首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The CCN family of proteins: structure-function relationships   总被引:1,自引:0,他引:1  
The CCN proteins are key signalling and regulatory molecules involved in many vital biological functions, including cell proliferation, angiogenesis, tumourigenesis and wound healing. How these proteins influence such a range of functions remains incompletely understood but is probably related to their discrete modular nature and a complex array of intra- and inter-molecular interactions with a variety of regulatory proteins and ligands. Although certain aspects of their biology can be attributed to the four individual modules that constitute the CCN proteins, recent results suggest that some of their biological functions require cooperation between modules. Indeed, the modular structure of CCN proteins provides important insight into their structure-function relationships.  相似文献   

2.
CCN2 consists of 4 distinct modules that are conserved among various CCN family protein members. From the N-terminus, insulin-like growth factor binding protein (IGFBP), von Willebrand factor type C repeat (VWC), thrombospondin type 1 repeat (TSP1) and C-terminal cysteine-knot (CT) modules are all aligned tandem therein. The multiple functionality of CCN2 is thought to be enabled by the differential use of these modules when interacting with other molecules. In this study, we independently prepared all 4 purified module proteins of human CCN2, utilizing a secretory production system with Brevibacillus choshinensis and thus evaluated the cell biological effects of such single modules. In human umbilical vascular endothelial cells (HUVECs), VWC, TSP and CT modules, as well as a full-length CCN2, were capable of efficiently activating the ERK signal transduction cascade, whereas IGFBP was not. In contrast, the IGFBP module was found to prominently activate JNK in human chondrocytic HCS-2/8 cells, while the others showed similar effects at lower levels. In addition, ERK1/2 was modestly, but significantly activated by IGFBP and VWC in those cells. No single module, but a mixture of the 4 modules provoked a significant activation of p38 MAPK in HCS-2/8 cells, which was activated by the full-length CCN2. Therefore, the signals emitted by CCN2 can be highly differential, depending upon the cell types, which are thus enabled by the tetramodular structure. Furthermore, the cell biological effects of each module on these cells were also evaluated to clarify the relationship among the modules, the signaling pathways and biological outcomes. Our present results not only demonstrate that single CCN2 modules were potent activators of the intracellular signaling cascade to yield a biological response per se, while also providing new insight into the module-wise structural and functional relationship of a prototypic CCN family member, CCN2.  相似文献   

3.
The CCN family of proteins (CCN1, CCN2, CCN3, CCN4, CCN5 and CCN6) are multifunctional mosaic proteins that play keys roles in crucial areas of physiology such as angiogenesis, skeletal development tumourigenesis, cell proliferation, adhesion and survival. This expansive repertoire of functions comes through a modular structure of 4 discrete domains that act both independently and in concert. How these interactions with ligands and with neighbouring domains lead to the biological effects is still to be explored but the molecular structure of the domains is likely to play an important role in this. In this review we have highlighted some of the key features of the individual domains of CCN family of proteins based on their biological effects using a homology modelling approach.  相似文献   

4.
It is increasingly clear that melanoma cells modify their environment not only through the release of growth factors (GFs) and cytokines that have autocrine or paracrine effects and strongly modulate the immune response, but also by secreting proteins that become structural or transient components of the extracellular matrix (ECM). Melanoma cell secreted proteins play a significant role in cell–ECM interactions, helping tumor cells to invade neighbouring stroma, disseminate and survive in other tissue contexts. CCN3/NOV (nephroblastoma overexpressed) is a matricellular protein that belongs to the CCN family of proteins containing six members in humans. Its structure consists of modules related to functional domains previously identified in major regulatory proteins: insulin-like growth factor-binding protein (IGFBP), von Willebrand factor type C repeats (VWC), thrombospondin type 1 repeats, and secreted regulatory factors containing cysteine knot motifs. Extensive studies have indicated that the biological properties of CCN3 are dependent upon the cellular context, and its role in melanoma seems to recapitulate cell context functions.  相似文献   

