首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ivanov B  Ignat'ev A  Khorobrykh S 《FEBS letters》2002,532(1-2):193-197
N-ethylmaleimide (NEM) and N,N'-(1,4-phenylene)dimaleimide (PDM) were discovered to stimulate light-induced oxygen uptake in isolated thylakoids, and PDM provided the same stimulation at one order less concentrations. Oxygen uptake rate increased promptly after NEM or PDM addition to thylakoids. The inhibitors of photosynthetic electron transport as well as catalase decreased this rate close to zero, whereas ascorbate increased it almost three-fold. Dithiothreitol suppressed oxygen uptake stimulated by NEM. NEM stimulated light-induced reduction of cytochrome c, and this stimulation was suppressed by superoxide dismutase. It was concluded that NEM and PDM being reduced can effectively reduce molecules O(2) producing superoxide radicals.  相似文献   

2.
The stomata in the abaxial epidermis of Vicia faba were examined for the location of redox systems using tetrazolium salts. Three distinct redox systems could be demonstrated: chloroplast, mitochondrial, and plasmalemma. The chloroplast activity required light and NADP. Mitochondrial activity required added NADH and was suppressed by preincubation with KCN. The plasmalemma redox system in guard cells also required NADH, but was insensitive to KCN and was stimulated by blue light. The involvement of an NADH dehydrogenase in the blue light stimulated redox system in guard cells was suggested by the sensitivity to plantanetin, an inhibitor of NADH dehydrogenase. The redox system of mitochondria was the most active followed by that of plasmalemma. The activity of chloroplasts was the least among the three redox systems. The plasmalemma mediated tetrazolium reduction was stimulated by exogenous flavins and suppressed by Kl or phenylacetate, inhibitors of flavin excitation. We therefore conclude that an NADH-dependent, flavin mediated electron transport system, sensitive to blue light, operates in the plasmalemma of guard cells.  相似文献   

3.
Indoleamine 2,3-dioxygenase purified to apparent homogeneity from rabbit intestine was inhibited by scavengers for superoxide anion such as superoxide dismutase and 1,2-dihydroxybenzene-3,5-disulfonic acid (Tiron). On the other hand, beta-carotene and 1,4-diazobicyclo-(2,2,2)-octane, scavengers for singlet oxygen, did not affect the enzyme activity significantly. The degree of inhibition of the dioxygenase by superoxide dismutase preparations from bovine erythrocytes, green peas, spinach leaves, and Escherichia coli paralleled that observed with these dismutase preparations on the aerobic reduction of cytochrome c by xanthine oxidase and its substrate. The pH profiles of the inhibition by dismutase of the dioxygenase and cytochrome c reduction were also similar and the maximal inhibition was observed around pH 10 in both cases. The degree of inhibition was not affected by the concentration of substrate but was a function of the concentration of dismutase. It was inversely related to the concentrations of the dioxygenase and its cofactors, ascorbic acid and methylene blue, both of which were required for maximum activity. Ascorbic acid could be replaced either by xanthine oxidase and its substrate, or by tetrabutylammonium superoxide prepared by electrolytic reduction of molecular oxygen, or by potassium superoxide. When limited amounts of superoxide anion were added to the reaction mixture containing a substrate amount of the dioxygenase, the ratio of the amount of superoxide anion added to that of the product formed was approximately unity both under aerobic and anaerobic conditions. Taken together, these findings indicate that superoxide anion, rather than molecular oxygen, is utilized as substrate by indoleamine 2,3-dioxygenase.  相似文献   

4.
D H Chin  I H Goldberg 《Biochemistry》1986,25(5):1009-1015
Spectroscopic analysis of the reduction of both nitro blue tetrazolium and ferricytochrome c induced by neocarzinostatin shows that superoxide free radical is produced during the spontaneous degradation of the antibiotic. The amount of superoxide free radical produced from neocarzinostatin is not affected by the presence of thiol, although earlier work has shown that DNA damage is stimulated at least 1000-fold by thiol. Transition metals are not involved in this reaction. Although superoxide dismutase inhibits the reduction of nitro blue tetrazolium and cytochrome c induced by neocarzinostatin, neither it nor catalase interferes with the action of neocarzinostatin on DNA, whether or not drug has been activated by thiol. The pH profiles for spontaneous base release and alkali-labile base release (a measure of nucleoside 5'-aldehyde formation at a strand break) do not correspond with that for the generation of superoxide free radical from neocarzinostatin. The same holds for supercoiled DNA cutting by neocarzinostatin chromophore in the absence of a thiol, which is an acid-favored reaction. These results indicate that the generation of superoxide free radical by the drug does not correlate with DNA damage activity, whether or not thiol is present. Furthermore, the failure of hydroxyl free-radical scavengers to inhibit drug-induced single-strand breaks in supercoiled DNA in the absence of thiol also indicates that a diffusible hydroxyl free radical is most probably not involved in this reaction.  相似文献   

