首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVES--To determine prospectively the rates of change in bone mineral density in elderly people and to examine the relation between lifestyle and demographic factors and these rates of change. DESIGN--Longitudinal population based study. SETTING--Dubbo, New South Wales, Australia. SUBJECTS--Representative sample (n = 769) of residents aged > or = 60 on 1 January 1989. MAIN OUTCOME MEASURE--Rates of change in bone mineral density measured prospectively (mean scan interval 2.5 years) at the femoral neck and lumbar spine by dual energy x ray absorptiometry. RESULTS--Summary rates of loss in the femoral neck were 0.96% per year (95% confidence interval 0.64% to 1.28%) in women and 0.82% per year (0.52% to 1.12%) in men. Importantly, rates of loss at the femoral neck (both percentage and absolute) increased in both sexes with advancing age. No significant loss was evident in either sex at the lumbar spine, probably because of coexistent osteoarthritis. Lifestyle factors had only modest effects on rates of loss at either site. CONCLUSIONS--These data show that bone density of the femoral neck declines at an increasing rate in elderly people, and as this site is predictive of fracture suggest that treatment to minimise bone loss may be important even in very elderly people.  相似文献   

2.
Measurement of carbon and nitrogen stable isotope ratios (delta 13C and delta 15N) in samples of human bone collagen (n = 93) from a temporal series of four prehistoric (early preagricultural, late preagricultural, early agricultural, late agricultural) and two historic (early contact, late contact) periods from the Georgia Bight, a continental embayment on the southeastern U.S. Atlantic coast, reveals a general temporal trend for less negative delta 13C values and less positive delta 15N values. This trend reflects a concomitant decrease in emphasis on marine resources and increased reliance on C4-based resources, especially maize. This dietary reorientation is most apparent for the early agricultural sample (AD 1150-1300), coinciding with the Mississippian fluorescence in the eastern United States. There is, however, a shift toward the use of C3 (non-maize) foods during the last prehistoric period (AD 1300-1450), which is likely related to environmental stress and social disruption. A heavier use of maize and terrestrial resources in general after the establishment of mission centers on barrier islands is indicated. A reduced dietary breadth during the mission period may have contributed to the extinction of these populations in the eighteenth century.  相似文献   

3.
Structural characteristics of the femur are compared in preagricultural (2200 B.C.–A.D. 1150) and agricultural (A.D. 1150–1550) subsistence strategy groups from the Georgia coast. Using an automated technique, cross-sectional geometric properties used in structural analyses (areas, second moments of area) were determined at midshaft and distal to the lesser trochanter in 20 adults from each group. A significant decline in magnitude of almost every geometric property occurs in the agricultural group. The differences between groups are reduced but still significant for many properties after standardizing for bone length differences. In addition, a remodeling of the femoral cortex to one of relatively smaller medullary and subperiosteal diameter, as well as a more circular cross-sectional shape, is characteristic of agricultural femora. Thus, while the relative cross-sectional area of bone remains the same, the spatial distribution of bone area is different in the two groups. The results strongly suggest a relative reduction in mechanical loadings of the femur in the agricultural group, implying different levels and possibly types of activity involving the lower limb in the two groups. The data are also compared with similar data available for the Pecos Pueblo (agricultural) sample. The comparison indicates that types of activity may have been more similar in the two agricultural samples, but that general levels of activity were more similar in the Pecos Pueblo and Georgia coast preagricultural samples.  相似文献   

