首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oligodendrocytes are myelinating cells of the CNS that originate as progenitor cells (OP) in discrete areas of the developing brain. During brain development, OP migrate significant distances prior to proliferating and myelinating the axons of the putative white matter tracts. Growth factors play a major regulatory role in the behavior of OP. Specifically, platelet-derived growth factor A (PDGF-A) and fibroblast growth factor 2 (FGF2) are two of the most well characterized regulators of OP development. Both growth factors interact with tyrosine kinase receptors, activating various intracellular signaling pathways. The current study advances our earlier research by comparing the effects of both PDGF-A and FGF2 on OP migration. Our results show that activation of ERK is required for OP migration. These findings correlate well with our previous demonstration of the ERK pathway mediating PDGF-A induced OP migration. We also demonstrate the significance of threshold levels of growth factors and temporal regulation for OP migration. In addition, ERK activation alone is not sufficient to induce OP migration. The current research supports the involvement of the non-ERK mediated signaling pathway in OP migration.  相似文献   

2.
Radial intercalation is a common, yet poorly understood, morphogenetic process in the developing embryo. By analyzing cell rearrangement in the prechordal mesoderm during Xenopus gastrulation, we have identified a mechanism for radial intercalation. It involves cell orientation in response to a long-range signal mediated by platelet-derived growth factor (PDGF-A) and directional intercellular migration. When PDGF-A signaling is inhibited, prechordal mesoderm cells fail to orient towards the ectoderm, the endogenous source of PDGF-A, and no longer migrate towards it. Consequently, the prechordal mesoderm fails to spread during gastrulation. Orientation and directional migration can be rescued specifically by the expression of a short splicing isoform of PDGF-A, but not by a long matrix-binding isoform, consistent with a requirement for long-range signaling.  相似文献   

3.
Oligodendrocyte progenitor cell (OPC) migration is critical for effective myelination of the central nervous system. Not only during normal myelination but also during remyelination, the growth factors (GFs) and extracellular matrix (ECM) protein affect the OPC migration. Studies showed the altered levels of GFs and ECM in the demyelinating lesions. In our earlier studies, we have shown that the effect of platelet-derived growth factor alpha (PDGF-A) on OPC migration is dose- and time-dependent. In that we have shown that the physiological concentration (1 ng/ml) of PDGF-A was unable to induce OPC migration at transient exposure (30 min). However, the involvement of ECM in the regulation of PDGF-A mediated OPC migration was not clear. In the present study, we have used fibronectin (FN) as ECM. PDGF-A and FN have similar and overlapping intracellular signaling pathways including the extracellular regulated kinases 1 and 2 (ERK1/2). Here we demonstrate how physiological concentration of PDGF-A combines with FN to augment OPC migration in vitro. The present study is first of its kind to show the importance of the synergistic effects of PDGF-A and FN on peripheral recruitment of phosphorylated/activated ERK1/2 (pERK1/2), actin-pERK1/2 co-localization, and filopodia formation, which are essential for the enhanced OPC migration. These findings were further confirmed by ERK1/2 inhibition studies, using the pharmacological inhibitor U0126. An understanding of these complex interactions may lead to additional strategies for transplanting genetically modified OPCs to repair widespread demyelinated lesions.  相似文献   

4.
Several studies indicate that progesterone exerts relevant effects in breast tissue. However, the exact role of this steroid in breast cancer development and progression has not been elucidated. Here, we show that platelet-derived growth factor (PDGF)-A is one of the progesterone target genes on breast cancer MCF7 and T47D cells. A paracrine role for PDGF-A was investigated, since its receptor expression was down-regulated from breast cancer cells. Progesterone increased PDGF-A protein release as evaluated by Western blotting and ELISA. Medium from Progesterone-treated MCF7 cells resulted in phosphorylation of smooth muscle cells PDGF receptor alpha. This effect was not observed after treatment with PDGF inhibitor. MCF7 cells-secreted PDGF-A was able to increase smooth muscle cell viability and proliferation and decrease apoptosis, effects that were prevented by the use of a PDGF-A neutralizing antibody. Notably, cell invasion was not influenced by PDGF-A secreted by MCF7 cells. Our results elucidated for the first time the cross talk between progesterone and PDGF signaling pathway. The fact that MCF7-secreted PDGF elicited crucial roles in vascular wall smooth muscle cells, suggested a paracrine pathway for progesterone. Targeting these progesterone-induced processes may provide novel therapeutic strategies for hormone-dependent human breast cancer.  相似文献   