5.
Anthranilamide was slightly hydroxylated by a reconstituted rat liver microsomal monooxygenase system with NADPH, but a large amount of hydrogen peroxide was formed with a consumption of NADPH during the reaction. Superoxide dismutase stimulated the hydroxylation by depressing the hydrogen peroxide formation, in that there was a reverse correlation between the two effects due to the dismutase. In addition, a trace of 3-hydroxyanthranilamide, one of the products, not only stimulated NADPH-dependent hydrogen peroxide formation via NADPH-cytochrome c (P-450) reductase, but also inhibited the reduction of cytochrome P-450 by NADPH in the reconstituted system. These effects of 3-hydroxyanthranilamide were also diminished by superoxide dismutase.  相似文献   

6.
Pulse-generation of O2- by a flash was used to determine the reactivity of O2-, O2- was produced within 10 ms by a flash of light through the excitation of FMN in the presence of N,N,N',N'-tetramethylethylenediamine and oxygen. Kinetic analysis of cytochrome c reduction by O2- generated by flash yielded the reaction rate constant between cytochrome c and O2- and the spontaneous disproportionation rate constant of O2-. We applied it for superoxide dismutase assay using a linear relation between superoxide dismutase concentration and the apparent rate constant of cytochrome c reduction by O2-. The catalytic rate constant and activation energy at pH 7.3 of bovine liver Cu,Zn-superoxide dismutase were found to be 1.75 x 10(9) M-1 . s-1 at 25 degrees C and 26.9 kJ . M-1, respectively. The kinetics of O2- decay can be also monitored at 240 nm in this flash-photometric system and gave the spontaneous disproportionation rate constant of O2- and the catalytic rate constant of superoxide dismutase.  相似文献   

7.
The results presented in this report suggest that human oxyhemoglobin can directly form methemoglobin and superoxide anion when flashed with low intensity (38 joules) white light. The effect only occurred in quartz but not glass (cut off lambda approximately equal to 300 nm) cuvettes. The formation of O2 was established by observing the reduction of oxidized cytochrome c concomitant with MetHb formation at pH 9, and by showing that superoxide dismultase and catalse inhibit cytochrome c reduction at that pH. The inhibition of cytochrome c reduction by catalase led us to explore the possibility that H2O2 might reduce oxidized cytochrome c at pH 9. We show that H2O2 does reduce oxidized cytochrome c at that pH but not at pH 7. Furthermore, catalase but not superoxide dismutase, almost completely inhibited this reduction process. These experiments serve to confirm our interpretation of the effect of catalase on the reduction of oxidized cytochrome c in the photolytic experiments, thus establishing that H2O2 was also formed. In addition, we were able to identify the production of O2 and H2O2 due to the photolysis of water in agreement with the results of McCord and Fridovich ((1973) Photochem. Photobiol. 17, 115-121). Production of O2 from this source was considerably less than that observed when HbO2 was present. Addition of MetHb to aerated solutions of oxidized cytochrome c did not cause additional reduction, unlike addition of HbO2. The production of MetHb was found to have at least two components. One component was the primary photolytic process, and the second was a strongly pH-dependent reattack of HbO2 by O2. Addition of superoxide dismutase inhibited this second component, but did not significantly effect the primary photolytic process.  相似文献   

8.
In aerobic reaction mixtures containing NADH, phenazine methosulfate, and nitroblue tetrazolium, O2- production is mediated by the tetrazolium, not the phenazine. Thus, superoxide dismutase inhibited reduction of the tetrazolium, but when ferricytochrome c was substituted for the tetrazolium its reduction was not affected by this enzyme. Furthermore, NADH plus the phenazine did not accelerate the oxidation of epinephrine to adrenochrome unless the tetrazolium was present, and under those circumstances superoxide dismutase did inhibit adrenochrome formation. When the tetrazolium and ferricytochrome c were present simultaneously, addition of superoxide dismutase was seen to accelerate the reduction of the cytochrome. This is explainable by the reduction of O2- by the reduced phenazine, which thus competes with cytochrome c for the available O2-. When the O2- was eliminated by superoxide dismutase, more of the reduced phenazine was available for the direct reduction of cytochrome c.  相似文献   

