. This property may contribute to the preferential propagation of action potentials in murine conductive myocardium (expressing Cx40) which is surrounded by working myocardium, expressing Cx43. When mouse Cx40 and Cx43 were individually expressed in cocultured human HeLa cells, no punctate immunofluorescent signals were detected on apposed plasma membranes between different transfectants, using antibodies specific for each connexin, suggesting that Cx40 and Cx43 hemichannels do not dock to each other. We wanted to identify domains in these connexin proteins which are responsible for the incompatibility. Thus, we expressed in HeLa cells several chimeric gene constructs in which different extracellular and intracellular domains of Cx43 had been spliced into the corresponding regions of Cx40. We found that exchange of both extracellular loops (E1 and E2) in this system (Cx40*43E1,2) was required for formation of homotypic and heterotypic conductive channels, although the electrical properties differed from those of Cx40 or Cx43 channels. Thus, the extracellular domains of Cx43 can be directed to form functional homo- and heterotypic channels. Another chimeric construct in which both extracellular domains and the central cytoplasmic loop (E1, E2, and C2) of Cx43 were spliced into Cx40 (Cx40*43E1,2,C2) led to heterotypic coupling only with Cx43 and not with Cx40 transfectants. Thus, the central cytoplasmic loop of Cx43 contributed to selectivity. A third construct, in which only the C-terminal domain (C3) of Cx43 was spliced into Cx40, i.e., Cx40*43C3, showed neither homotypic nor heterotypic coupling with Cx40 and Cx43 transfectants, suggesting that the C-terminal region of Cx43 determined incompatibility.  相似文献   

18.
pH is a potent modulator of gap junction (GJ) mediated cell-cell communication. Mechanisms proposed for closure of GJ channels by acidification include direct actions of H+ on GJ proteins and indirect actions mediated by soluble intermediates. Here we report on the effects of acidification on connexin (Cx)46 cell-cell channels expressed in Neuro-2a cells and Cx46 hemichannels expressed in Xenopus oocytes. Effects of acidification on hemichannels were examined macroscopically and in excised patches that permitted rapid (<1 ms) and uniform pH changes at the exposed hemichannel face. Both types of Cx46 channel were found to be sensitive to cytoplasmic pH, and two effects were evident. A rapid and reversible closure was reproducibly elicited with short exposures to low pH, and a poorly reversible or irreversible loss occurred with longer exposures. We attribute the former to pH gating and the latter to pH inactivation. Half-maximal reduction of open probability for pH gating in hemichannels occurs at pH 6.4. Hemichannels remained sensitive to cytoplasmic pH when excised and when cytoplasmic [Ca2+] was maintained near resting ( approximately 10(-7) M) levels. Thus, Cx46 hemichannel pH gating does not depend on cytoplasmic intermediates or a rise in [Ca2+]. Rapid application of low pH to the cytoplasmic face of open hemichannels resulted in a minimum latency to closure near zero, indicating that Cx46 hemichannels directly sense pH. Application to closed hemichannels extended their closed time, suggesting that the pH sensor is accessible from the cytoplasmic side of a closed hemichannel. Rapid closure with significantly reduced sensitivity was observed with low pH application to the extracellular face, but could be explained by H+ permeation through the pore to reach an internal site. Closure by pH is voltage dependent and has the same polarity with low pH applied to either side. These data suggest that the pH sensor is located directly on Cx46 near the pore entrance on the cytoplasmic side.  相似文献   

19.
In vitro and in vivo studies support the involvement of connexin 43-based cell-cell channels and hemichannels in cell death propagation induced by ischemia-reperfusion. In this context, open connexin hemichannels in the plasma membrane have been proposed to act as accelerators of cell death. Progress on the mechanisms underlying the cell permeabilization induced by ischemia-reperfusion reveals the involvement of several factors leading to an augmented open probability and increased number of hemichannels on the cell surface. While open probability can be increased by a reduction in extracellular concentration of divalent cations and changes in covalent modifications of connexin 43 (oxidation and phosphorylation), increase in number of hemichannels requires an elevation of the intracellular free Ca2+ concentration. Reversal of connexin 43 redox changes and membrane permeabilization can be induced by intracellular, but not extracellular, reducing agents, suggesting a cytoplasmic localization of the redox sensor(s). In agreement, hemichannels formed by connexin 45, which lacks cytoplasmic cysteines, or by connexin 43 with its C-terminal domain truncated to remove its cysteines are insensitive to reducing agents. Although further studies are required for a precise localization of the redox sensor of connexin 43 hemichannels, modulation of the redox potential is proposed as a target for the design of pharmacological tools to reduce cell death induced by ischemia-reperfusion in connexin 43-expressing cells.  相似文献   

20.
BackgroundNon-selective Connexin43 hemichannels contribute to secondary lesion spread. The hemichannel blocking peptidomimetic Peptide5, derived from the second extracellular loop of the human Connexin43 protein, prevents lesion spread and reduces vascular permeability in preclinical models of central nervous system injury. The molecular mode of action of Peptide5, however, was unknown and is described here.MethodsHuman cerebral microvascular endothelial cells and APRE-19 cells were used. Scrape loading was used to assess gap junction function and hypoxic, acidic ion-shifted Ringer solution induced ATP release used to assess hemichannel function. Peptide modifications, including amino acid substitutions and truncations, and competition assays were used to demonstrate Peptide5 functional specificity and site of action respectively.ResultsPeptide5 inhibits Connexin43 hemichannel-mediated ATP release by acting on extracellular loop two of Connexin43, adjacent to its matching sequence within the protein. Precise sequence specificity is important for hemichannel block, but less so for uncoupling of gap junction channels (seen only at high concentrations). The SRPTEKT motif is central to Peptide5 function but on its own is not sufficient to inhibit hemichannels. Both the SRPTEKT motif and Peptide5 reduce gap junction communication, but neither uncoupling below 50%.ConclusionsReduced gap junction coupling at high peptide concentrations appears to be relatively non-specific. However, Peptide5 at low concentrations acts upon extracellular loop two of Connexin43 to block hemichannels in a precise, sequence specific manner.General significanceThe concentration dependent and sequence specific action of Peptide5 supports its development for the treatment of retinal injury and chronic disease, as well as other central nervous system injury and disease conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号