5.
The CCN family of proteins includes six members presently known as CCN1, CCN2, CCN3, CCN4, CCN5 and CCN6. These proteins were originally designated CYR61, CTGF, NOV, and WISP-1, WISP-2, WISP-3. Although these proteins share a significant amount of structural features and a partial identity with other large families of regulatory proteins, they exhibit different biological functions. A critical examination of the progress made over the past two decades, since the first CCN proteins were discovered brings me to the conclusion that most of our present knowledge regarding the functions of these proteins was predicted very early after their discovery. In an effort to point out some of the gaps that prevent us to reach a comprehensive view of the functional interactions between CCN proteins, it is necessary to reconsider carefully data that was already published and put aside, either because the scientific community was not ready to accept them, or because they were not fitting with the « consensus » when they were published. This review article points to avenues that were not attracting the attention that they deserved. However, it is quite obvious that the six members of this unique family of tetra-modular proteins must act in concert, either simultaneously or sequentially, on the same sites or at different times in the life of living organisms. A better understanding of the spatio-temporal regulation of CCN proteins expression requires considering the family as such, not as a set of single proteins related only by their name. As proposed in this review, there is enough convincing pieces of evidence, at the present time, in favor of these proteins playing a role in the coordination of multiple signaling pathways, and constituting a Centralized Communication Network. Deciphering the hierarchy of regulatory circuits involved in this complex system is an important challenge for the near future. In this article, I would like to briefly review the concept of a CCN family of proteins and critically examine the progress made over the past 10 years in the understanding of their biological functions and involvement in both normal and pathological processes.  相似文献   

6.
The CCN proteins are extracellular matrix associated proteins involved in critical cell activities and several aggressive forms of cancer. The proteins share a modular structure of four discrete domains and 38 conserved cysteine residues. The absence of any structural information of these proteins has resulted in a need for the ability to produce substantial amounts of pure CCN protein. Through bacterial expression and inclusion body based purification, pure recombinant CCN proteins have been produced for use in structural and biochemical experiments.  相似文献   

7.
8.
The wide array of biological properties attributed to the CCN family of proteins (Perbal in Lancet 363(9402):62–64, 2004) led me to reconsider the possible relationship and roles that these proteins may play as a team, instead of acting on their own as individual regulators in various signaling pathways. The dynamic model which I present in this review stems from the contribution of the biological properties that we established for CCN3, one of the three founding members of the CCN family, which was identified by our group as the first CCN protein showing growth inhibitory properties (1992), expressed mainly in quiescent cells (1996), and showing anti-tumor activities in several cellular models both ex vivo and in vivo. At the present time CCN3 is the only member of the family that has been reported to negatively act on the progression of the cell cycle. The unique dual localisation of CCN3 in the nucleus and outside cells, either at the membrane or in the extracellular matrix, that I first established in 1999, and that now appears to be shared by several other CCN proteins, is a unique essential feature which can no longer be ignored. Based on the structural and functional properties of CCN3, shared by most of the CCN family members, I propose an « all in one » concept in which CCN proteins are team members with specific functions that are aimed at the same goal. This model accounts both for the functional specificity of the various CCN proteins, their sequential and opposite or complementary effects in various biological context, and for the biological consequences of their physical interaction and biological cross-regulation.  相似文献   

9.
The CCN (CYR61 [Cystein-rich61]/CTGF [connective tissue growth factor]/NOV [Nephroblastoma overexpressed]) proteins constitute a family of regulatory factors involved in many aspects of cell proliferation and differentiation. An increasing body of evidence indicates that abnormal expression of the CCN proteins is associated to tumourgenesis. The multimodular architecture of the CCN proteins, and the production of truncated isoforms in tumours, raise interesting questions regarding the participation of each individual module to the various biological properties of these proteins. In this article, we review the current data regarding the involvement of CCN proteins in tumourigenesis. We also attempt to provide structural basis for the stimulatory and inhibitory functions of the full length and truncated CCN proteins that are expressed in various tumour tissues.  相似文献   

