共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Ruthenium red prevented the spontaneous calcium release and the accompanying mitochondrial destruction occurring in calcium-loaded mitochondria in the presence of phosphate. Under these conditions delta pH and membrane potential delta psi were preserved and the ruthenium red-induced calcium efflux was low and at a constant rate. On prolonged incubation with calcium prior to addition of ruthenium red increasingly more mitochondrial calcium developed into a pool rapidly dischargeable by ruthenium red. This development was accompanied by stimulation of respiration which was, however, not abolished by ruthenium red as could have been expected if it had been caused by calcium cycling. Calcium therefore altered mitochondria by a different mechanism than by cycling across the inner membrane. 相似文献
5.
1. Ruthenium Red-insensitive Ca2+ transport in the mouse ascites sarcoma 180/TG is enriched in a 'heavy' microsomal fraction (microsomes) sedimented at 35 000 g for 20 min. The subcellular distribution of this Ca2+ transport differed from that of Ruthenium Red-sensitive Ca2+ transport and (Na+ + K+)-dependent ATPase activity, but was similar to that of glucose 6-phosphatase. 2. The affinity of this transport system for 'free' Ca2+ is high (Km approx. 6 microM) and that for MgATP somewhat lower (Km approx. 100 microM). Ca2+ transport by the tumour microsomes, by contrast with that by liver microsomes, was greatly stimulated by low concentrations of P1. 3. Although incubation of intact ascites cells with glucagon led to an increase in intracellular cyclic AMP, no stable increase in the initial rate of Ca2+ transport in the subsequently isolated 'heavy' microsomes could be detected as in similar experiments carried out previously with rat liver cells. Reconstitution experiments suggest that a deficiency exists in the tumour microsomal membrane such that an action of glucagon that is normally present in rat liver microsomes is not evoked. 相似文献
6.
O2-dependent CA2+ uptake by rat duodenal discs has been characterized and used in a revised assay for 1,25-dihydroxycholecalciferol-induced intestinal Ca2+ transport. Although both muscle and mucosal surfaces are exposed in this free-floating-disc assay, the Ca2+ influx across the muscle surface is small, not O2- or vitamin D-dependent, and can be subtracted out. Depriving the animals of food for 9-14 h before assay increases the O2-dependent uptake by about 75%. Half-saturation values for O2-dependent Ca2+ uptake as determined with this assay are: 0.8mM-Ca2+ (fed) and 0.5mM-Ca2+ (food-deprived) for vitamin D-deficient rats, and 0.9mM-Ca2+ (fed) and 1.5mM-Ca2+ (food-deprived) for rats dosed with 1,25-dihydroxycholecalciferol. The maximum velocity of uptake varies from 6.7nmol of Ca2+ per cm2/min (fed) to 7.0nmol of Ca2+ per cm2/min (food-deprived) for vitamin D-deficient rats and 16.7nmol of Ca2+ per cm2/min (fed) to 29 nmol of Ca2+ per cm2/min (food-deprived) for 1,25-dihydroxycholecalciferol-treated rats. By using a 5 min preincubation and 15 min incubation with 1.0mM-Ca2+, duodenal tissue taken from vitamin D-treated rats shows about a 3-fold increase in O2-dependent Ca2+ uptake when compared with tissue taken from vitamin D-deficient animals. The calcium ionophore A23187, depending on concentration, either has no significant effect on or inhibits the O2-dependent uptake, rather than increasing it. Actinomycin D, at a dose of 2 micrograms/g, inhibits the O2-dependent uptake in intestinal discs from both vitamin D-deficient and vitamin D-treated rats by 58 and 80% respectively, when administered in vivo 3 1/2 h before assay. 相似文献
7.