9.
Identification and quantification of specific reactive oxygen species (ROS) is essential to allow greater understanding into the role that ROS play in tissues and extracellular fluids. Previous studies have examined the reduction of cytochrome c and the hydroxylation of salicylate to detect superoxide and hydroxyl activity, respectively, although the specificity of these assays has been the subject of debate. This study aimed to identify the factors influencing hydroxylation of salicylate and reduction of cytochrome c in microdialysates from skeletal muscle extracellular fluid. Mice were anesthetized and treated with either polyethylene glycol-tagged superoxide dismutase (PEG-SOD), desferrioxamine mesylate (desferal) or N(G)-nitro-l-arginine methyl ester (l-NAME). A further cohort of untreated mice was also studied. Microdialysis probes were placed into the gastrocnemius muscle and perfused with salicylate or cytochrome c prior to, during, and after a period of demanding electrically stimulated contractions. Microdialysates were analysed for the reduction of cytochrome c and hydroxylation of salicylate. Contractile activity was found to increase both the reduction of cytochrome c and the hydroxylation of salicylate in the microdialysates. The reduction of cytochrome c was greater in mice treated with l-NAME compared with control untreated mice and was attenuated in mice treated with PEG-SOD. The hydroxylation of salicylate was attenuated in mice treated with desferal while there was no effect of l-NAME compared with untreated mice. Data support the hypothesis that superoxide and hydroxyl radical activity are the major contributors to the reduction of cytochrome c and hydroxylation of salicylate respectively in microdialysates from skeletal muscle extracellular fluid and indicate that these ROS are increased by contractile activity in skeletal muscle extracellular fluid.  相似文献   

10.
The reaction of superoxide anions with myeloperoxidase (donor: hydrogen-peroxide oxidoreductase, EC 1.11.1.7), which results in the formation of Compound III of myeloperoxidase, was investigated. It is shown that myeloperoxidase has a high affinity for superoxide anions because formation of Compound III was only partially inhibited by high concentrations of superoxide dismutase. Furthermore, when superoxide anions were generated in a mixture of both cytochrome c and myeloperoxidase in the absence of Cl-, only Compound III was formed and reduction of cytochrome c was not observed. In the presence of Cl-, Compound III was also formed and reduction of cytochrome c was inhibited. From the results described in this paper we conclude that Compound III is able to react with superoxide anions, probably resulting in formation of an intermediate (Compound I) which is catalytically active in the oxidation of Cl- to yield hypochlorous acid (HOCl). Because Compound III of myeloperoxidase is formed in phagocytosing neutrophils (Winterbourn, C.C., Garcia, R.C. and Segal, A.W. (1985) Biochem. J. 228, 583-592) we propose that, in vivo, myeloperoxidase also acts as a superoxide dismutase, and via formation of Compound I uses superoxide anions in the formation of HOCl.  相似文献   

11.
J P Martin  Jr  K Colina    N Logsdon 《Journal of bacteriology》1987,169(6):2516-2522
Photoillumination of tetracycline derivatives with low-intensity (320- to 400-nm) light and visible light generated superoxide, observed as the reduction of ferricytochrome c. The rate of reduction was dependent on the tetracycline concentration and on the derivative being examined, with doxycycline greater than or equal to demeclocycline greater than tetracycline greater than oxytetracycline. Tetracycline-mediated cytochrome c reduction was oxygen dependent and inhibited up to 70% by superoxide dismutase. Illuminated tetracyclines were lethal to Escherichia coli B incubated in a glucose minimal medium containing chloramphenicol. This lethality was light dependent, oxygen dependent, and dependent on the concentration of tetracycline. Kill rates also varied according to the derivative under study, with doxycycline greater than or equal to demeclocycline greater than tetracycline greater than oxytetracycline. The addition of superoxide dismutase and catalase to the incubation medium partially protected E. coli B against the light-dependent lethality. Preinduction of intracellular superoxide dismutase and catalase substantially protected E. coli B against the phototoxicity of tetracyclines. Iron EDTA augmented the phototoxicity of tetracyclines, while diethylenetriaminepentaacetic acid protected against their lethality. Hydroxyl radical scavengers also conferred protection against tetracycline phototoxicity. The extent of protection was in order of the in vitro reactivity of the scavengers with the hydroxyl radical. These results indicate that superoxide, hydrogen peroxide, and the hydroxyl radical are generated by illuminated tetracyclines and are molecular agents of tetracycline phototoxicity in E. coli B.  相似文献   