10.
11.
Members of the CCN (CYR61/CTGF/NOV) family have emerged as dynamically expressed, extracellular matrix-associated proteins that play critical roles in cardiovascular and skeletal development, injury repair, fibrotic diseases and cancer. The synthesis of CCN proteins is highly inducible by serum growth factors, cytokines, and environmental stresses such as hypoxia, UV exposure, and mechanical stretch. Consisting of six secreted proteins in vertebrate species, CCNs are typically comprised of four conserved cysteine-rich modular domains. They function primarily through direct binding to specific integrin receptors and heparan sulfate proteoglycans, thereby triggering signal transduction events that culminate in the regulation of cell adhesion, migration, proliferation, gene expression, differentiation, and survival. CCN proteins can also modulate the activities of several growth factors and cytokines, including TGF-beta, TNFalpha, VEGF, BMPs, and Wnt proteins, and may thereby regulate a broad array of biological processes. Recent studies have uncovered novel CCN activities unexpected for matricellular proteins, including their ability to induce apoptosis as cell adhesion substrates, to dictate the cytotoxicity of inflammatory cytokines such as TNFalpha, and to promote hematopoietic stem cell self-renewal. As potent regulators of angiogenesis and chondrogenesis, CCNs are essential for successful cardiovascular and skeletal development during embryogenesis. In the adult, the expression of CCN proteins is associated with injury repair and inflammation, and has been proposed as diagnostic or prognostic markers for diabetic nephropathy, hepatic fibrosis, systemic sclerosis, and several types of cancer. Targeting CCN signaling pathways may hold promise as a strategy of rational therapeutic design.  相似文献   

12.
The CCN family of proteins is composed of six secreted proteins (CCN1-6), which are grouped together based on their structural similarity. These matricellular proteins are involved in a large spectrum of biological processes, ranging from development to disease. In this review, we focus on CCN3, a founding member of this family, and its role in regulating cells within the bone microenvironment. CCN3 impairs normal osteoblast differentiation through multiple mechanisms, which include the neutralization of pro-osteoblastogenic stimuli such as BMP and Wnt family signals or the activation of pathways that suppress osteoblastogenesis, such as Notch. In contrast, CCN3 is known to promote chondrocyte differentiation. Given these functions, it is not surprising that CCN3 has been implicated in the progression of primary bone cancers such as osteosarcoma, Ewing’s sarcoma and chondrosarcoma. More recently, emerging evidence suggests that CCN3 may also influence the ability of metastatic cancers to colonize and grow in bone.  相似文献   

13.
The CCN family of genes currently comprises six secreted proteins (designated CCN1-6 after Cyr61/CCN1; ctgf/CCN2; Nov/CCN3; WISP1/CCN4; WISP2/CCN5, WISP3/CCN6) with a similar mosaic primary structure. It is now well accepted that CCN proteins are not growth factors but matricellular proteins that modify signaling of other molecules, in particular those associated with the extracellular matrix. CCN proteins are involved in mitosis, adhesion, apoptosis, extracellular matrix production, growth arrest and migration of multiple cell types. Since their first identification as matricellular factors, the CCN proteins now figure prominently in a variety of major diseases and are now considered valid candidates for therapeutic targeting. Dissection of the molecular mechanisms governing the biological properties of these proteins is being actively pursued by an expanding network of scientists around the globe who will meet this year at the 5th International Workshop on the CCN family of Genes, organized by the International CCN Society ( http://ccnsociety.com ), home for an international cadre of collaborators working in the CCN field.  相似文献   

14.
The CCN family of genes consists presently of six members in human (CCN1-6) also known as Cyr61 (Cystein rich 61), CTGF (Connective Tissue Growth Factor), NOV (Nephroblastoma Overexpressed gene), WISP-1, 2 and 3 (Wnt-1 Induced Secreted Proteins). Results obtained over the past decade have indicated that CCN proteins are matricellular proteins, which are involved in the regulation of various cellular functions, such as proliferation, differentiation, survival, adhesion and migration. The CCN proteins have recently emerged as regulatory factors involved in both internal and external cell signaling. CCN3 was reported to physically interact with fibulin-1C, integrins, Notch and S100A4. Considering that, the conformation and biological activity of these proteins are dependent upon calcium binding, we hypothesized that CCN3 might be involved in signaling pathways mediated by calcium ions.  相似文献   

