首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Voltage-gated Ca2+ channels translate the electrical inputs of excitable cells into biochemical outputs by controlling influx of the ubiquitous second messenger Ca2+. As such the channels play pivotal roles in many cellular functions including the triggering of neurotransmitter and hormone release by CaV2.1 (P/Q-type) and CaV2.2 (N-type) channels. It is well established that G protein coupled receptors (GPCRs) orchestrate precise regulation neurotransmitter and hormone release through inhibition of CaV2 channels. Although the GPCRs recruit a number of different pathways, perhaps the most prominent, and certainly most studied among these is the so-called voltage-dependent inhibition mediated by direct binding of Gβγ to the α1 subunit of CaV2 channels. This article will review the basics of Ca2+-channels and G protein signaling, and the functional impact of this now classical inhibitory mechanism on channel function. It will also provide an update on more recent developments in the field, both related to functional effects and crosstalk with other signaling pathways, and advances made toward understanding the molecular interactions that underlie binding of Gβγ to the channel and the voltage-dependence that is a signature characteristic of this mechanism.  相似文献   

2.
Given the complexity of the nervous system and its capacity for change, it is remarkable that robust, reproducible neural function and animal behavior can be achieved. It is now apparent that homeostatic signaling systems have evolved to stabilize neural function. At the neuromuscular junction (NMJ) of organisms ranging from Drosophila to human, inhibition of postsynaptic neurotransmitter receptor function causes a homeostatic increase in presynaptic release that precisely restores postsynaptic excitation. Here we address what occurs within the presynaptic terminal to achieve homeostatic potentiation of release at the Drosophila NMJ. By imaging presynaptic Ca(2+) transients evoked by single action potentials, we reveal a retrograde, transsynaptic modulation of presynaptic Ca(2+) influx that is sufficient to account for the rapid induction and sustained expression of the homeostatic change in vesicle release. We show that the homeostatic increase in Ca(2+) influx and release is blocked by a point mutation in the presynaptic CaV2.1 channel, demonstrating that the modulation of presynaptic Ca(2+) influx through this channel is causally required for homeostatic potentiation of release. Together with additional analyses, we establish that retrograde, transsynaptic modulation of presynaptic Ca(2+) influx through CaV2.1 channels is a key factor underlying the homeostatic regulation of neurotransmitter release.  相似文献   

3.
G protein-activated inwardly rectifying potassium (GIRK or Kir3) channels are directly gated by the βγ subunits of G proteins and contribute to inhibitory neurotransmitter signaling pathways. Paradoxically, volatile anesthetics such as halothane inhibit these channels. We find that neuronal Kir3 currents are highly sensitive to inhibition by halothane. Given that Kir3 currents result from increased Gβγ available to the channels, we asked whether reducing available Gβγ to the channel would adversely affect halothane inhibition. Remarkably, scavenging Gβγ using the C-terminal domain of β-adrenergic receptor kinase (cβARK) resulted in channel activation by halothane. Consistent with this effect, channel mutants that impair Gβγ activation were also activated by halothane. A single residue, phenylalanine 192, occupies the putative Gβγ gate of neuronal Kir3.2 channels. Mutation of Phe-192 at the gate to other residues rendered the channel non-responsive, either activated or inhibited by halothane. These data indicated that halothane predominantly interferes with Gβγ-mediated Kir3 currents, such as those functioning during inhibitory synaptic activity. Our report identifies the molecular correlate for anesthetic inhibition of Kir3 channels and highlights the significance of these effects in modulating neurotransmitter-mediated inhibitory signaling.  相似文献   

4.