5.
Polarization is a hallmark of migrating cells, and an asymmetric distribution of proteins is essential to the migration process. Caveolin-1 is highly polarized in migrating endothelial cells (EC). Several studies have shown caveolin-1 accumulation in the front of migrating EC while others report its accumulation in the EC rear. In this paper we address these conflicting results on polarized localization of caveolin-1. We find evidence for the hypothesis that different modes of locomotion lead to differences in protein polarization. In particular, we show that caveolin-1 is primarily localized in the rear of cells migrating on a planar substrate, but in the front of cells traversing a three-dimensional pore. We also show that a chemoattractant, present either as a gradient or ubiquitously in the medium, does not alter caveolin-1 localization in cells in either mode of locomotion. Thus we conclude that substrate topology, and not the presence of a chemoattractant, directs the polarization of caveolin-1 in motile ECs.  相似文献   

6.
Platelet-derived growth factor-A (PDGF-A) is a locally produced growth factor in the rat testis secreted by both Sertoli cells and Leydig cells. It has been suggested that PDGF-A may be involved in modulation of testosterone production and may be essential to Leydig cell differentiation, however it is not known at what stage of differentiation PDGF-A begins to be expressed in the cells of Leydig lineage in the postnatal rat testis. Therefore, the objectives of this research were to determine at what postnatal age and in which cell type is PDGF-A first expressed in cells of the adult Leydig cell lineage, and does PDGF-A expression coincide with expression of 3beta-hydroxysteroid dehydrogenase (3beta-HSD), an indicator of steroid hormone synthesis. Male Sprague Dawley rats of postnatal day 1, 7, 9-14, 21, 28, 40, 60, and 90 were used (n=6). Animals were euthanized and their testicles removed, fixed in Bouin's solution, embedded in paraffin, and 5 micrometers sections were prepared. Immunolocalization of PDGF-A and 3beta-HSD was carried out using a peroxidase-streptavidin-biotin method. PDGF-A was first detected in cells of the Leydig cell lineage at postnatal day 10 in progenitor cells, which were surrounding the seminiferous tubules (peritubular). These cells were confirmed to be the progenitor cells and not the mesenchymal or any other spindle-shaped cells in the testis interstitium by immunolocalization of 3beta-HSD and PDGF-A in the cells in adjacent sections of testis tissue from rats of postnatal days 10-14. After postnatal day 10, PDGF-A was continued to be expressed in subsequent cells of the Leydig lineage through day 90 (adult), however, was not present in peritubular mesenchymal precursor cells of the Leydig cell lineage or any other spindle-shaped cells in the testis interstitium at any tested age. These results revealed that PDGF-A first appears in Leydig progenitor cells in the postnatal rat testis at the onset of mesenchymal cell differentiation into progenitor cells at postnatal day 10 and suggest that a functional role(s) of PDGF-A in postnatally differentiated Leydig cells in the rat testis is established at the time of the onset of postnatal Leydig stem cell differentiation. It is suggested that the significance of the first expression of PDGF-A in the Leydig progenitor cells may be associated with inducing cell proliferation and migration of this cell away from the peritubular region during Leydig cell differentiation.  相似文献   

