首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
We have examined intermediate Pi-water oxygen exchange during [gamma-18O]ATP hydrolysis by the F1 adenosine triphosphatase from Escherichia coli K-12. Water oxygen incorporation into each Pi released was increased as ATP concentration was lowered as observed previously for the same reaction catalyzed by the enzyme from eukaryotic sources. Heterogeneous distributions of 18O in product Pi were produced by coexisting epsilon subunit-replete and epsilon subunit-depleted enzyme molecules. The epsilon-replete enzyme showed a much higher probability for oxygen exchange. These data imply that the epsilon subunit inhibits net ATP hydrolysis by imposing conformational constraints which reduce the cooperative conformational interactions that promote ADP and Pi release. Four enzyme variants altered in alpha or beta subunit structure with reduced net hydrolytic activity showed sharply increased oxygen exchange during ATP hydrolysis. Heterogeneity was apparent in the 18O distribution of the product Pi, however. That behavior could reflect hindered conformational interactions and/or increased affinity of the alpha 3 beta 3 gamma delta complex for the epsilon subunit. In contrast, enzyme from mutant uncA401 showed very little oxygen exchange accompanying hydrolysis of 20 microM ATP. This is the only enzyme so far reported with this unusual property. Its rate limitation appears to be in the hydrolytic rather than the product release step of the catalytic sequence.  相似文献   

2.
The time course of oxygen-18 exchange between [18O]Pi and normal water, catalyzed by myosin subfragment 1 in the presence of MgADP, was followed using the shift in 31P NMR caused by the presence of oxygen-18 bound to the phosphorus. Essentially all molecules of [18O]Pi that bind to the enzyme undergo complete exchange and are released as [16O4]Pi. Exchange probably occurs by formation of myosin.ATP from a myosin.ADP.Pi complex and is rapid relative to release of Pi from this complex. The kinetics of exchange give a value for the rate constant for binding Pi to myosin.ADP of 0.23 M-1 S-1 (pH 8.0, 22 degrees C). This value is consistent with exchange occurring by reversal of the ATP-ase reaction back to the myosin.ATP complex.  相似文献   

3.
The change in the distribution of the phosphate species containing 0 to 4 18O oxygens per Pi was investigated during medium Pi equilibrium HOH exchange catalyzed by myosin subfragment 1. At 25 degrees C, a Pi molecule once bound loses an average of 3.9 of its original 4 oxygens prior to release which means that at least 100 reversals of the exchange reaction must have occurred. At 0 degrees C, only 3.4 of the 4 oxygens are lost prior to release indicating an average of 17 reversals. Distribution patterns are consistent with equivalent participation in the exchange reactions of all 4 oxygens of bound Pi. The intermediate exchange of Pi oxygens during hydrolysis of 18O-labeled ATP by myosin has also been investigated. The distribution of the product Pi species shows that there is an ATPase component in myosin preparations which hydrolyzes ATP without intermediate exchange. Presence of this component, which is likely a contaminating ATPase, provides a simple explanation of the apparent nonequivalence of phosphate oxygens which has been observed. When correction is made for this contaminant, characteristics of the myosin intermediate Pi equilibrium HOH exchange are similar to those of myosin subfragment 1 medium exchange, and intermediate exchange data are in much closer agreement with other kinetic measurements.  相似文献   

4.
We have measured the rate constant for ATP release from myosin heads of Ca2+-activated, demembranated muscle fibers using the technique of phosphate-water oxygen exchange. Single rabbit psoas fibers were held in an activating solution in [18O]water ([MgATP] = 8 mM, ionic strength = 0.2 M, pH = 7.0, 24 degrees C). After about 20% hydrolysis of ATP, product Pi and remaining ATP were isolated, and the distribution of 18O in both molecules was analyzed using a mass spectrometer. The exchange in Pi was similar to that previously reported (Hibberd, M. G., Webb, M. R., Goldman, Y. E., and Trentham, D. R. (1985) J. Biol. Chem. 260, 3496-3501). The amount of 18O in ATP gave a rate constant of about 4 s-1 for ATP release, if it is assumed that each rate constant in the pathway of ATP hydrolysis has the same value for all myosin ATPase sites. However, the distribution of 18O in both released Pi and ATP is not well explained by a single pathway for ATP hydrolysis. We present a model that indicates how such distributions could arise from a range of values for the rate constants for Pi and ATP release from actomyosin, and this range is determined by differences in the amounts of strain in attached crossbridges. The kinetic information obtained from these isotope exchange experiments is compared to show that they give a compatible set of rate constants for actomyosin in fibers.  相似文献   