Presynaptic terminals possess interlocking molecular mechanisms that control exocytosis. An example of such complexity is the modulation of release by presynaptic G Protein Coupled Receptors (GPCRs). GPCR ubiquity at synapses—GPCRs are present at every studied presynaptic terminal—underlies their critical importance in synaptic function. GPCRs mediate presynaptic modulation by mechanisms including via classical Gα effectors, but membrane-delimited actions of Gβγ can also alter probability of release by altering presynaptic ionic conductances. This directly or indirectly modifies action potential-evoked presynaptic Ca2+ entry. In addition, Gβγ can interact directly with SNARE complexes responsible for synaptic vesicle fusion to reduce peak cleft neurotransmitter concentrations during evoked release. The interaction of Gβγ with SNARE is displaced via competitive interaction with C2AB-domain containing calcium sensors such as synaptotagmin I in a Ca2+-sensitive manner, restoring exocytosis. Synaptic modulation of this form allows selective inhibition of postsynaptic receptor-mediated responses, and this, in combination with Ca2+ sensitivity of Gβγ effects on SNARE complexes allows for specific behavioral outcomes. One such outcome mediated by 5-HT receptors in the spinal cord seen in all vertebrates shows remarkable synergy between presynaptic effects of Gβγ and postsynaptic 5-HT-mediated changes in activation of Ca2+-dependent K+ channels. While acting through entirely separate cellular compartments and signal transduction pathways, these effects converge on the same effect on locomotion and other critical functions of the central nervous system.

  相似文献   

5.
Spinophilin (SPL) and neurabin (NRB) are structurally similar scaffolding proteins with several protein binding modules, including actin and PP1 binding motifs and PDZ and coiled-coil domains. SPL also binds regulators of G protein signaling (RGS) proteins and the third intracellular loop (3iL) of G protein-coupled receptors (GPCRs) to reduce the intensity of Ca(2+) signaling by GPCRs. The role of NRB in Ca(2+) signaling is not known. In the present work, we used biochemical and functional assays in model systems and in SPL(-/-) and NRB(-/-) mice to show that SPL and NRB reciprocally regulate Ca(2+) signaling by GPCRs. Thus, SPL and NRB bind all members of the R4 subfamily of RGS proteins tested (RGS1, RGS2, RGS4, RGS16) and GAIP. By contract, SPL, but not NRB, binds the 3iL of the GPCRs alpha(1B)-adrenergic (alpha(1B)AR), dopamine, CCKA, CCKB and the muscarinic M3 receptors. Coexpression of SPL or NRB with the alpha(1B)AR in Xenopus oocytes revealed that SPL reduces, whereas NRB increases, the intensity of Ca(2+) signaling by alpha(1B)AR. Accordingly, deletion of SPL in mice enhanced binding of RGS2 to NRB and Ca(2+) signaling by alphaAR, whereas deletion of NRB enhanced binding of RGS2 to SPL and reduced Ca(2+) signaling by alphaAR. This was due to reciprocal modulation by SPL and NRB of the potency of RGS2 to inhibit Ca(2+) signaling by alphaAR. These findings suggest a novel mechanism of regulation of GPCR-mediated Ca(2+) signaling in which SPL/NRB forms a functional pair of opposing regulators that modulates Ca(2+) signaling intensity by GPCRs by determining the extent of inhibition by the R4 family of RGS proteins.  相似文献   

6.
L-type calcium channels mediate depolarization-induced calcium influx in insulin-secreting cells and are thought to be modulated by G protein-coupled receptors (GPCRs). The major fraction of L-type alpha1-subunits in pancreatic beta-cells is of the neuroendocrine subtype (CaV1.3 or alpha1D). Here we studied the biophysical properties and receptor regulation of a CaV1.3 subunit previously cloned from HIT-T15 cells. In doing so, we compared this neuroendocrine CaV1.3 channel with the cardiac L-type channel CaV1.2a (or alpha1C-a) after expression together with alpha2delta- and beta3-subunits in Xenopus oocytes. Both the current voltage relation and voltage dependence of inactivation for the neuroendocrine CaV1.3 channel were shifted to more negative potentials compared with the cardiac CaV1.2 channel. In addition, the CaV1.3 channel activated and inactivated more rapidly than the CaV1.2a channel. Both subtypes showed a similar sensitivity to the dihydropyridine (+)isradipine. More interestingly, the CaV1.3 channels were found to be stimulated by ligand-bound G(i)/G(o)-coupled GPCRs whereas a neuronal CaV2.2 (or alpha1B) channel was inhibited. The observed receptor-induced stimulation of CaV1.3 channels could be mimicked by phorbol-12-myristate-13-acetate and was sensitive to inhibitors of protein kinases, but not to the phosphoinositol-3-kinase-inhibitor wortmannin, pointing to serine/threonine kinase-dependent regulation. Taken together, we describe a neuroendocrine L-type CaV1.3 calcium channel that is stimulated by G(i)/G(o)-coupled GPCRs and differs significantly in distinct biophysical characteristics from the cardiac subtype (CaV1.2a), suggesting that the channels have different roles in native cells.  相似文献   