7.
Directed cell migration in tissues mediates various physiological processes and is guided by complex cellular factors such as chemoattractant gradients and electric fields. Direct current (DC) electric fields can be generated in physiological settings and the electric field guided migration of various cell types (i.e., electrotaxis) has been demonstrated both in vitro and in vivo. Although several mechanisms have been proposed for electrotaxis, there are so far very few quantitative models. Furthermore, because chemoattractant gradients and electric fields co-exist in tissues, it is important to understand how chemotaxis and electrotaxis interact for mediating cell migration and trafficking. In this study, we developed a mathematical model to investigate the role of electromigration of cell surface chemoattractant receptors in mediating electrochemical sensing and migration of cells. Our results show that electromigration of chemoattractant receptors enables cell electrotactic sensing and migration in the presence of a uniform chemoattractant field. Furthermore, in the physiologically-relevant range of receptor electromigration rates, application of electric fields overcomes chemical guiding signals for directional sensing and migration of cells in co-existing competing electric fields and chemoattractant gradients.  相似文献   

8.
Microglial cells are hematopoietically derived monocytes of the CNS and serve important neuromodulatory, neurotrophic, and neuroimmune roles. Following insult to the CNS, microglia develop a reactive phenotype, migrate to the site of injury, proliferate, and release a range of proinflammatory, anti-inflammatory, and neurotrophic factors. Isolation of primary microglial cell cultures has been an integral step in elucidating the many roles of these cells. In addition to primary microglial cells, several immortalized cell lines have been created to model primary microglia in vitro, including murine-derived BV-2 cells and rat derived highly aggressive proliferating immortalized (HAPI) cells. Here, we compare rat primary microglial, BV-2, and HAPI cells in experiments assessing migration, expression of activation markers, and production and release of nitric oxide, cytokines, and chemokines. BV-2 and HAPI cells responded similarly to primary microglia in experiments assessing migration, ionized calcium binding adaptor molecule 1 expression, and nitric oxide release. However, BV-2 and HAPI cells did not model primary microglia in experiments assessing tumor necrosis factor-alpha, interleukin-1beta, interleukin-6, and monocyte chemoattractant protein-1 expression and release and phospho-extracellular signal-regulated kinase 44/42 expression following lipopolysaccharide treatment. These results indicate that BV-2 and HAPI cell cultures only partially model primary microglia and that their use should therefore be carefully considered.  相似文献   

9.
Using a Transwell chamber as migration assay for mouse primordial germ cells (PGCs), we show here that these cells posses directional migration in the absence of somatic cell and defined matrix support and in response to a Kit ligand (KL) gradient or medium conditioned by Aorta/Gonad/Mesonephros and gonadal ridges. Other putative PGC chemoattractants such as SDF1 and TGFbeta did not exert any attractive action on PGCs. The chemoattractant activity of KL and conditioned medium was also evidenced by their ability to stimulate actin reorganization in PGCs. In the aim to identify downstream signaling pathways governing KL chemoattraction on PGCs, we demonstrated that in such cells KL rapidly (5 min) increased autophosphorylation of its receptor c-Kit and caused phosphorylation of the serine-threonine kinase AKT through the action of PI3K. 740Y-P peptide, a direct activator of PI3 kinase, stimulated PGC migration at levels similar to those elicited by KL. LY294002 (a specific inhibitor of PI3K) abolished KL-dependent PGC migration or the chemoattractant activity of the conditioned medium and inhibited AKT phosphorylation; Src kinase inhibitors PP2 and SU6656, caused significant reduction of the KL-dependent PGC migration and AKT phosphorylation, while U0126, a selective inhibitor of the MEK/ERK protein kinase cascade, reduced PGC migration and AKT phosphorylation at lesser extent. SU6656 completely abolished the chemoattractant activity of the conditioned medium. Finally, SB202190 (a p38 inhibitor) and rapamycin (mTOR inhibitor) did not affect PGC migration. In addition, to demonstrate that somatic cells are not essential for PGC motility and directional migration, we evidenced a novel role for KL as PGC chemoattractant and for PI3K/AKT and Src kinase, as players involved in the activation of the PGC migratory machinery and likely important for their directional movement towards the gonadal ridges.  相似文献   