4.
The chronological distributions of enamel hypoplasias (indicators of nonspecific stress) are assessed for 111 individuals from two prehistoric populations from Dickson Mounds, Lewiston, Illinois. The earlier population (circa A.D. 950-1150) involves a transition from an indigenous gathering-hunting tradition to increasing adoption of Mississippian lifeways. The later population (circa A.D. 1150-1300) is fully Mississippian (MM). Based on the occurrence of hypoplasias on all permanent teeth except third molars, 14 half-year periods from birth to 7.0 years are graded for evidence of hypoplasia-stress. Both populations have a low frequency of hypoplasia which occur before 2 years of age and after 4 years of age. A common peak frequency of hypoplasias between 2.0 and 4.0 years is suggestive of an elevated degree of stress at weaning. The peak frequency of hypoplasias is earlier in the MM (2.5-3.0 years versus 3.0-3.5 years in the pre-Mississippian population). In addition, the rise to and decline from peak frequency occurs approximately 0.5 years earlier in the MM. The earlier and sharper rise to peak frequency suggests earlier and more severe weanling-related stress. Hypoplasias chronologies are undoubtedly influenced by age-related host resistance factors (Sarnat and Schour, 1941). Nevertheless, these data demonstrate that populations may vary in their chronological distribution of hypoplasias and that these variations may provide useful information on age-related patterns of exposure to environmental stressors.  相似文献   

5.
The dose dependent effect of ipriflavone (7-isopropoxy-isoflavone) on the femoral bone in streptozotocin-induced diabetic rats was studied by microdensitometric analysis. Diabetic rats showed severe hyperglycemia, glucosuria, hypoinsulinemia, associated with increased urinary calcium and hydroxyproline. Microdensitometric analysis revealed decreases in femoral length, bone width, and bone density. The dietary administration of ipriflavone (about 270 mg/kg/day) to the diabetic rats for 6 weeks prevented reduction of the cortical thickness index in the diaphysis and depletion of bone density in the distal metaphysis, and also reduced the inner diameter of the diaphysis; diabetic state was not improved. A simple correlation and linear regression analysis revealed that ipriflavone also significantly reduced the inner diameter in the diaphysis at a dose of 90 mg/kg/day, but not at one of 25 mg/kg/day. These results suggest that ipriflavone suppresses the depletion of the femoral bone through inhibition of bone resorption in a dose dependent fashion; its minimum effective dose is 90 mg/kg/day in experimental diabetes.  相似文献   

6.
An evaluation of the model of loadings acting on the femoral bone during the whole gait cycle was the main aim of the paper. A computer simulation of the musculoskeletal system based on the gait data collected during gait was used to determine the muscle forces as well as the hip joint reaction. Kinematic parameters as well as the ground reaction force for ninety-nine healthy persons of both sexes (18–36 years old) who had no history of musculoskeletal disease were registered during normal gait with preferred speed and used as inputs for musculoskeletal modelling and numerical simulation with the use of the AnyBody software. Time waveforms of the values of force generated by 21 muscles having attachments on the femoral bone as well as the hip joint reaction force were obtained. Directions of particular forces were presented using a femoral coordinate system. Attachment points for all muscle forces were obtained on the basis of the unscaled standard model with the length of the femur equal to 0.41 m. The presented model of loadings acting on the femoral bone element can be useful for the biomechanical analysis of bone development and remodelling as well as for the optimisation of implant or bone stabilizer design and pre-clinical testing.  相似文献   

7.
Aging decreases the human femur’s fatigue resistance, impact energy absorption, and the ability to withstand load. Changes in the osteocyte distribution and in their elemental composition might be involved in age‐related bone impairment. To address this question, we carried out a histomorphometric assessment of the osteocyte lacunar distribution in the periosteal and endosteal human femoral cortexes of 16 female and 16 male donors with regard to age‐ and sex‐related bone remodeling. Measurements of the bone mineral density distribution by quantitative backscattered electron imaging and energy dispersive X‐ray analysis were taken to evaluate the osteocyte lacunar mineral composition and characteristics. Age‐dependent decreases in the total osteocyte lacunar number were measured in all of the cases. This change signifies a risk for the bone’s safety. Cortical subdivision into periosteal and endosteal regions of interest emphasized that, in both sexes, primarily the endosteal cortex is affected by age‐dependent reduction in number of osteocyte lacunae, whereas the periosteal compartment showed a less pronounced osteocyte lacunar deficiency. In aged bone, osteocyte lacunae showed an increased amount of hypermineralized calcium phosphate occlusions in comparison with younger cases. With respect to Frost’s early delineation of micropetrosis, our microanalyses revealed that the osteocyte lacunae are subject to hypermineralization. Intralacunar hypermineralization accompanied by a decrease in total osteocyte lacunar density may contribute to failure or delayed bone repair in aging bone. A decreased osteocyte lacunar density may cause deteriorations in the canalicular fluid flow and reduce the detection of microdamage, which counteracts the bone’s structural integrity, while hypermineralized osteocyte lacunae may increase bone brittleness and render the bone fragile.  相似文献   