7.
N-type channels are located on dendrites and at pre-synaptic nerve terminals where they play a fundamental role in neurotransmitter release. They are potently regulated by the activation of a number of different types of pertussis toxin (PTX)-sensitive Gαi/o coupled receptors, which results in voltage-dependent inhibition of channel activity via Gβγ subunits. Using heterologous expression in HEK 293T cells, we show via whole cell patch clamp recordings that D2 receptors mediate both Gβγ (i.e. voltage-dependent) and voltage-independent inhibition of channel activity. Furthermore, using co-immunoprecipitation and pull down assays involving the intracellular regions of each protein, we show that D2 receptors and N-type channels form physical signaling complexes. Finally, we use confocal microscopy to demonstrate that D2 receptors regulate N-type channel trafficking to affect the number of calcium channels available at the plasma membrane. Taken together, these data provide evidence for multiple voltage-dependent and voltage-independent mechanisms by which D2 receptor subtypes influence N-type channel activity.  相似文献   

8.
Understanding precisely the functioning of voltage-gated Ca2+ channels and their modulation by signaling molecules will help clarifying the Ca(2+)-dependent mechanisms controlling exocytosis in chromaffin cells. In recent years, we have learned more about the various pathways through which Ca2+ channels can be up- or down-modulated by hormones and neurotransmitters and how these changes may condition chromaffin cell activity and catecolamine release. Recently, the attention has been focused on the modulation of L-channels (CaV 1), which represent the major Ca2+ current component in rat and human chromaffin cells. L-channels are effectively inhibited by the released content of secretory granules or by applying mixtures of exogenous ATP, opioids, and adrenaline through the activation of receptor-coupled G proteins. This unusual inhibition persists in a wide range of potentials and results from a direct (membrane-delimited) interaction of G protein subunits with the L-channels co-localized in membrane microareas. Inhibition of L-channels can be reversed when the cAMP/PKA pathway is activated by membrane permeable cAMP analog or when cells are exposed to isoprenaline (remote action), suggesting the existence of parallel and opposite effects on L-channel gating by distinctly activated membrane autoreceptors. Here, the authors review the molecular components underlying these two opposing signaling pathways and present new evidence supporting the presence of two L-channel types in rat chromaffin cells (alpha1C and alpha1D), which open new interesting issues concerning Ca(2+)-channel modulation. In light of recent findings on the regulation of exocytosis by Ca(2+)-channel modulation, the authors explore the possible role of L-channels in the autocontrol of catecholamine release.  相似文献   

9.
Reliable neuronal communication depends on accurate temporal correlation between the action potential and neurotransmitter release. Although a requirement for Ca(2+) in neurotransmitter release is amply documented, recent studies have shown that voltage-sensitive G protein-coupled receptors (GPCRs) are also involved in this process. However, how slow-acting GPCRs control fast neurotransmitter release is an unsolved question. Here we examine whether the recently discovered fast depolarization-induced charge movement in the M(2)-muscarinic receptor (M(2)R) is responsible for M(2)R-mediated control of acetylcholine release. We show that inhibition of the M(2)R charge movement in Xenopus oocytes correlated well with inhibition of acetylcholine release at the mouse neuromuscular junction. Our results suggest that, in addition to Ca(2+) influx, charge movement in GPCRs is also necessary for release control.  相似文献   