10.
Netrins, axon guidance cues in the CNS, have also been detected in epithelial tissues. In this study, using the embryonic pancreas as a model system, we show that Netrin-1 is expressed in a discrete population of epithelial cells, localizes to basal membranes, and specifically associates with elements of the extracellular matrix. We demonstrate that alpha6beta4 integrin mediates pancreatic epithelial cell adhesion to Netrin-1, whereas recruitment of alpha6beta4 and alpha3beta1 regulate the migration of CK19+/PDX1+ putative pancreatic progenitors on Netrin-1. These results provide evidence for the activation of epithelial cell adhesion and migration by a neural chemoattractant, and identify Netrin-1/integrin interactions as adhesive/guidance cues for epithelial cells.  相似文献   

11.
While the localization of chemoattractant receptors on randomly oriented cells has been previously studied by immunohistochemistry, the instantaneous distribution of receptors on living cells undergoing directed migration has not been determined. To do this, we replaced cAR1, the primary cAMP receptor of Dictyostelium, with a cAR1-green fluorescence protein fusion construct. We found that this chimeric protein is functionally indistinguishable from wild-type cAR1. By time-lapse imaging of single cells, we observed that the receptors remained evenly distributed on the cell surface and all of its projections during chemotaxis involving turns and reversals of polarity directed by repositioning of a chemoattractant-filled micropipet. Thus, cell polarization cannot result from a gradient-induced asymmetric distribution of chemoattractant receptors. Some newly extended pseudopods at migration fronts showed a transient drop in fluorescence signals, suggesting that the flow of receptors into these zones may slightly lag behind the protrusion process. Challenge with a uniform increase in chemoattractant, sufficient to cause a dramatic decrease in the affinity of surface binding sites and cell desensitization, also did not significantly alter the distribution profile. Hence, the induced reduction in binding activity and cellular sensitivity cannot be due to receptor relocalization. The chimeric receptors were able to “cap” rapidly during treatment with Con A, suggesting that they are mobile in the plane of the cell membrane. This capping was not influenced by pretreatment with chemoattractant.  相似文献   

12.
Wu D  Lin F 《PloS one》2011,6(4):e18805
Directed cell migration mediates physiological and pathological processes. In particular, immune cell trafficking in tissues is crucial for inducing immune responses and is coordinated by multiple environmental cues such as chemoattractant gradients. Although the chemotaxis mechanism has been extensively studied, how cells integrate multiple chemotactic signals for effective trafficking and positioning in tissues is not clearly defined. Results from previous neutrophil chemotaxis experiments and modeling studies suggested that ligand-induced homologous receptor desensitization may provide an important mechanism for cell migration in competing chemoattractant gradients. However, the previous mathematical model is oversimplified to cell gradient sensing in one-dimensional (1-D) environment. To better understand the receptor desensitization mechanism for chemotactic navigation, we further developed the model to test the role of homologous receptor desensitization in regulating both cell gradient sensing and migration in different configurations of chemoattractant fields in two-dimension (2-D). Our results show that cells expressing normal desensitizable receptors preferentially orient and migrate toward the distant gradient in the presence of a second local competing gradient, which are consistent with the experimentally observed preferential migration of cells toward the distant attractant source and confirm the requirement of receptor desensitization for such migratory behaviors. Furthermore, our results are in qualitative agreement with the experimentally observed cell migration patterns in different configurations of competing chemoattractant fields.  相似文献   

13.
Parabutoporin (PP) and opistoporin 1 (OP1) are amphipathic alpha-helical antimicrobial peptides that were recently isolated from scorpion venom. In assays in which single granulocyte-like HL-60 cells as well as cells in suspension were used, both peptides were able to induce a reversible Ca(2+) release from intracellular stores and to increase Ca(2+) influx. Both effects could be clearly differentiated for OP1, inducing Ca(2+) release at lower concentrations. The Ca(2+) release was pertussis toxin-sensitive indicating the involvement of G-proteins. Ca(2+) release depended on the stage of differentiation of the cells with undifferentiated cells being the most sensitive. Desensitization occurred with OP1. No cross-desensitization occurred between OP1 and the bacterial chemoattractant fMLP indicating the involvement of different types of receptors. Ca(2+) release by OP1 was found not to be mediated via interaction with the formyl peptide receptor-like 1. Although some of the results might favor a receptor-like interaction, the receptor involved could not be identified.  相似文献   

14.