8.
Soy isoflavones (IFs) have shown a bone-sparing effect through epidemiological studies in the Asian population. However, there is no evidence as to whether such protection would result from a lifelong exposure. We investigated the impact of an early exposure to IFs on bone status. Sixty female Wistar rats were fed either a standard diet (n=30) or the same food enriched with IFs (0.87 mg/g of diet) (n=30). After 1 month, they were allowed to mate, and were kept on the same regimen during the whole gestation and lactation periods. At weaning, female pups were each assigned to one of four nutritional groups; within each experimental group, animals were split into two groups, fed either the standard or the IF-rich diet. At 2, 3, 6, 12, 18, and 24 months after birth, 10 animals in each group were sacrificed. Femurs were collected for mechanical testing and bone mineral density (BMD) measurement. The rats perinatally or lifelong exposed to the IF-rich diet exhibited higher body weight and fat mass at 24 months of age. Peak bone mass was achieved between 6 and 12 months and did not differ between groups. In animals perinatally exposed to IF, BMD continued to increase. Thus, at 24 months, femoral total BMD (P<0.05), metaphyseal BMD (P<0.01), and failure load (P<0.05) were higher in the offspring born from mothers provided IF during pregnancy. Postnatal exposure alone did not improve bone parameters. This experiment provides evidence that perinatal exposure to phytoestrogens leads to a higher BMD later in life. It is suggested that these changes may have occurred as a consequence of programming effects, as has been shown for the endocrine and immune systems.  相似文献   

9.
1. Increasing ungulate populations are affecting vegetation negatively in many areas, but few studies have assessed the long-term effects of overbrowsing on individual life-history traits of ungulates. 2. Using an insular population of white-tailed deer (Odocoileus virginianus Zimmermann; Anticosti, Québec, Canada) introduced in 1896, and whose density has remained high since the first evidence of severe browsing in the 1930s, we investigated potential feedbacks of long-term and heavy browsing on deer life-history traits. 3. We assessed whether chronic browsing contributed to a decline of the quality of deer diet in early autumn during the last 25 years, and evaluated the impacts of reduced diet quality on deer body condition and reproduction. 4. Rumen nitrogen content declined 22% between two time periods, 1977-79 and 2002-04, indicating a reduction in diet quality. 5. After accounting for the effects of year within the time period, age and date of harvest in autumn, peak body mass of both sexes declined between the two time periods. At the end of November, males were on average 12% heavier and adult does 6% heavier in 1977-79 than in 2002-04. Hind foot length did not vary between time periods. 6. The probability of conception increased 15% between the two time periods, but litter size at ovulation declined 7%, resulting in a similar total number of ovulations in 2002-04 and in 1977-79. 7. Our results suggest that following a decline in diet quality, white-tailed deer females modified their life-history strategies to maintain reproduction at the expense of growth. 8. Deer appear to tolerate drastic reductions in diet quality by modifying their life history traits, such as body mass and reproduction, before a reduction in density is observed. Such modifications may contribute to maintain high population density of large herbivores following population irruption.  相似文献   