10.
《Cellular signalling》2014,26(6):1269-1282
Heterotrimeric guanine nucleotide-binding proteins (G proteins), which consist of three subunits α, β, and γ, function as molecular switches to control downstream effector molecules activated by G protein-coupled receptors (GPCRs). The GTP/GDP binding status of Gα transmits information about the ligand binding state of the GPCR to intended signal transduction pathways. In immune cells heterotrimeric G proteins impact signal transduction pathways that directly, or indirectly, regulate cell migration, activation, survival, proliferation, and differentiation. The cells of the innate and adaptive immune system abundantly express chemoattractant receptors and lesser amounts of many other types of GPCRs. But heterotrimeric G-proteins not only function in classical GPCR signaling, but also in non-canonical signaling. In these pathways the guanine exchange factor (GEF) exerted by a GPCR in the canonical pathway is replaced or supplemented by another protein such as Ric-8A. In addition, other proteins such as AGS3-6 can compete with Gβγ for binding to GDP bound Gα. This competition can promote Gβγ signaling by freeing Gβγ from rapidly rebinding GDP bound Gα. The proteins that participate in these non-canonical signaling pathways will be briefly described and their role, or potential one, in cells of the immune system will be highlighted.  相似文献   

11.
This article reviews the types and roles of voltage-independent Ca(2+) channels involved in the endothelin-1 (ET-1)-induced functional responses such as vascular contraction, cell proliferation, and intracellular Ca(2+)-dependent signaling pathways and discusses the molecular mechanisms for the activation of voltage-independent Ca(2+) channels by ET-1. ET-1 activates some types of voltage-independent Ca(2+) channels, such as Ca(2+)-permeable nonselective cation channels (NSCCs) and store-operated Ca(2+) channels (SOCC). Extracellular Ca(2+) influx through these voltage-independent Ca(2+) channels plays essential roles in ET-1-induced vascular contraction, cell proliferation, activation of epidermal growth factor receptor tyrosine kinase, regulation of proline-rich tyrosine kinase, and release of arachidonic acid. The experiments using various constructs of endothelin receptors reveal the importance of G(q) and G(12) families in activation of these Ca(2+) channels by ET-1. These findings provide a potential therapeutic mechanism of a functional interrelationship between G(q)/G(12) proteins and voltage-independent Ca(2+) channels in the pathophysiology of ET-1, such as in chronic heart failure, hypertension, and cerebral vasospasm.  相似文献   

12.
The regulation of growth hormone (GH) secretion by intracellular Ca(2+) stores was studied in dissociated goldfish somatotropes. We characterized a caffeine-activated intracellular store that had been shown to mediate GH release in response to gonadotropin-releasing hormone. The peak response of caffeine stimulation was reduced by approximately 28% by 100 microM ryanodine in a use-dependent manner suggesting that the first 10 min of GH release is partially mediated by a caffeine-activated ryanodine receptor. The temporal sensitivities of caffeine- and dopamine-evoked GH release to blockade of Cd(2+)-sensitive Ca(2+) channels were compared. We demonstrated that the initial phase of dopamine-evoked release was dependent on Ca(2+) channels, whereas the initial phase of caffeine-evoked release was sensitive only to pretreatment blockade. This would suggest that the maintenance of one class of caffeine-activated intracellular stores requires entry of Ca(2+) through Cd(2+)-sensitive Ca(2+) channels. This differential temporal requirement for Ca(2+) channels in Ca(2+) signaling may be a mechanism to segregate intracellular signaling pathways of multiple neuroendocrine regulators in the teleost pituitary.  相似文献   

13.
The molecular machinery underlying action potential-evoked, synchronous neurotransmitter release, has been intensely studied. It was presumed that two other forms of exocytosis, delayed (asynchronous) and spontaneous transmission, were mediated by the same voltage-activated Ca(2+) channels (VACCs), intracellular Ca(2+) sensors and vesicle pools. However, a recent explosion in the study of spontaneous and asynchronous release has shown these presumptions to be incorrect. Furthermore, the finding that different forms of synaptic transmission may mediate distinct physiological functions emphasizes the importance of identifying the mechanisms by which Ca(2+) regulates spontaneous and asynchronous release. In this article, we will briefly summarize new and published data on the role of Ca(2+) in regulating spontaneous and asynchronous release at a number of different synapses. We will discuss how an increase of extracellular [Ca(2+)] increases spontaneous and asynchronous release, show that VACCs are involved at only some synapses, and identify regulatory roles for other ion channels and G protein-coupled receptors. In particular, we will focus on two novel pathways that play important roles in the regulation of non-synchronous release at two exemplary synapses: one modulated by the Ca(2+)-sensing receptor and the other by transient receptor potential cation channel sub-family V member 1.  相似文献   