5.
Rate of ATP synthesis by dynein   总被引:1,自引:0,他引:1  
The rates of ATP synthesis and release by the dynein ATPase were determined in order to estimate thermodynamic parameters according to the pathway: (Formula: see text). Dynein was incubated with high concentrations of ADP and Pi to drive the net synthesis of ATP, and the rate of ATP production was monitored fluorometrically by production of NADPH through a coupled assay using hexokinase and glucose-6-phosphate dehydrogenase. The turnover number for the rate of release of ATP from 22S dynein was 0.01 s-1 per site at pH 7.0, 28 degrees C, assuming a molecular weight of 750 000 per site. The same method gave a rate of ATP synthesis by myosin subfragment 1 of 3.4 X 10(-4) s-1 at pH 7.0, 28 degrees C. The rate of ATP synthesis at the active site was estimated from the time dependence of medium phosphate-water oxygen exchange. Dynein was incubated with ADP and [18O] Pi, and the rate of loss of the labeled oxygen to water was monitored by 31P NMR. A partition coefficient of 0.31 was determined, which is equal to k-2/(k-2 + k3). Assuming k3 = 8 s-1 [Johnson, K.A. (1983) J. Biol. Chem. 258, 13825-13832], k-2 = 3.5 s-1. From the rates of ATP binding and hydrolysis measured previously (Johnson, 1983), the equilibrium constants for ATP binding and hydrolysis could be calculated: K1 = 5 X 10(7) M-1 and K2 = 14.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
R Bowater  J Sleep 《Biochemistry》1988,27(14):5314-5323
The rate of ATP in equilibrium with Pi exchange, that is, the incorporation of medium Pi into ATP during the net hydrolysis of ATP, has been measured for rabbit psoas muscle fibers, myofibrils, and actomyosin subfragment 1 (acto-S1). The maximum exchange rate in fibers at saturating [Pi] is 0.04 s-1 per myosin head at 8 degrees C, pH 7, and an ionic strength of 0.2 M. The dependence of the rate on Pi concentration can be approximated by a hyperbola with an apparent dissociation constant (Km) of 3 mM. Myofibrils catalyze ATP in equilibrium with Pi exchange with a similar Km but at a slightly lower rate. In contrast, the soluble acto-S1 system, in which ATP hydrolysis is not coupled to tension generation, catalyzes exchange at a rate 500 times lower than that of fibers at low Pi concentration, and the Km for Pi is greater than 50 mM. The difference between the ATP in equilibrium with Pi exchange of fibers and of acto-S1 is discussed in terms of a model in which Pi binds to a force-generating state AM'-ADP and, due to mechanical constraint, the average free energy of this state is higher in the fiber than in acto-S1.  相似文献   

7.
At an intermediate stage in the hydrolysis of magnesium adenosine 5'-phosphate (MgATP) by myosin or actomyosin, there is an exchange of oxygen between water and the P gamma group of enzyme-bound nucleotide. Starting with [P gamma-18O]ATP as substrate, the exchange is revealed in the [18O]Pi species that are ultimately released as product into the reaction medium. An analysis of the distribution of these labeled Pi species, which contain 3, 2, 1, or none of the 18O atoms originally on the P gamma of ATP, is used to probe intermediate stages of the hydrolytic mechanism. In recent years, studies of this kind by several groups have shown that more than one pathway of hydrolysis operates. The work reported here demonstrates that two of these pathways are spurious; one is a "nonexchanging MgATPase" that is present in fresh myosin preparations; the other is an induced slow exchange that develops in myosin during storage (-20 degrees C) and subsequent aging (4 degrees C). However, after correction for these artifacts, two normal pathways for actomyosin hydrolysis remain. These normal pathways differ in the mode of interaction between actin and myosin in the course of hydrolysis; one is the Lymn-Taylor pathway where oxygen exchange occurs at a stage when actin and myosin are dissociated; the other is a pathway in which actin and myosin are associated during oxygen exchange. Each of these two pathways contributes an equal amount of Pi to the product pool. Thus, on average, each myosin head uses each of these pathways half the time. The findings suggest, e.g., that during contraction, myosin can dissociate from the actin filament only during every other cycle of MgATP hydrolysis or that only half the heads, at any one time, can exchange oxygen while free of the actin filament.  相似文献   