The bidirectional transport of calcium in rat liver was studied using slices labeled with Ca47 in a closed two compartment system. Steady-state conditions were observed with influx and efflux transfer coefficients of 0.070 and 0.018 per minute, respectively. The rapidly exchanging cell fraction of calcium existed at a concentration three times higher than the average cell concentration of calcium and occupied cell loci comprising less than 25% of the cell mass, suggesting that calcium associated with the cell membranes, nuclei, and mitochondria participated in the rapidly exchanging fraction. At pH 7.4 and 377deg;C, the influx transfer coefficient was 25% above the steady-state condition and accumulation of calcium by the slices occurred. Studies of the effects of varied physical and chemical conditions revealed that the influx transfer coefficient was increased by elevated pH, strontium, certain metabolic inhibitors, and 2 mM concentrations of cyclic adenosinemonophosphate and adenosinetriphosphate. The influx transfer coefficient was decreased by reduced temperature, decreased pH, magnesium, and 10 mM adenosinetriphosphate. The efflux transfer coefficient was increased by elevated pH, strontium, iodoacetate, and adenosinetriphosphate, and was decreased by reduced temperature and by N-ethylmaleimide. These data support the thesis that cell transport of calcium is accomplished by the attachment of calcium atoms to the cell surface and transport through the plasma membrane bound to either specific carriers or to membrane constituents. Conditions which change the affinities, capacities, and mobilities of plasma membrane ligands that bind calcium or cause extracellular chelation of calcium are capable of altering the rate of calcium transport. 相似文献
8.
9.
The kinetic plot (initial rate of Ca2+ transport versus concentration) of mitochondrial Ca2+ transport is hyperbolic in a sucrose medium. The plot becomes sigmoidal in the presence of competitive inhibitors of Ca2+ binding to low affinity sites of the membrane surface such as Mg2+ and K+. The plot also becomes sigmoidal in the presence of Ba2+. Ba2+ is a competitive inhibitor of both Ca2+ transport and Ca2+ binding to the low affinity sites. The Ki for the inhibition of Ca2+ transport by Ba2+ increases in the presence of K+ and Mg2+, which suggests a competition for the low affinity sites between the cations. The plot is still hyperbolic in the presence of La3+, which inhibits Ca2+ transport competitively. Ruthenium red which is a pure non-competitive inhibitor of mitochondrial Ca2+ transport, does not affect the shape of the kinetic plot. These results indicate that the surface potential, which depends on the ions bound to the low affinity sites, determines whether the kinetics of Ca2+ uptake in mitochondria is sigmoidal or hyperbolic. 相似文献
10.
Mitochondria and calcium ion transport. 总被引:42,自引:14,他引:42
A L Lehninger 《The Biochemical journal》1970,119(2):129-138
11.
The short-term effect of L-tri-iodothyronine (T3) on hepatic Ca2+ uptake from perfusate was compared with changes induced by T3 on cellular respiration and glucose output in isolated perfused livers from fasted and fed rats. The same parameters were also studied after the addition of glucagon or vasopressin. T3 (1 microM) induced Ca2+ uptake from the perfusate into the liver within minutes, and the time course was similar to that for stimulation of respiration and gluconeogenesis in livers from fasted rats, and for the stimulation of respiration and glucose output in livers from fed rats. The effects were dose-dependent in the range 1 microM-0.1 nM. Similar changes in the same parameters could be observed with glucagon and vasopressin, but with a completely different time course. Also, the influence of the T3 analogues L-thyroxine (L-T4), 3,5-di-iodo-L-thyronine (L-T2) and 3,3',5-tri-iodo-D-thyronine (D-T3) on hepatic energy metabolism was examined. Whereas D-T3 had practically no effect, L-T4 and L-T2 caused changes in Ca2+ uptake, O2 consumption and gluconeogenesis in livers from fasted rats similar to those with T3. It is concluded that changes in mitochondrial and cytosolic Ca2+ concentrations are involved in the stimulation of respiration and glucose metabolism observed with T3, glucagon and vasopressin. 相似文献
12.
13.
14.
