首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monkey embryonic stem (ES) cells share similar characteristics to human ES cells and provide a primate model of allotransplantation, which allows to validate efficacy and safety of cell transplantation therapy in regenerative medicine. Bone morphogenetic protein 4 (BMP4) is known to promote trophoblast differentiation in human ES cells in contrast to mouse ES cells where BMP4 synergistically maintains self-renewal with leukemia inhibitory factor (LIF), which represents a significant difference in signal transduction of self-renewal and differentiation between murine and human ES cells. As the similarity of the differentiation mechanism between monkey and human ES cells is of critical importance for their use as a primate model system, we investigated whether BMP4 induces trophoblast differentiation in monkey ES cells. Interestingly, BMP4 did not induce trophoblast differentiation, but instead induced primitive endoderm differentiation. Prominent downregulation of Sox2, which plays a pivotal role not only in pluripotency but also placenta development, was observed in cells treated with BMP4. In addition, upregulation of Hand1, Cdx2, and chorionic gonadotropin beta (CG-beta), which are markers of trophoblast, was not observed. In contrast, BMP4 induced significant upregulation of Gata6, Gata4, and LamininB1, suggesting differentiation into the primitive endoderm, visceral endoderm, and parietal endoderm, respectively. The threshold of BMP4 activity was estimated as about 10 ng/mL. These findings suggest that BMP4 induced differentiation into the primitive endoderm lineage but not into trophoblast in monkey ES cells.  相似文献   

2.
3.
The use of embryonic stem (ES) cells for generating healthy tissues has the potential to revolutionize therapies for human disease or injury, for which there are currently no effective treatments. Strategies for manipulating stem cell differentiation should be based on knowledge of the mechanisms by which lineage decisions are made during early embryogenesis. Here, we review current research into the factors influencing lineage differentiation in the mouse embryo and the application of this knowledge to in vitro differentiation of ES cells. In the mouse embryo, specification of tissue lineages requires cell-cell interactions that are influenced by coordinated cell migration and cellular neighborhood mediated by the key WNT, FGF, and TGFbeta signaling pathways. Mimicking the cellular interactions of the embryo by providing appropriate signaling molecules in culture has enabled the differentiation of ES cells to be directed predominately toward particular lineages. Multistep strategies incorporating the provision of soluble factors known to influence lineage choices in the embryo, coculture with other cells or tissues, genetic modification, and selection for desirable cell types have allowed the production of ES cell derivatives that produce beneficial effects in animal models. Increasing the efficiency of this process can only result from a better understanding of the molecular control of cell lineage determination in the embryo.  相似文献   

4.
Differences between human and mouse embryonic stem cells   总被引:29,自引:0,他引:29  
We compared gene expression profiles of mouse and human ES cells by immunocytochemistry, RT-PCR, and membrane-based focused cDNA array analysis. Several markers that in concert could distinguish undifferentiated ES cells from their differentiated progeny were identified. These included known markers such as SSEA antigens, OCT3/4, SOX-2, REX-1 and TERT, as well as additional markers such as UTF-1, TRF1, TRF2, connexin43, and connexin45, FGFR-4, ABCG-2, and Glut-1. A set of negative markers that confirm the absence of differentiation was also developed. These include genes characteristic of trophoectoderm, markers of germ layers, and of more specialized progenitor cells. While the expression of many of the markers was similar in mouse and human cells, significant differences were found in the expression of vimentin, beta-III tubulin, alpha-fetoprotein, eomesodermin, HEB, ARNT, and FoxD3 as well as in the expression of the LIF receptor complex LIFR/IL6ST (gp130). Profound differences in cell cycle regulation, control of apoptosis, and cytokine expression were uncovered using focused microarrays. The profile of gene expression observed in H1 cells was similar to that of two other human ES cell lines tested (line I-6 and clonal line-H9.2) and to feeder-free subclones of H1, H7, and H9, indicating that the observed differences between human and mouse ES cells were species-specific rather than arising from differences in culture conditions.  相似文献   