8.
L D Faller  G A Elgavish 《Biochemistry》1984,23(26):6584-6590
The gastric H,K-ATPase is shown to catalyze 18O exchange between Pi and HOH. Mg2+ is the only ion required for the reaction. K+ increases the rate of isotope exchange, which is directly proportional to specific ATPase activity. Ouabain, which potently inhibits the Na,K-ATPase, has no effect on the exchange reaction. Conversely, omeprazole, which is specific for the H,K-ATPase, completely inhibits 18O exchange. Vanadate inhibition of exchange can be explained by competitive binding with Pi. The rate of 18O exchange is faster than the hydrolytic rate and about equal to the dephosphorylation rate. Thus, the ionic requirements for exchange, inhibition of exchange, and the rate of exchange are all compatible with catalysis occurring via the same phosphoenzyme intermediate formed during hydrolysis of ATP. The distribution of 18O-labeled Pi species formed with time indicates that Pi loss is only about twice as fast as covalent bond formation. This kinetic pattern is unaffected by K+, temperature, or the specific activity of the enzyme preparation. Invariance of the kinetic pattern could mean isotope exchange is always catalyzed by the same form of the enzyme, and K+ and higher temperature accelerate the reaction by increasing the relative amount of the active conformer. Independence of the kinetic pattern from specific activity implies that the catalytic mechanism of active enzyme molecules is unaffected by inactive proteins in gastric microsomal membranes.  相似文献   

9.
Understanding how chemical energy is converted into directed movement is a fundamental problem in biology. In higher organisms this is accomplished through the hydrolysis of ATP by three families of motor proteins: myosin, dynein and kinesin. The most abundant of these is myosin, which operates against actin and plays a central role in muscle contraction. As summarized here, great progress has been made towards understanding the molecular basis of movement through the determination of the three-dimensional structures of myosin and actin and through the establishment of systems for site-directed mutagenesis of this motor protein. It now appears that the generation of movement is coupled to ATP hydrolysis by a series of domain movements within myosin.  相似文献   

10.
The capacity of various ATPase preparations from beef heart mitochondria to catalyze exchange of phosphate oxygens with water has been evaluated. Oligomycin-sensitive ATPase preparations retain a capacity for considerable intermediate Pi equilibrium HOH exchange per Pi formed during ATP hydrolysis at relatively high ATP concentration (5 mM). Submitochondrial particles prepared by an ammonia-Sephadex procedure with 5 mM ATP showed more rapid ATPase, less oligomycin sensitivity, and less capacity for intermediate exchange. With these particles, intermediate Pi equilibrium HOH exchange per Pi formed was increased as ATP concentration was decreased. The purified, soluble ATPase from mitochondria catalyzed little or no intermediate Pi equilibrium HOH exchange at 5 mM ATP but showed pronounced increase in capacity for such exchange as ATP concentration was lowered. The ATPase also showed a weak catalysis of an ADP-stimulated medium Pi equilibrium HOH exchange. The results support the alternating catalytic site model for ATP synthesis or cleavage. They also demonstrate that a transmembrane protonmotive force is not necessary for oxygen exchange reactions. At lower ATP concentrations, ADP and Pi formed at a catalytic site appear to remain bound and continue to allow exchange of Pi oxygens until ATP binds at another site on the enzyme.  相似文献   

11.
Photolytic release of ATP from inactive P(3)-[1-(2-nitrophenyl)]ethyl ester of ATP (NPE-caged ATP) provides a means to reveal molecular interactions between nucleotide and enzyme by using infrared spectroscopy. Reaction-induced infrared difference spectra of bovine intestinal alkaline phosphatase (BIAP) and of NPE-caged ATP revealed small structural alterations on the peptide backbone affecting one or two amino-acid residues. After photorelease of ATP, the substrate could be hydrolyzed sequentially by the enzyme producing three Pi, adenosine, and the photoproduct nitrosoacetophenone. It was concluded that NPE-caged ATP could bind to BIAP prior to the photolytic cleavage of ATP and that Pi could interact with BIAP after photolysis of NPE-caged ATP and hydrolysis, yielding infrared spectra with distinct structure changes of BIAP. This suggests that the molecular mechanism of ATP hydrolysis by BIAP involved small structural adjustments of the peptide backbone in the vicinity of the active site during ATP hydrolysis which continued during Pi binding.  相似文献   