14.
Ca(2+) signaling pathways control many physiological processes in almost all types of animal cells such as fertilization, muscle contraction, hormone release, and learning and memory. Each animal cell type expresses a unique group of molecules from the Ca(2+) signaling 'toolkit' to control spatiotemporal patterns of Ca(2+) signaling. It is generally believed that the complex Ca(2+) signaling 'toolkit' has arisen from the ancestral multicellular organisms to fit unique physiological roles of specialized cell types. Here, we demonstrate for the first time the presence of an extensive Ca(2+) signaling 'toolkit' in the unicellular choanoflagellate Monosiga brevicollis. Choanoflagellates possess homologues of various types of animal plasma membrane Ca(2+) channels including the store-operated channel, ligand-operated channels, voltage-operated channels, second messenger-operated channels, and 5 out of 6 animal transient receptor potential channel families. Choanoflagellates also contain homologues of inositol 1,4,5-trisphosphate receptors. Furthermore, choanoflagellates master a complete set of Ca(2+) removal systems including plasma membrane and sarco/endoplasmic reticulum Ca(2+) ATPases and homologues of 3 animal cation/Ca(2+) exchanger families. Therefore, a complex Ca(2+) signaling 'toolkit' might have evolved before the emergence of multicellular animals.  相似文献   

15.
Pan ZH  Hu HJ  Perring P  Andrade R 《Neuron》2001,32(1):89-98
Transmitter release in neurons is thought to be mediated exclusively by high-voltage-activated (HVA) Ca(2+) channels. However, we now report that, in retinal bipolar cells, low-voltage-activated (LVA) Ca(2+) channels also mediate neurotransmitter release. Bipolar cells are specialized neurons that release neurotransmitter in response to graded depolarizations. Here we show that these cells express T-type Ca(2+) channel subunits and functional LVA Ca(2+) currents sensitive to mibefradil. Activation of these currents results in Ca(2+) influx into presynaptic terminals and exocytosis, which we detected as a capacitance increase in isolated terminals and the appearance of reciprocal currents in retinal slices. The involvement of T-type Ca(2+) channels in bipolar cell transmitter release may contribute to retinal information processing.  相似文献   

16.
Unified mechanisms of Ca2+ regulation across the Ca2+ channel family   总被引:3,自引:0,他引:3  
L-type (CaV1.2) and P/Q-type (CaV2.1) calcium channels possess lobe-specific CaM regulation, where Ca2+ binding to one or the other lobe of CaM triggers regulation, even with inverted polarity of modulation between channels. Other major members of the CaV1-2 channel family, R-type (CaV2.3) and N-type (CaV2.2), have appeared to lack such CaM regulation. We report here that R- and N-type channels undergo Ca(2+)-dependent inactivation, which is mediated by the CaM N-terminal lobe and present only with mild Ca2+ buffering (0.5 mM EGTA) characteristic of many neurons. These features, together with the CaM regulatory profiles of L- and P/Q-type channels, are consistent with a simplifying principle for CaM signal detection in CaV1-2 channels-independent of channel context, the N- and C-terminal lobes of CaM appear invariably specialized for decoding local versus global Ca2+ activity, respectively.  相似文献   

17.
Stojilkovic SS 《Cell calcium》2012,51(3-4):212-221
Endocrine pituitary cells express numerous voltage-gated Na(+), Ca(2+), K(+), and Cl(-) channels and several ligand-gated channels, and they fire action potentials spontaneously. Depending on the cell type, this electrical activity can generate localized or global Ca(2+) signals, the latter reaching the threshold for stimulus-secretion coupling. These cells also express numerous G-protein-coupled receptors, which can stimulate or silence electrical activity and Ca(2+) influx through voltage-gated Ca(2+) channels and hormone release. Receptors positively coupled to the adenylyl cyclase signaling pathway stimulate electrical activity with cAMP, which activates hyperpolarization-activated cyclic nucleotide-regulated channels directly, or by cAMP-dependent kinase-mediated phosphorylation of K(+), Na(+), Ca(2+), and/or non-selective cation-conducting channels. Receptors that are negatively coupled to adenylyl cyclase signaling pathways inhibit spontaneous electrical activity and accompanied Ca(2+) transients predominantly through the activation of inwardly rectifying K(+) channels and the inhibition of voltage-gated Ca(2+) channels. The Ca(2+)-mobilizing receptors activate inositol trisphosphate-gated Ca(2+) channels in the endoplasmic reticulum, leading to Ca(2+) release in an oscillatory or non-oscillatory manner, depending on the cell type. This Ca(2+) release causes a cell type-specific modulation of electrical activity and intracellular Ca(2+) handling.  相似文献   