5.
6.
R A Fleischman  R P Custer  B Mintz 《Cell》1982,30(2):351-359
Successful engraftment of mouse fetal liver cells in early fetal recipients, after microinjection via the placental circulation, is attributable to seeding of the recipient's liver by a cell type that is ancestral to both the myeloid and lymphoid definitive lineages and is capable of sustained self-renewal and differentiation for more than 2 years. This primitive cell is therefore the normal totipotent hematopoietic stem cell (THSC). The use of a large series of mutant anemic recipients with decreasing severity of an endogenous stem-cell defect (W/W, Wv/Wv, Wf/Wf, Wv/+), and therefore of graded selective advantage to normal donor cells, has revealed that engraftment entails marginal numbers of cells--probably individual ones--in the least afflicted hosts. Thus the observed progressive and coordinate shift toward donor-strain erythrocytes, granulocytes and B and T lymphocytes, over time, indicates THSC expansion to form a larger stem-cell pool and normally regulated differentiation of cells from the pool. This transplant system allows allogeneic combinations with impunity and therefore provides many novel experimental possibilities for investigating THSC normal development, genetic abnormalities or neoplastic potential in relation to the intact developmental succession of hematopoietic tissue environments in vivo.  相似文献   

7.
We previously reported the differentiation of mouse embryonic stem (ES) cells into retinal progenitors. However, these progenitors rarely differentiate into photoreceptors unless they are cultured with embryonic retinal tissues. Here we show the in vitro generation of putative rod and cone photoreceptors from mouse, monkey and human ES cells by stepwise treatments under defined culture conditions, in the absence of retinal tissues. With mouse ES cells, Crx+ photoreceptor precursors were induced from Rx+ retinal progenitors by treatment with a Notch signal inhibitor. Further application of fibroblast growth factors, Shh, taurine and retinoic acid yielded a greater number of rhodopsin+ rod photoreceptors, in addition to default cone production. With monkey and human ES cells, feeder- and serum-free suspension culture combined with Wnt and Nodal inhibitors induced differentiation of Rx+ or Mitf+ retinal progenitors, which produced retinal pigment epithelial cells. Subsequent treatment with retinoic acid and taurine induced photoreceptor differentiation. These findings may facilitate the development of human ES cell-based transplantation therapies for retinal diseases.  相似文献   

8.
9.
Li X  Zhu L  Yang A  Lin J  Tang F  Jin S  Wei Z  Li J  Jin Y 《Cell Stem Cell》2011,8(1):46-58
Self-renewal and pluripotency are hallmarks of embryonic stem cells (ESCs). However, the signaling pathways that trigger their transition from self-renewal to differentiation remain elusive. Here, we report that calcineurin-NFAT signaling is both necessary and sufficient to switch ESCs from an undifferentiated state to lineage-specific cells and that the inhibition of this pathway can maintain long-term ESC self-renewal independent of leukemia inhibitory factor. Mechanistically, this pathway converges with the Erk1/2 pathway to regulate Src expression and promote the epithelial-mesenchymal transition (EMT), a process required for lineage specification in response to differentiation stimuli. Furthermore, calcineurin-NFAT signaling is activated when the earliest differentiation event occurs in mouse embryos, and its inhibition disrupts extraembryonic lineage development. Collectively, our results demonstrate that the NFAT and Erk1/2 cascades form a signaling switch for early lineage segregation in mouse ESCs and provide significant insights into the regulation of the balance between ESC self-renewal and early lineage specification.  相似文献   

10.
Generation of mouse chimeras is useful for the elucidation of gene function. In the present report, we describe a new technique for the production of chimeras by injection of R1 embryonic stem (ES) cells into the perivitelline space of one-cell stage mouse embryos. One-cell embryos are injected with 2–6 ES cells into the perivitelline space under the zona pellucida without laser-assistance. Our embryo culture experiments reveal that ES cells injected at the one-cell stage embryo start to be incorporated into the blastomeres beginning at the 8-cell stage and form a chimeric blastocyst after 4 days. We have used this approach to successfully produce a high rate of mouse chimeras in two different mouse genetic backgrounds permitting the establishment of germ line transmitters. This method allows for the earlier introduction of ES cells into mouse embryos, and should free up the possibility of using frozen one-cell embryos for this purpose.  相似文献   