12.
The extent of oxygen exchange between phosphate and water has been measured for the calcium-regulated magnesium-dependent ATPase activity of chemically skinned fibers from rabbit skeletal muscle. The oxygen exchange was determined for isometrically held fibers by measuring with a mass spectrometer the distribution of 18O atoms in the product inorganic phosphate when ATP hydrolysis was carried out in H2(18)O. The extent of exchange was much greater in relaxed muscle (free Ca2+ less than 10(-8) M) than in calcium-activated muscle (free Ca2+ approximately equal to 3 X 10(-5) M). Activated fibers had an ATPase activity at least 30-fold greater than the relaxed fibers. These results correlate well with the extents of oxygen exchange accompanying magnesium-dependent myosin and unregulated actomyosin ATPase activities, respectively. In relaxed fibers, comparison of the amount of exchange with the ATPase activity suggests that the rate constant for the reformation of myosin-bound ATP from the myosin products complex is about 10 s-1 at 20 degrees C and pH 7.1. In each experiment the distribution of 18O in the Pi formed was incompatible with a single pathway for ATP hydrolysis. In the case of the calcium-activated fibers, the multiple pathways for ATP hydrolysis appeared to be an intrinsic property of the actomyosin ATPase in the fiber. These results indicate that in muscle fibers, as in isolated actomyosin, cleavage of protein-bound ATP is readily reversible and that association of the myosin products complex with actin promotes Pi release.  相似文献   

13.
In the present study, the question of whether the two myosin active sites are identical with respect to ATP binding and hydrolysis was reinvestigated. The stoichiometry of ATP binding to myosin, heavy meromyosin, and subfragment-1 was determined by measuring the fluorescence enhancement caused by the binding of MgATP. The amount of irreversible ATP binding and the magnitude of the initial ATP hydrolysis (initial Pi burst) was determined by measuring [gamma-32P]ATP hydrolysis with and without a cold ATP chase in a three-syringe quenched flow apparatus. The results show that, under a wide variety of experimental conditions: 1) the stoichiometry of ATP binding ranges from 0.8 to 1 mol of ATP/myosin active site for myosin, heavy meromyosin, and subfragment-1, 2) 80 to 100% of this ATP binding is irreversible, 3) 70 to 90% of the irreversibly bound ATP is hydrolyzed in the initial Pi burst, 4) the first order rate constant for the rate-limiting step in ATP hydrolysis by heavy meromyosin is equal to the steady state heavy meromyosin ATPase rate only if the latter is calculated on the basis of two active sites per heavy meromyosin molecule. It is concluded that the two active sites of myosin are identical with respect to ATP binding and hydrolysis.  相似文献   

14.
Kinetic measurement of the reaction of dynein ATPase (ATP phosphohydrolase, EC 3.6.1.3) extracted from the gills of Mytilus edulis shows that in the presence of Mg2+ there is a very rapid initial liberation of Pi from the dynein-ATP system, followed by a slower liberation in the steady state. In view of following results, we have confirmed that this phenomenon is not due to the accumulation of end products, a fall in substrate concentration, nor to the presence of labile impurities in ATP but is due to the catalytic activity of dynein ATPase. 1. The replacement of native dynein by heat denatured dynein or other kinds of Mg2+-ATPase could not produce such a burst phenomenon under the same condition. 2. Both the rate of initial burst and that of steady state were proportional to enzyme content over a wide range under our standard condition. 3. Initial burst was also observed under the constant ATP level by using a ATP generate system. 4. Preincubation of dynein with Pi prior to initiation of the reaction did not eliminate the initial burst. Some properties of the initial rapid liberation of dynein ATPase were also examined. These are shown below. 5. The free ADP liberation did not show any initial burst though the Pi liberation did in the initial phase and the rate of free ADP liberation was almost equal to that of Pi liberation of the steady state. 6. Mg2+ was more effective than Ca2+ for the appearance of the initial burst while the liberation of Pi in the steady state was activated more by Ca2+ than by Mg2+. The addition of K+ in the presence of Mg2+ resulted in a marked increase of Pi liberation in the steady state but not in the initial state. 7. The activation energy of the initial burst was 9.7 kcal, which is slightly smaller than that of myosin ATPase.  相似文献   