10.
We have measured the (14)C content of human femoral mid-shaft collagen to determine the dynamics of adult collagen turnover, using the sudden doubling and subsequent slow relaxation of global atmospheric (14)C content due to nuclear bomb testing in the 1960s and 1970s as a tracer. (14)C measurements were made on bone collagen from 67 individuals of both sexes who died in Australia in 1990-1993, spanning a range of ages at death from 40 to 97, and these measurements were compared with values predicted by an age-dependent turnover model. We found that the dataset could constrain models of collagen turnover, with the following outcomes: 1) Collagen turnover rate of females decreases, on average, from 4%/yr to 3%/yr from 20 to 80 years. Male collagen turnover rates average 1.5-3%/yr over the same period. 2) For both sexes the collagen turnover rate during adolescent growth is much higher (5-15%/yr at age 10-15 years), with males having a significantly higher turnover rate than have females, by up to a factor of 2. 3) Much of the variation in residual bomb (14)C in a person's bone can be attributed to individual variation in turnover rate, but of no more than about 30% of the average values for adults. 4) Human femoral bone collagen isotopically reflects an individual's diet over a much longer period of time than 10 years, including a substantial portion of collagen synthesised during adolescence.  相似文献   

11.
Experimental hyperthyroidism had a negative effect on bone mineral density, but did not significantly alter mechanical properties of femur and femoral bone thickness. Estradiol at a dose used in humans for the treatment of osteoporosis decreased seminal vesicle weight and concentration of testosterone but increased bone density in male rats compared to intact animals. In these rats, the mechanical analysis revealed an increased mechanical femur strength higher than the increase in bone density and femoral cortical thickness. When hyperthyroid male rats with low bone density were treated with estradiol in spite of a low plasma testosterone, the changes in bone density resulting from hyperthyroidism were entirely prevented. Estrogens protect the male skeleton against resorbing action of T (3). Treatment with estradiol in male rats with hyperthyroidism did not increase mechanical bone strength or femoral cortical thickness as it did with estradiol administration alone. Our results suggest that exogenously administered estrogens may have therapeutic value in preventing bone loss accompanying triiodothyronine administration, even in male rats with a low testosterone levels. At the concentration studied, estradiol increased in spite of low plasma testosterone, bone mineral density, mechanical strength of femur, and femoral cortical thickness.  相似文献   

12.
Osteoporosis has become a growing health concern in developed countries and an extensive area of research in skeletal biology. Despite numerous paleopathological studies of bone mass, few studies have measured bone quality in past populations. In order to examine age- and sex-related changes in one aspect of bone quality in the past, a study was made of trabecular bone architecture in a British medieval skeletal sample. X-ray images of 5-mm-thick coronal lumbar vertebral bone sections were taken from a total of 54 adult individuals divided into three age categories (18-29, 30-49, and 50+ years), and examined using image analysis to evaluate parameters related to trabecular bone structure and connectivity. Significant age-related changes in trabecular bone structure (trabecular bone volume (BV/TV), trabecular number (Tb.N), trabecular separation (Tb.Sp), and anisotropic ratio (Tb.An)) were observed to occur primarily by middle age with significant differences between the youngest and two older age groups. Neither sex showed continuing change in trabecular structure between the middle and old age groups. Age-related changes in bone connectivity (number of nodes (N.Nd) and node-to-node strut length (Nd.Nd)) similarly indicated a change in bone connectivity only between the youngest and two older age groups. However, females showed no statistical differences among the age groups in bone connectivity. These patterns of trabecular bone loss and fragility contrast with those generally found in modern populations that typically report continuing loss of bone structure and connectivity between middle and old age, and suggest greater loss in females. The patterns of bone loss in the archaeological samples must be interpreted cautiously. We speculate that while nutritional factors may have initiated some bone loss in both sexes, physical activity could have conserved bone architecture in old age in both sexes, and reproductive factors such as high parity and extended periods of lactation could have played a key role in female bone maintenance in this historic population. The study of qualitative elements (such as trabecular architecture) is vital if we are to understand bone maintenance and fragility in the past.  相似文献   