12.
We have identified two distinct pools of superoxide dismutase in fractions of human peripheral neutrophils obtained by the isopycnic fractionation of homogenates of the latter with linear sucrose gradients. Superoxide dismutase activity, observed with polyacrylamide gels impregnated with Nitro Blue Tetrazolium, was present in: (1) the mitochondrial fraction [density (rho) 1.169g/ml], containing the high-molecular-weight KCN-resistant enzyme, and (2) the cytoplasm fraction, containing the low-molecular-weight KCN-sensitive enzyme. Superoxide dismutase activity, observed with a quantitative assay involving cytochrome c, was present in: (1) the mitochondria, (2) the cytoplasm, and (3) the azurophil-granule fractions (rho=1.206 and 1.222g/ml). No substantial enzyme activity was observed in specific-granule fractions (rho=1.187g/ml) or in the membranous fraction (rho=1.136g/ml) in either assay. The apparent superoxide dismutase activity observed in the azurophil granules with the cytochrome c assay was attributable not to true superoxide dismutase but to myeloperoxidase, an enzyme found solely in the azurophil granules. In the presence of H(2)O(2), human neutrophil myeloperoxidase oxidized ferrocytochrome c. Thus, in the cytochrome c assay for superoxide dismutase, the oxidation of ferrocytochrome c by myeloperoxidase mimicked the inhibition of reduction of ferricytochrome c by superoxide dismutase. When myeloperoxidase was removed from azurophilgranule fractions by specific immuno-affinity chromatography, both myeloperoxidase and apparent superoxide dismutase activities were removed. It is concluded that there is no detectable superoxide dismutase in either the azurophil or specific granules of human neutrophils. Mitochondrial superoxide dismutase, 15% of the total dismutase activity of the cells, occurred only in fractions of density 1.160g/ml, where isocitrate dehydrogenase and cytochrome oxidase were also observed.  相似文献   

13.
Resealed erythrocyte membranes (ghosts) filled with (Fe3+)cytochrome c were used as an assay system to measure the release of superoxide (O-2) from human phagocytes into the incubation medium. Neutrophils, activated by either opsonized zymosan particles or the soluble stimulus phorbol myristate acetate, released O-2, which subsequently entered the ghosts and reduced (Fe3+)cytochrome c. This reaction was dependent on the time of incubation, the concentration of neutrophils, the concentration of stimulus, and the concentration of ghosts. The reaction was completely inhibited by superoxide dismutase and by 4,4'-diisothiocyano-2,2'-disulfonic acid, a specific blocker of anion channels in membranes. The reduction of (Fe3+)cytochrome c free in solution was about four times as fast as the reduction of (Fe3+)cytochrome c in the ghosts. Human eosinophils stimulated by phorbol myristate acetate reacted similarly to human neutrophils; the rate of O-2 production/cell was about twice as high for eosinophils as for neutrophils. In contrast, eosinophils stimulated with opsonized zymosan particles only reduced (Fe3+)cytochrome c free in solution, but not (Fe3+)cytochrome c in ghosts. This lack of reaction was not due to production of an inhibitor or below threshold generation of O-2 for the ghost assay. These results indicate: 1) activated human neutrophils and eosinophils can release O-2 or a similar product into the incubation medium; and 2) reduction of (Fe3+)cytochrome c free in solution is no proof for O-2 excretion by phagocytes.  相似文献   