15.
Microtubules accelerate ADP release by dynein   总被引:4,自引:0,他引:4  
E L Holzbaur  K A Johnson 《Biochemistry》1989,28(17):7010-7016
The effects of microtubules on the phosphate-water oxygen exchange reactions catalyzed by dynein were examined in order to determine the mechanism by which microtubules activate the ATPase. Microtubules inhibited the rate of medium exchange observed during net ATP hydrolysis. Inhibition of the exchange reaction was proportional to the extent of microtubule activation of ATP turnover with no effect on the partition coefficient. These data argue that microtubules do not increase the rate of release of phosphate from dynein; rather, they increase the rate of ADP release. Microtubules markedly inhibited medium phosphate-water exchange reactions observed in the presence of ADP and Pi. With increasing concentrations of ADP, the rate of exchange increased in parallel to the dissociation of dynein from the microtubules, suggesting that only free dynein and not the microtubule-dynein complex catalyzes the exchange reaction. The rates of dynein binding to microtubules in the absence and presence of saturating ADP were 1.6 X 10(6) and 9.8 X 10(5) M-1 s-1, respectively. ADP inhibited the rate of the ATP-induced dissociation of the microtubule-dynein complex with an apparent Kd = 0.37 mM for the binding of ADP to the microtubule-dynein complex. However, the rate of dissociation of ADP from the M.D.ADP complex was quite fast (approximately 1000 s-1). These data support the postulate of a high-energy dynein-ADP intermediate and indicate that microtubules activate the dynein ATPase by enhancing the rate of ADP release.  相似文献   

16.
After illumination in the presence of dithiothreitol, chloroplast thylakoids catalyze ATP hydrolysis and an exchange between ATP and Pi in the dark. ATP hydrolysis is linked to inward proton translocation. The relationships between ATP hydrolysis, ATP-Pi exchange, and proton translocation during the steady state were examined. The internal proton concentration was found to be proportional to the rate of ATP hydrolysis when these parameters were varied by procedures that do not alter the proton permeability of the thylakoid membranes. A linear relationship between the internal proton concentration and the rate of nonphosphorylating electron flow was previously verified. By determining the constant relating internal proton concentration to both ATP hydrolysis and electron flow, the proton/ATP ratio for the chloroplast ATPase complex was calculated to be 3.4 +/- 0.3. The presence of Pi, which allows ATP-Pi exchange to occur, lowers the internal proton concentration, but does not alter the relationship between the net rate of ATP hydrolysis and internal proton concentration. ATP-Pi exchange shows a dependence on the proton activity gradient very similar to that of ATP synthesis in the light. These results suggest that ATP-Pi exchange resembles photophosphorylation. In agreement with this idea, it is nucleoside diphosphate from the medium that is phosphorylated during exchange. Moreover, the energy-linked incorporation of Pi and ADP into ATP during exchange occurs at a similar rate. Thus, ATP synthesis from medium ADP and Pi takes place at the expense of the pH gradient generated by ATP hydrolysis.  相似文献   

17.
During net nucleoside triphosphate synthesis by chloroplast ATP synthase the extent of water oxygen incorporation into each nucleoside triphosphate released increases with decrease in ADP, GDP or IDP concentration. Likewise, during net ATP hydrolysis by the Mg2+-activated chloroplast ATPase, the extent of water oxygen incorporation into each Pi released increases as the ATP, GTP, or ITP concentration is decreased. However, the concentration ranges in which substrate modulation occurs differs with each nucleotide. Modulation of oxygen exchange during synthesis and hydrolysis of adenine nucleotides, as measured by variation in the extent of water oxygen incorporation into products, occurs below 250 microM. In contrast, guanosine and inosine nucleotides alter the extent of exchange at higher and much wider concentration ranges. Activation of the chloroplast ATPase by either heat or trypsin results in similar catalytic behavior as monitored by ATP modulation of oxygen exchanges during hydrolysis in the presence of Mg2+. More exchange capacity is evident with octylglucoside-activated enzyme at all ATP concentrations. High levels of tentoxin were also found to alter the catalytic exchange parameters resulting in continued water oxygen exchange into Pi released during hydrolysis at high ATP concentrations. Little or no oxygen exchange accompanies ATP hydrolysis in the presence of Ca2+. The [18O]Pi species formed from highly gamma-18O-labeled ATP at lower ATP concentrations gives a distribution as expected if only one catalytic pathway is operative at a given ATP concentration. This and other results support the concept of catalytic cooperativity between alternating sites as explanation for the modulation of oxygen exchange by nucleotide concentration.  相似文献   