13.
Measurement of bone mineral density (BMD) by dual-energy X-ray absorptiometry (DXA) alone is only a moderate predictor of fracture risk. Finite element analysis (FEA) of bone mechanics, based on DXA images, may improve the prediction of fracture risk. We developed a method to estimate the 3D shape and density distribution of the proximal femur, using a 2D BMD image and a femur shape template. Proximal femurs of eighteen human cadavers were imaged using computed tomography and divided into two sets (N = 9 + 9). The template was created from the samples in first set by using 3D generalized Procrustes analysis and thin-plate splines. Subsequently, the template and 2D BMD image were utilized to estimate the shape and internal density distribution of the femurs in the second set. Finally, FEA was conducted based on the original and the estimated bone models to evaluate the effect of geometrical and density distributional errors on the mechanical strength. The volumetric errors induced by the estimation itself were low (<1.4%). In the estimation of bones in the second set, the mean distance difference between the estimated and the original bone surfaces was 0.80 ± 0.19 mm, suggesting feasible estimation of the femoral shape. The mean absolute error in voxel-by-voxel BMD was 120±8 mg cm?3. In FEA, the stiffness of the proximal femur differed by -7±16% between the original and estimated bones. The present method, in comparison with methods used in previous studies, improved the prediction of the geometry, the BMD distribution and the mechanical characteristics of the proximal femur. Potentially, the proposed method could ultimately improve the determination of bone fracture risk.  相似文献   

14.
AIM: To evaluate the bone mineral density at lumbar spine and at femoral neck in a group of young adults in whom Graves' disease developed during childhood and adolescence. PATIENTS AND METHODS: We examined 28 patients (5 male, 23 female, age 20.9 +/- 3.3 years) who were 11.8 +/- 2.9 years old at the onset of Graves' disease. They were treated either with methimazole (14 patients) or with methimazole plus l-thyroxine (14 patients). At the time of the investigation, 13 patients were considered cured following antithyroid treatment, 2 were still on antithyroid drugs, 3 were on replacement therapy with l-thyroxine because of hypothyroidism, and 10, treated either surgically or with (131)I, were on replacement therapy. The bone mineral density was measured at the lumbar spine (L2-L4) and at the femoral neck, using dual-energy X-ray absorptiometry. RESULTS: The spinal bone mineral density SD score was -0.28 +/- 1.02, the femoral neck bone mineral density SD score was 0.36 +/- 1.02, and both were not different from zero (NS). We did not find any correlation between the bone mineral density of the femoral neck and that of the lumbar spine and the clinical parameters. CONCLUSION: Graves' disease, beginning in childhood and adolescence, when appropriately treated, does not affect attainment of peak bone mass.  相似文献   

15.
The relationship between age, sex and histomorphometry in femoral cortical bone was examined in a skeletal population of late Medieval antiquity (AD 1250–1450) from Kulubnarti, in Sudanese Nubia. These skeletal remains are naturally mummified and in an excellent state of preservation. The study sample consisted of femoral cross sections from 24 females and 19 males ranging in age from 20 to 50+ years. Femoral cross sections were examined using an image analysis system. Numbers of secondary osteons and osteon fragments were counted, osteon area and Haversian canal area were measured, and several variables were calculated to assess differences between sexes and among age groups in bone remodeling variables. The results indicate significant differences between the sexes in osteon number and size. Males had significantly more intact osteons than females, whereas females had significantly larger osteons than males. Haversian canal dimensions were not statistically significant between the sexes. Sex differences in activity patterns in which males were involved in more physically strenuous tasks may have contributed to differences in remodeling variables. Interpopulational comparisons suggest that mechanical strain affects the microstructural features examined in this study. In particular, small Haversian canals in some archaeological skeletal populations are associated with higher bone volume, which may result from high levels of mechanical strain. Am J Phys Anthropol 104:133–146, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