Background

Deregulation of platelet-derived growth factor (PDGF) signaling is a hallmark of malignant glioma. Two alternatively spliced PDGF-A mRNAs have been described, corresponding to a long (L) and a short (S) isoform of PDGF-A. In contrast to PDGF-A(S), the PDGF-A(L) isoform has a lysine and arginine rich carboxy-terminal extension that acts as an extracellular matrix retention motif. However, the exact role of PDGF-A(L) and how it functionally differs from the shorter isoform is not well understood.

Methodology/Principal Findings

We overexpressed PDGF-A(L) as a transgene under control of the glial fibrillary acidic protein (GFAP) promoter in the mouse brain. This directs expression of the transgene to astrocytic cells and GFAP expressing neural stem cells throughout the developing and adult central nervous system. Transgenic mice exhibited a phenotype with enlarged skull at approximately 6-16 weeks of age and they died between 1.5 months and 2 years of age. We detected an increased number of undifferentiated cells in all areas of transgene expression, such as in the subependymal zone around the lateral ventricle and in the cerebellar medulla. The cells stained positive for Pdgfr-α, Olig2 and NG2 but this population did only partially overlap with cells positive for Gfap and the transgene reporter. Interestingly, a few mice presented with overt neoplastic glioma-like lesions composed of both Olig2 and Gfap positive cell populations and with microvascular proliferation, in a wild-type p53 background.

Conclusions

Our findings show that PDGF-A(L) can induce accumulation of immature cells in the mouse brain. The strong expression of NG2, Pdgfr-α and Olig2 in PDGF-A(L) brains suggests that a fraction of these cells are oligodendrocyte progenitors. In addition, accumulation of fluid in the subarachnoid space and skull enlargement indicate that an increased intracranial pressure contributed to the observed lethality.  相似文献   

15.
Inflammation of the CNS, which occurs during multiple sclerosis and experimental autoimmune encephalomyelitis, is characterized by increased levels of IFN-gamma, a cytokine not normally expressed in the CNS. To investigate the role of IFN-gamma in CNS, we used intrathecal injection of a replication-defective adenovirus encoding murine IFN-gamma (AdIFNgamma) to IFN-gamma-deficient (GKO) mice. This method resulted in stable, long-lived expression of IFN-gamma that could be detected in cerebrospinal fluid using ELISA and Luminex bead immunoassay. IFN-gamma induced expression in the CNS of message and protein for the chemokines CXCL10 and CCL5, to levels comparable to those seen during experimental autoimmune encephalomyelitis. Other chemokines (CXCL2, CCL2, CCL3) were not induced. Mice lacking the IFN-gammaR showed no response, and a control viral vector did not induce chemokine expression. Chemokine expression was predominantly localized to meningeal and ependymal cells, and was also seen in astrocytes and microglia. IFN-gamma-induced chemokine expression did not lead to inflammation. However, when pertussis toxin was given i.p. to mice infected with the IFN-gamma vector, there was a dramatic increase in the number of T lymphocytes detected in the CNS by flow cytometry. This increase in blood-derived immune cells in the CNS did not occur with pertussis toxin alone, and did not manifest as histologically detectable inflammatory pathology. These results show that IFN-gamma induces a characteristic glial chemokine response that by itself is insufficient to promote inflammation, and that IFN-gamma-induced CNS chemoattractant signals can synergize with a peripheral infectious stimulus to drive T cell entry into the CNS.  相似文献   