18.
Stimulus-secretion coupling is a complex set of intracellular reactions initiated by an external stimulus that result in the release of hormones and neurotransmitters. Under physiological conditions this signaling process takes a few milliseconds, and to minimize delays cells have developed a formidable integrated network, in which the relevant molecules are tightly packed on the nanometer scale. Active zones, the sites of release, are composed of several different proteins including voltage-gated Ca(2+) (Ca(V)) channels. It is well acknowledged that hormone and neurotransmitter release is initiated by the activation of these channels located close to docked vesicles, though the mechanisms that enrich channels at release sites are largely unknown. Interestingly, Rab3 binding proteins (RIMs), a diverse multidomain family of proteins that operate as effectors of the small G protein Rab3 involved in secretory vesicle trafficking, have recently identified as binding partners of Ca(V) channels, placing both proteins in the center of an interaction network in the molecular anatomy of the active zones that influence different aspects of secretion. Here, we review recent evidences providing support for the notion that RIMs directly bind to the pore-forming and auxiliary β subunits of Ca(V) channels and with RIM-binding protein, another interactor of the channels. Through these interactions, RIMs regulate the biophysical properties of the channels and their anchoring relative to active zones, significantly influencing hormone and neurotransmitter release.  相似文献   

19.
Regulation of atrial release of atrial natriuretic peptide (ANP) is coupled to changes in atrial dynamics. However, the mechanism by which mechanical stretch controls myocytic ANP release must be defined. The purpose of this study was to define the mechanism by which cAMP controls myocytic ANP release in perfused, beating rabbit atria. The cAMP-elevating agents forskolin and 3-isobutyl-1-methylxanthine (IBMX) inhibited myocytic ANP release. The activation of adenylyl cyclase with forskolin inhibited ANP release, which was a function of an increase in cAMP production. Inhibitors for L-type Ca(2+) channels and protein kinase A (PKA) attenuated a minor portion of the forskolin-induced inhibition of ANP release. G?-6976 and KN-62, which are specific inhibitors for protein kinase C-alpha and Ca(2+)/calmodulin kinase, respectively, failed to modulate forskolin-induced inhibition of ANP release. The nonspecific protein kinase inhibitor staurosporine blocked forskolin-induced inhibition of ANP release in a dose-dependent manner. Staurosporine but not nifedipine shifted the relationship between cAMP and ANP release. Inhibitors for L-type Ca(2+) channels and PKA and staurosporine blocked forskolin-induced accentuation of atrial dynamics. These results suggest that cAMP inhibits atrial myocytic release of ANP via protein kinase-dependent and L-type Ca(2+)-channel-dependent and -independent signaling pathways.  相似文献   

20.
Voltage-gated calcium channels (VGCCs) convert electrical activity into calcium (Ca2+) signals that regulate cellular excitability, differentiation, and connectivity. The magnitude and kinetics of Ca2+ signals depend on the number of VGCCs at the plasma membrane, but little is known about the regulation of VGCC surface expression. We report that electrical activity causes internalization of the L-type Ca2+ channel (LTC) CaV1.2 and that this is mediated by binding to the tumor suppressor eIF3e/Int6 (eukaryotic initiation factor 3 subunit e). Using total internal reflection microscopy, we identify a population of CaV1.2 containing endosomes whose rapid trafficking is strongly regulated by Ca2+. We define a domain in the II-III loop of CaV1.2 that binds eIF3e and is essential for the activity dependence of both channel internalization and endosomal trafficking. These findings provide a mechanism for activity-dependent internalization and trafficking of CaV1.2 and provide a tantalizing link between Ca2+ homeostasis and a mammalian oncogene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号