11.
12.
The Notch signaling pathway plays important roles in cell-fate determination during embryonic development and adult life. In this study, we focus on the role of Notch signaling in governing cell-fate choices in human embryonic stem cells (hESCs). Using genetic and pharmacological approaches, we achieved both blockade and conditional activation of Notch signaling in several hESC lines. We report here that activation of Notch signaling is required for undifferentiated hESCs to form the progeny of all three embryonic germ layers, but not trophoblast cells. In addition, transient Notch signaling pathway activation enhanced generation of hematopoietic cells from committed hESCs. These new insights into the roles of Notch in hESC-fate determination may help to efficiently direct hESC differentiation into therapeutically relevant cell types.  相似文献   

13.
Pluripotent human stem cells are a powerful tool for the generation of differentiated cells that can be used for the study of human disease. We recently demonstrated that neurons derived from pluripotent human embryonic stem cells (hESC) can be infected by the highly host-restricted human alphaherpesvirus varicella-zoster virus (VZV), permitting the interaction of VZV with neurons to be readily evaluated in culture. In the present study, we examine whether pluripotent hESC and neural progenitors at intermediate stages of differentiation are permissive for VZV infection. We demonstrate here that VZV infection is blocked in naïve hESC. A block to VZV replication is also seen when a bacterial artificial chromosome (BAC) containing the VZV genome is transfected into hESC. In contrast, related alphaherpesviruses herpes simplex virus 1 (HSV-1) and pseudorabies virus (PrV) productively infect naïve hESC in a cell-free manner, and PrV replicates from a BAC transfected into hESC. Neurons differentiate from hESC via neural progenitor intermediates, as is the case in the embryo. The first in vitro stage at which permissiveness of hESC-derived neural precursors to VZV replication is observed is upon formation of “neurospheres,” immediately after detachment from the inductive stromal feeder layer. These findings suggest that hESC may be useful in deciphering the yet enigmatic mechanisms of specificity of VZV infection and replication.  相似文献   

14.
It is difficult to induce the maturation of embryonic stem (ES) cells into hepatocytes in vitro. We previously reported that Thy1-positive mesenchymal cells derived from the mouse fetal liver promote the maturation of hepatic progenitor cells. Here, we isolated alpha-fetoprotein (AFP)-producing cells from mouse ES cells for subsequent differentiation into hepatocytes in vitro by coculture with Thy1-positive cells. ES cells expressing green fluorescent protein (GFP) under the control of an AFP promoter were cultured under serum- and feeder layer-free culture conditions. The proportion of GFP-positive cells plateaued at 41.6 +/- 12.2% (means +/- SD) by day 7. GFP-positive cells, isolated by flow cytometry, were cultured in the presence or absence of Thy1-positive cells as a feeder layer. Isolated GFP-positive cells were stained for AFP, Foxa2, and albumin. The expression of mRNAs encoding tyrosine amino transferase, tryptophan 2,3-dioxygenase, and glucose-6-phosphatase were only detected following coculture with Thy1-positive cells. Following coculture with Thy1-positive cells, the isolated cells produced and stored glycogen. Ammonia clearance activity was also enhanced following coculture. Electron microscopic analysis indicated that the cocultured cells exhibited the morphologic features of mature hepatocytes. In conclusion, coculture with Thy1-positive cells in vitro induced the maturation of AFP-producing cells isolated from ES cell cultures into hepatocytes.  相似文献   

15.
This protocol describes a rapid, precise method for generating sets of embryonic stem (ES) cells or mouse embryonic fibroblasts (MEFs) harboring point mutations in the p53 tumor suppressor gene (officially known as Trp53). The strategy uses cells from the Trp53 (p53-null) 'platform' mouse, which allows site-specific integration of plasmid DNA into the Trp53 locus. Simple PCR protocols identify correctly targeted clones and immunoblots verify re-expression of the protein. We also present protocol modifications needed for efficient recovery of MEF clones expressing p53 constructs that retain wild-type function, including growth at low (3%) oxygen and transient downregulation of p53 regulators to forestall cell senescence of primary MEFs. A library of cell lines expressing various p53 mutants derived from the same population of primary fibroblasts or platform ES cells can be acquired and screened in less than 1 month.  相似文献   