16.
Spontaneous hepatic fibrosis in transgenic mice overexpressing PDGF-A   总被引:2,自引:0,他引:2  
Platelet derived growth factor (PDGF) plays a central role in repair mechanisms after acute and chronic tissue damage. To further evaluate the role of PDGF-A in liver fibrogenesis in vivo, we generated transgenic mice with hepatocyte-specific overexpression of PDGF-A using the CRP-gene promoter. Transgenic but not wildtype mice showed expression of PDGF-A mRNA in the liver. Hepatic PDGF-A overexpression was accompanied by a significant increase in hepatic procollagen III mRNA expression as well as TGF-beta1 expression. Liver histology showed increased deposition of extracellular matrix in transgenic but not in wildtype mice. PDGF-A-transgenic mice showed positive sinusoidal staining for alpha-SMA indicating an activation of hepatic stellate cells. Since the profibrogenic effect of PDGF-A was accompanied by increased TGF-beta1 protein concentration in the liver of transgenic mice, it can be postulated that PDGF-A upregulates expression of TGF-beta1 which is a strong activator of hepatic stellate cells. Thus, these results point towards a fibrosis induction by PDGF-A via the TGF-beta1 signalling pathway. In conclusion, expression and functional analysis of PDGF-A in the liver of transgenic mice suggest a relevant profibrogenic role of PDGF-A via TGF-beta1 induction. Counteracting PDGF-A may therefore be one of the effects of tyrosine kinase inhibitors which showed protective effects in animal models of liver fibrosis.  相似文献   

17.
18.
19.
Platelet derived growth factors (PDGF) are known to be associated with vitreoretinal disorders such as proliferative vitreoretinopathy (PVR). We have studied the expression of PDGF and their receptors in human retinal pigment epithelial cells (HRPE) and choroid fibroblasts (HCHF), and the regulation of PDGF and its receptors by various cytokines and growth factors. RT-PCR analyses showed enhanced expression of PDGF-A and PDGF-B mRNA in HRPE treated with TGF-beta, but not with other cytokines. A minimal increase was observed in PDGF-A mRNA in TGF-beta treated HCHF cells. PDGF-R alpha mRNA, which was expressed prominently in HCHF and at very low levels in HRPE, was not affected by any of the agents. PDGF-R beta was not detectable in either HRPE or HCHF. HRPE secreted PDGF-AA and AB constitutively, and this secretion was significantly enhanced by TGF-beta. In contrast, HCHF cultures did not secrete detectable levels of any of the three isoforms of PDGF (AA, AB, BB). All three human recombinant PDGF isoforms enhanced HCHF cell proliferation significantly, while only a minimal increase was observed in HRPE. PDGF isoforms also induced HCHF cell elongation and promoted migration of HCHF in an in vitro wound assay. The results presented in this study demonstrate that TGF-beta activated RPE cells produce PDGF that may act on fibroblasts and other mesenchyme derived cells which express PDGF receptors. These studies indicate that the promotion of the proliferation and migration of mesenchymal cells by RPE cell derived PDGF may facilitate the formation of fibrovascular tissues associated with PVR.  相似文献   

20.
Inflammation in Traumatic Brain Injury: Role of Cytokines and Chemokines   总被引:24,自引:0,他引:24  
A traumatic injury to the adult mammalian central nervous system (CNS), such as a stab wound lesion, results in reactive astrogliosis and the migration of hematogenous cells into the damaged neural tissue. The roles of cytokines and growth factors released locally by the damaged endogenous cells are recognized in controlling the cellular changes that occur following CNS injury. However, the role of chemokines, a novel class of chemoattractant cytokines, is only recently being studied in regulating inflammatory cell invasion in the injured/diseased CNS (1). The mRNAs for several chemokines have been shown to be upregulated in experimental allergic encephalomyelitis (EAE), an inflammatory demyelinating disease of the CNS, but chemokine expression in traumatic brain injury has not been studied in detail. Astrocytes have been demonstrated to participate in numerous processes that occur following injury to the CNS. In particular, astrocytic expression of cytokines and growth factors in the injured CNS has been well reviewed (2). Recently a few studies have detected the presence of chemokines in astrocytes following traumatic brain injury (3,4). These studies have suggested that chemokines may represent a promising target for future therapy of inflammatory conditions. This review summarizes the events that occur in traumatic brain injury and discusses the roles of resident and non-resident cells in the expression of growth factors, cytokines and chemokines in the injured CNS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号