15.
CCN5 is one of six proteins in the CCN family. This family of proteins has been shown to play important roles in many processes, including proliferation, migration, adhesion, extracellular matrix regulation, angiogenesis, tumorigenesis, fibrosis, and implantation. In this review, we focus on the biological and putative pathophysiological roles of CCN5. This intriguing protein is structurally unique among the CCN family members, and has a unique biological activity profile as well.  相似文献   

16.
In this Editorial, I would like to provide our readers with a brief mid-year update about our activities and efforts to bring together researchers working on intercellular signaling proteins at international meetings. The roots emerged about 20 years ago in the discovery of three genes originally designated cyr61, ctgf, and nov. The proteins encoded by these genes were first proposed to constitute a family of proteins (CCN) which now comprises 6 members (CCN1, CCN2, CCN3, CCN4-6) including the wisp proteins. These proteins were recognized to share a striking structural organization and a high degree of identity although they exhibited quite distinct biological properties. After historical considerations regarding the reasons for using the CCN acronym, and how the ICCNS publishing landscape that drove the ICCNS from Cell Communication and Signaling to the Journal of Cell Communication and Signaling, this short update will focus on the 7th edition of the International Workshop on the CCN family of genes to be held in Nice, Oct 16–19, 2013.  相似文献   

17.
The CCN family of genes currently comprises six secreted proteins (designated CCN1–6 after Cyr61/CCN1; ctgf/CCN2; Nov/CCN3; WISP1/CCN4; WISP2/CCN5, WISP3/CCN6) with a similar mosaic primary structure. It is now well accepted that CCN proteins are not growth factors but matricellular proteins that modify signaling of other molecules, in particular those associated with the extracellular matrix. CCN proteins are involved in mitosis, adhesion, apoptosis, extracellular matrix production, growth arrest and migration of multiple cell types. Since their first identification as matricellular factors, the CCN proteins now figure prominently in a variety of major diseases and are now considered valid candidates for therapeutic targeting. Dissection of the molecular mechanisms governing the biological properties of these proteins is being actively pursued by an expanding network of scientists around the globe who will meet this year at the 5th International Workshop on the CCN family of Genes, organized by the International CCN Society (http://ccnsociety.com), home for an international cadre of collaborators working in the CCN field.  相似文献   

18.
19.
CCN family protein 2/connective tissue growth factor (CCN2/CTGF) consists of 4 conserved modules that are highly interactive with a number of biomolecules. With such interaction, CCN2 exerts multiple functions by forming an extracellular information network. In the present study, we screened for dodecapeptide sequences that bound to each module of human CCN2 by using a bacteriophage display library. Thereafter, consensus amino acid sequences for the binding to individual modules were extracted in silico and utilized to design anchor peptide aptamers that would facilitate the interaction between CCN2 and other molecules. Direct binding of a few peptides to CCN2 was confirmed by surface plasmon resonance analysis. Subsequent biological assay indicated that one such peptide was capable of promoting the proliferation of CCN2-producing chondrocytic cells. This cell biological activity was found to be sequence specific and CCN2 dependent. Since CCN2/CTGF was shown to be effective in articular cartilage/bone regeneration in vivo, utility of such peptide aptamers in CCN2-associated regenerative therapeutics is suggested herein.  相似文献   

20.
CCN proteins are key regulators of signaling pathways that are essential for the control of normal life, from birth to death. As such, they make use of their unique mosaic structure to interact with several other regulatory proteins and ligands that control the fate of living cells. The various functions attributed to the CCN proteins may sometimes appear contradictory, but this situation reflects the complexity of the multimolecular scaffolds in which CCN proteins are engaged and the critical impact of the microenvironment that dictates the bioavailability of the elementary building blocks. CCN3 is one of the best examples of a CCN protein showing biological properties which may at first glance appear opposite or contradictory. Indeed, CCN3 acts both as a tumor suppressor and is associated with higher metastatic potential. Furthermore, the physical interaction of CCN3 with VEGF and its potential antiangionenic activity in glioma cells are in apparent contradiction with its proangiogenic activity in rabbit cornea. In this communication, I am revisiting the observations that led us to these apparent contradictions. After pointing out how the methodologies that were employed might have contributed to the confusion, I briefly discuss the dual biological activities of CCN3 in the context of tumor cell engineering and survival prognosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号