16.
TOR is a serine-threonine kinase that was originally identified as a target of rapamycin in Saccharomyces cerevisiae and then found to be highly conserved among eukaryotes. In Drosophila melanogaster, inactivation of TOR or its substrate, S6 kinase, results in reduced cell size and embryonic lethality, indicating a critical role for the TOR pathway in cell growth control. However, the in vivo functions of mammalian TOR (mTOR) remain unclear. In this study, we disrupted the kinase domain of mouse mTOR by homologous recombination. While heterozygous mutant mice were normal and fertile, homozygous mutant embryos died shortly after implantation due to impaired cell proliferation in both embryonic and extraembryonic compartments. Homozygous blastocysts looked normal, but their inner cell mass and trophoblast failed to proliferate in vitro. Deletion of the C-terminal six amino acids of mTOR, which are essential for kinase activity, resulted in reduced cell size and proliferation arrest in embryonic stem cells. These data show that mTOR controls both cell size and proliferation in early mouse embryos and embryonic stem cells.  相似文献   

17.
Mammalian Genome - Genetic background is known to play a role in the ability to derive pluripotent, embryonic stem cells (ESC), a trait referred to as permissiveness. Previously we demonstrated...  相似文献   

18.
19.
Somatic cloning does not always result in ontogeny in mammals, and development is often associated with various abnormalities and embryo loss with a high frequency. This is considered to be due to aberrant gene expression resulting from epigenetic reprogramming errors. However, a fundamental question in this context is whether the developmental abnormalities reported to date are specific to somatic cloning. The aim of this study was to determine the stage of nuclear differentiation during development that leads to developmental abnormalities associated with embryo cloning. In order to address this issue, we reconstructed cloned embryos using four- and eight-cell embryos, morula embryos, inner cell mass (ICM) cells, and embryonic stem cells as donor nuclei and determined the occurrence of abnormalities such as developmental arrest and placentomegaly, which are common characteristics of all mouse somatic cell clones. The present analysis revealed that an acute decline in the full-term developmental competence of cloned embryos occurred with the use of four- and eight-cell donor nuclei (22.7% vs. 1.8%) in cases of standard embryo cloning and with morula and ICM donor nuclei (11.4% vs. 6.6%) in serial nuclear transfer. Histological observation showed abnormal differentiation and proliferation of trophoblastic giant cells in the placentae of cloned concepti derived from four-cell to ICM cell donor nuclei. Enlargement of placenta along with excessive proliferation of the spongiotrophoblast layer and glycogen cells was observed in the clones derived from morula embryos and ICM cells. These results revealed that irreversible epigenetic events had already started to occur at the four-cell stage. In addition, the expression of genes involved in placentomegaly is regulated at the blastocyst stage by irreversible epigenetic events, and it could not be reprogrammed by the fusion of nuclei with unfertilized oocytes. Hence, developmental abnormalities such as placentomegaly as well as embryo loss during development may occur even in cloned embryos reconstructed with nuclei from preimplantation-stage embryos, and these abnormalities are not specific to somatic cloning.  相似文献   

20.
Stem cells holding great promises in regenerative medicine have the potential to be differentiated to a specific cell type through genetic manipulation. However, conventional ways of gene transfer to such progenitor cells suffer from a number of disadvantages particularly involving safety and efficacy issues. Here, we report on the development of a bio-functionalized inorganic nano-carrier of DNA by embedding fibronectin and E-cadherin chimera on the carrier, leading to its high affinity interactions with embryonic stem cell surface and accelerated trans-gene delivery for subsequent expression. While only apatite nano-particles were very inefficient in transfecting embryonic stem cells, fibronectin-anchored particles and to a more significant extent, fibronectin and E-cadherin-Fc-associated particles dramatically enhanced trans-gene delivery with a value notably higher than that of commercially available lipofection system. The involvement of both cell surface integrin and E-cadherin in mediating intracellular localization of the hybrid carrier was verified by blocking integrin binding site with excess free fibronectin and up-regulating both integrin and E-cadherin through PKC activation. Thus, the new establishment of a bio-functional hybrid gene-carrier would promote and facilitate development of stem cell-based therapy in regenerative medicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号