16.
High-dose testosterone enanthate (TE) may prevent hypogonadism-induced osteopenia. For this study, 3-mo-old male and female Fisher SAS rats underwent sham surgery, gonadectomy (GX), or GX plus 28 days TE administration (7.0 mg/wk). GX reduced serum sex hormones (i.e., testosterone, dihydrotestosterone, and estradiol) (P < 0.05) in both sexes and bone concentrations of testosterone (males only), and estradiol (females only). GX also elevated urine deoxypyridinoline/creatinine in both sexes and serum osteocalcin (females only), findings that are consistent with high-turnover osteopenia. GX reduced cancellous bone volume (CBV) and increased osteoid surfaces in tibia of both sexes. GX males also experienced reduced trabecular number and width and increased trabecular separation, whereas GX females experienced increased osteoblast and osteoid surfaces. Bone biomechanical characteristics remained unaffected by GX, except that femoral stiffness was reduced in females. In contrast, TE administration to GX rats elevated serum and bone androgens to supraphysiological concentrations in both sexes but altered neither serum nor bone estradiol in males. Additionally, TE did not prevent GX-induced reductions in serum or bone estradiol in females. TE also reduced markers of high-turnover osteopenia in both sexes. In males, TE prevented GX-induced changes in trabecular number and separation, CBV, and osteoid surfaces while diminishing osteoblast and osteoclast surfaces; however, these changes were not fully prevented in females. In both sexes, TE increased femoral length and femoral maximal strength to above that of Sham and GX animals while preventing the loss of femoral stiffness in females. In conclusion, TE administration appears protective of cancellous bone in male rats and augments cortical bone strength in both sexes.  相似文献   

17.
Bone quality is an important concept to explain bone fragility in addition to bone mass. Among bone quality factors, microdamage which appears in daily life is thought to have a marked impact on bone strength and plays a major role in the repair process. The starting point for all studies designed to further our understanding of how bone microdamage initiate or dissipate energy, or to investigate the impact of age, gender or disease, remains reliable observation and measurement of microdamage. In this study, 3D Synchrotron Radiation (SR) micro-CT at the micrometric scale was coupled to image analysis for the three-dimensional characterization of bone microdamage in human trabecular bone specimens taken from femoral heads. Specimens were imaged by 3D SR micro-CT with a voxel size of 1.4 μm. A new tailored 3D image analysis technique was developed to segment and quantify microcracks. Microcracks from human trabecular bone were observed in different tomographic sections as well as from 3D renderings. New 3D quantitative measurements on the microcrack density and morphology are reported on five specimens. The 3D microcrack density was found between 3.1 and 9.4/mm3 corresponding to a 2D density between 0.55 and 0.76 /mm2. The microcrack length and width measured in 3D on five selected microcrack ranged respectively from 164 μm to 209 μm and 100 μm to 120 μm. This is the first time that various microcracks in unloaded human trabecular bone--from the simplest linear crack to more complex cross-hatch cracks--have been examined and quantified by 3D imaging at this scale. The suspected complex morphology of microcracks is here considerably more evident than in the 2D observations. In conclusion, this technique opens new perspective for the 3D investigation of microcracks and the impact of age, disease or treatment.  相似文献   