18.
We have found that when the ATP hydrolysis activity of beef heart mitochondrial adenosine triphosphatase (F1) is eliminated by either cold treatment or chemical modification, the enzyme attains the ability to catalyze the Pi in equilibrium ATP exchange reaction. The ATP hydrolysis activity of isolated F1 was lost upon chemical modification by phenyglyoxal, butanedione, or 7-chloro-4-nitrobenzene-2-oxa-1,3-diazole. The F1 thus chemically modified was able to catalyze an ADP-dependent Pi in equilibrium ATP exchange reaction. In addition F1 that had been cold-treated to eliminate ATP hydrolysis activity, also catalyzed the Pi in equilibrium ATP exchange reaction. The Pi in equilibrium ATP exchange catalyzed by modified F1 was shown to be totally inhibited by the F1-specific antibiotic efrapeptin. We have previously shown that isolated beef heart mitochondrial ATPase will catalyze the formation of a transition state analog of the ATP synthesis reaction (Bossard, M. J., Vik, T. A., and Schuster, S. M. (1980) J. Biol. Chem. 255, 5342-5346). While the F1-catalyzed ATP hydrolysis activity was lost rapidly upon chemical modification or cold treatment, the ability of the enzyme to produce Pi . adenosine 5'-diphosphate (chromium(III) salt) from phosphate and monodentate adenosine 5'-diphosphate (chromium(III) salt) was unimpaired. The implications of these data with regard to the mechanism of ATP synthesis are discussed.  相似文献   

19.
Sarcoplasmic reticulum vesicles rendered leaky by exposure to alkaline pH, like intact vesicles, catalyze a rapid Mg2+-dependent exchange of oxygens of medium Pi with water. The exchange with 10 mM Pi is strongly inhibited by 0.15 mM Ca2+. Upon addition and hydrolysis of ITP or ATP, a rapid phosphate-oxygen exchange is observed even with 0.15 mM Ca2+ present and a definite but smaller exchange at 8 mM Ca2+. Oxygen exchange per Pi formed is greater with ITP than with ATP. When no Pi is initially present, the extent of oxygen exchange is increased with time of incubation as Pi is formed. With 18O-labeled Pi present, ATP hydrolysis accelerates 18O loss. The results show that much of the oxygen exchange occurs as a result of reversible binding of medium Pi. Thus the binding and cleavage of ITP or ATP overcomes the Ca2+ inhibition of the medium Pi in equilibrium HOH exchange. Such findings support the concept that the cleavage cycle includes a transient conformational form which can reversibly react with Pi to give a phosphoryl enzyme and resultant oxygen exchange or in a rate-limiting step decay to a form with high Ca2+ and NTP affinity.  相似文献   

20.
A theoretical analysis has been derived which allows the analytical calculation of the complete distribution of 18O-labeled Pi species expected to occur during medium Pi equilibrium HOH exchange of [18O]Pi and to be produced by intermediate Pi equilibrium HOH exchange during net hydrolysis of [18O]PPi or other labeled phosphate compounds. The observed distributions with catalysis by yeast inorganic pyrophosphatase are found to agree closely with the theoretical values indicating that the exchange reaction can be adequately described by a unique value of the partitioning of bound Pi between release from the enzyme versus formation of bound PPi with loss of an oxygen to the water. The limitations on the exclusion of other mechanisms are discussed. The extent of this partitioning does change, however, under some experimental conditions. At low pH, with activation by Mg2+ or Mn2+, the relative rate of release of Pi is found to increase. The extent of exchange is also dependent on the nature of the activating metal, being greatest with Co2+. During PPi hydrolysis with PPi in excess over Mg2+, a shift to lower extents of exchange is observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号