Glucagon effects on the membrane potential and calcium uptake rate of rat liver mitochondria 总被引:1,自引:0,他引:1
It has been widely reported that the in vivo administration of glucagon to rats results in the stimulation of calcium influx in subsequently isolated liver mitochondria. The mechanism of this effect is investigated through simultaneous measurements of calcium uptake rate and mitochondrial membrane potential. This allows the measurement of the calcium uniporter conductance independent of hormonal effects on electron transport or respiration. Two experimental approaches are used. The first involves measuring the uptake of 40-50 nmol of Ca2+/mg of mitochondrial protein with the calcium dye antipyrylazo III; the second uses 45Ca2+ to follow uptake in the presence of 0.5 to 1.5 microM free calcium, buffered with HEDTA. In both cases a tetraphenyl phosphonium electrode is used to follow membrane potential, and membrane potential is varied using either malonate or butylmalonate in the presence of rotenone. The relative merits of these two approaches are discussed. The conductance of the calcium uniporter is found not to be stimulated by glucagon pretreatment. Also, the relative glucagon stimulation of both calcium influx and membrane potential is found to increase with increasing malonate concentration. These results imply that there is no direct stimulation of calcium uptake into liver mitochondria following glucagon treatment. The results are consistent with a glucagon stimulation of substrate transport, substrate oxidation, or a stimulation of electron transport resulting in an increased membrane potential and secondary stimulation of calcium uptake. 相似文献
15.
16.
R K Yamazaki 《The Journal of biological chemistry》1975,250(19):7924-7930
Acute glucagon treatment of intact rats has been found to cause a stimulation of hepatic mitochondrial respiration as measured by monitoring oxygen uptake polarographically. Rates of State 3 respiration with several NAD-linked substrates and succinate were increased significantly after hormonal treatment and isolation of mitochondria. This stimulation cannot be ascribed to a partial uncoupling effect since State 4 respiration as measured by monitoring oxygen uptake polarographically. Rates of State 3 respiration with either slightly increased or unchanged. Furthermore, rates of uncoupled respiration with these substrates were also stimulated after hormonal treatment. On the other hand, respiratory rates (State 3, 4, and uncoupled) with ascorbate-N,N,N',N'-tetramethyl-p-phenylenediamine as substrate were unaffected by glucagon treatment. The hormonally stimulated rates of respiration produced a corresponding increase in the rate of generation of high energy state as indicated in measurements of Ca2+ uptake by isolated mitochondria. Rates of Ca2+ uptake were monitored by two methods: measurement of initial rates of proton ejection following CaCl2 additions and measurement of disappearance of Ca2+ from the suspension medium using murexide as indicator in a dual wavelength spectrophotometer. A significant stimulation in the initial rate of succinate-dependent Ca2+ uptake was noted after glucagon treatment of animals and isolation of hepatic mitochondria. No effect of the hormonal treatment was seen on the extent of Ca2+ uptake or the stoichiometry of H+ ejected per Ca2+ taken up. That the hormonal effect on Ca2+ transport is at the level of the substrate-induced generation of high energy state is indicated by the observation that no effect of glucagon treatment is seen on ATP-dependent Ca2+ uptake. Glucagon-induced changes in the activities of substrate-metabolizing enzymes are considered unlikely for the following reasons: (a) previously published data showed a lack of a hormonal effect on pyruvate-metabolizing enzymes and (b) data in this study showing no effect of glucagon treatment on the activity of NAD-malate dehydrogenase as measured in mitochondrial lysates. All of these observations are consistent with either an activation of mitochondrial substrate transport and/or a stimulation of mitochondrial electron transport by glucagon treatment. Regardless of the exact mechanism involved, the effect of the hormonal treatment is to produce an increase in ATP synthetic and ion-pumping capability during a period of increased energy demand, i.e. increased gluconeogenesis. 相似文献
17.
Calcium efflux from isolated mitochondria on ruthenium red addition was shown to be biphasic. The rate of efflux from a slowly releasable pool was independent of preincubation. It could be saturated and in extrapolation revealed a maximal rate of 3.6 nmol/(min X mg protein). The efflux from a second, rapidly dischargeable pool was related to calcium added up to 300 nmol/mg protein when a final rate of 15 nmol/(min X mg protein) was reached. The magnitude of the latter pool depended on the time of preincubation in the presence of calcium and correlated with mitochondrial swelling. After ruthenium red addition, a further increase of this pool and spontaneous, destructive calcium release was prevented. Three conclusions are drawn from these results: On preincubation with calcium, part of the mitochondrial calcium develops into a rapidly dischargeable pool. This pool is responsible for mitochondrial alterations resulting in a spontaneous, destructive release of total calcium. Ruthenium red inhibits calcium release by discharging mitochondria from this destructive calcium pool. To avoid artefacts, mitochondrial parameters should be carefully controlled when ruthenium red-insensitive calcium efflux is studied. 相似文献
18.
19.