18.
Prolonged chronic inflammation and corticosteroid therapy increase the risk of osteoporosis in patients with Crohn's disease. It has been estimated that 30% of these patients, who take steroids for prolonged periods, will suffer a vertebral fracture. Patients with Crohn's disease are difficult to wean from corticosteroids and therefore are at risk of developing bone complications. The purpose of this cross-sectional study was to examine the relationship between cumulative steroid dose, duration of the disease and the development of osteopenia in patients with Crohn's disease. We studied 28 patients (17 men, 11 women) with Crohn's disease: eight had one or more bowel resections and all the women were premenopausal. Serum calcium, phosphate, total alkaline phosphatase, immunoreactive parathyroid hormone (iPTH), 25(OH)Vitamin D(3) and 1,25 (OH)(2) Vitamin D(3) were measured by autoanalyser methods or radioimmunoassay. Bone mineral density (BMD) was studied using dual energy X-ray bone absorptiometry of the lumbar spine (L2-L4) and the femoral neck. Of these 28 patients, 27 received an average of 17.3 +/- 21.7 g (range 1 to 80) g of prednisone over a period of 4 to 216 months. Fourteen out of the 28 patients had mildly diminished bone density (z-score >-2.5 SD and < -1 SD) of the spine and 15/28 of the hip. We found a greater decrease in bone density (z-score < -2.5 SD) in 2 out of 28 patients at the spine and in 5 out of 28 at the femoral neck. Those in whom the duration of the disease was less than two years (12 patients) had significantly higher vertebral z-scores (-0.096 +/-0.91) than those who had the disease for over two years (-1.31 +/- 2.37), (p<0.05). We found no significant correlation between lumbar spine and femoral neck z-scores and cumulative steroid therapy. Six out of 28 patients (four women and two men), of mean age 47.2+/-11.7, had one vertebral fracture. The mean cumulative dose of steroids (prednisone or budesonide) in patients with vertebral fractures was higher but not significantly different from that in patients without fractures -20.1+/-18.2 versus 14.1+/-11.2 g of prednisone, respectively (p>0.05). No correlation was found between various serum hormones and other biochemical parameters of bone turnover or bone density. We conclude that a large proportion of patients with Crohn's disease have reduced bone mineral density (58% at the spine and 75% at the femoral neck). The pathogenesis of bone loss is probably multifactorial. Although steroid therapy might be an important contributory factor, we were unable to find a significant correlation between it and bone loss. On the contrary, we observed that the duration of the disease makes a significant contribution to bone loss.  相似文献   

19.

Objective

Osteoporosis is a complication of rheumatoid arthritis. We examined the risk factors for bone loss in rheumatoid arthritis patients receiving biological disease-modifying anti-rheumatic drugs. Lumbar spine and femoral neck bone mineral density was measured at two time points in 153 patients with rheumatoid arthritis managed with biological disease-modifying anti-rheumatic drugs. We examined patients’ variables to identify risk factors for least significant reduction of bone mineral density.

Results

Least significant reduction of lumbar spine bone mineral density (≤ ? 2.4%) was seen in 13.1% of patients. Least significant reduction of femoral neck bone mineral density (≤ ? 1.9%) was seen in 34.0% of patients. Multiple logistic regression analysis showed that a risk factor for least significant reduction of the lumbar spine was high-dose methylprednisolone use. Multiple regression analysis showed that a risk factor for least significant reduction of the femoral neck was short disease duration. Our findings showed that a risk factor for femoral neck bone mineral density reduction was a short disease duration. These findings suggest that rheumatoid arthritis patients receiving treatment with biological disease-modifying anti-rheumatic drugs may benefit from earlier osteoporosis treatments to prevent femoral neck bone loss.
  相似文献   

20.
Optimizing nutrition during development may provide effective prevention strategies to protect against osteoporosis during later life. Because the mouse model is commonly used to test nutritional interventions on bone health, the overall objective of this study was to determine how bone develops during the first 4 months of life by assessing bone mass (bone mineral content (BMC) and bone mineral density (BMD)) and biomechanical strength properties such as peak load in male and female CD-1 mice. Bone outcomes were assessed at 1 month intervals from 1 to 4 months of age. Femur and spine BMC and BMD at 3 months were similar to 4 months, indicating that the accumulation of bone mass occurs primarily during the first 3 months of life. In contrast, the timing of changes in peak load, a measure of bone strength, varied by skeletal site. Regression analyses demonstrated that femur BMC is a significant predictor of femur peak load at the femur midpoint and neck. The study findings suggest that nutritional interventions aimed at optimizing peak bone mass to prevent osteoporosis may be most effective during pubertal growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号