14.
Several porphyrins, including HpD (haematoporphyrin derivative), potentiate the oxidation of NADPH by horseradish peroxidase/H2O2. To elucidate the mechanism of potentiation, the following observations are relevant. During peroxidase-catalysed NADPH oxidation, O2-.(superoxide radical) is generated, as judged from superoxide dismutase-inhibitable cytochrome c reduction. This generation of O2-. is suppressed by HpD. Peroxidase-catalysed NADPH oxidation is stimulated by superoxide dismutase and by anaerobic conditions. Under anaerobic conditions HpD has no influence on peroxide-catalysed NADPH oxidation. Previous studies have shown that horseradish peroxidase is inhibited by O2-.. Thus the experimental results indicate that the potentiating effect of HpD can be explained by its ability to inhibit O2-. generation in the horseradish peroxidase/H2O2/NADPH system.  相似文献   

15.
1. The effect of ampicillin on cytochrome c reduction and on the superoxide production of human neutrophils stimulated by phorbol myristate acetate (PMA) was investigated. 2. Ampicillin did not stimulate the superoxide production of intact (resting) neutrophils and not amplify the superoxide production of neutrophils stimulated by phorbol myristate acetate (PMA). 3. However, ampicillin dose-dependently increased the reduction of cytochrome c. 4. In addition, 50 mM ampicillin stimulated a superoxide dismutase-inhibitable reduction of cytochrome c by 0.70 +/- 0.02 (mean +/- SD) nmol/min and a superoxide dismutase-noninhibitable reduction of cytochrome c by 2.08 +/- 0.03 (mean +/- SD) nmol/min. 5. These results suggest that ampicillin serves as an electron donor and/or a superoxide generator.  相似文献   

16.
Guinea pig polymorphonuclear leucocytes reduced cytochrome c when treated with cytochalasin E. The reduction was completely inhibited by superoxide dismutase and manganese ions, which indicates that superoxide anions are generated and released into the outside medium by the treatment. The reduction was inhibited by glycolytic inhibitors and cyclic AMP but not by cyclic GMP. The pattern is similar to the cyanide-insensitive respiration of leucocytes during phagocytosis. Nitroblue tetrazolium was also reduced by the leucocytes treated with the cytochalasin, which was inhibited by manganese ions, glycolytic inhibitors and cyclic AMP but was only partially inhibited by superoxide dismutase.  相似文献   

17.
Epstein-Barr-virus-transformed human B lymphocytes (EBV B lymphocytes) stimulated by 4 beta-phorbol 12-myristate 13-acetate exhibit an NADPH-dependent oxidase activity capable of generating the superoxide anion O2-, similar to, but less efficient than that of activated neutrophils. A cell-free system of oxidase activation consisting of a membrane fraction and cytosol from EBV B lymphocyte homogenate supplemented with guanosine 5'-[gamma-thio]triphosphate (GTP[S]), arachidonic acid and Mg2+ was found to be competent in the production of O2-, assessed by the superoxide-dismutase-sensitive reduction of cytochrome c in the presence of NADPH. However, cytochrome c reduction was slow and largely insensitive both to superoxide dismutase, and to iodonium biphenyl, a powerful inhibitor of the oxidase activity in neutrophils. A markedly faster reduction of cytochrome c in the presence of NADPH was obtained with a heterologous system consisting of cytosol from EBV B lymphocytes and bovine neutrophil membranes, GTP[S], arachidonic acid and Mg2+; in this system, reduction of cytochrome c was totally inhibited by superoxide dismutase and iodonium biphenyl. These results show that EBV B lymphocytes contain a substantial amount of cytosolic factors of oxidase activation, and that the limiting factors for O2- production in B lymphocytes are the membrane components of the oxidase complex. The heterologous system of EBV B lymphocyte cytosol and bovine neutrophil membranes provided a rapid and convenient method to diagnose cytosolic defects in autosomal forms of chronic granulomatous disease. In addition, it might be a useful tool to explore the mechanism of action of the cytosolic factors in oxidase activation.  相似文献   

18.
In vivo inhibition of superoxide dismutase in mice by diethyldithiocarbamate.   总被引:21,自引:0,他引:21  
Superoxide dismutase was assayed by a method which takes advantage of the inhibitory action of superoxide dismutase (or tissues which contain superoxide dismutase) on the rate of autooxidation of 6-hydroxydopamine. Incubation of pure superoxide dismutase of homogenates of brain or liver with 10(-3) M diethyldithiocarbamate for 1.5 hours resulted in total loss of superoxide dismutase activity. Inhibition of superoxide dismutase was not reversed by dialysis, but after dialysis, enzymatic activity was restored with CuSO4. When 1.5 g of diethyldithiocarbamate/kg were injected into mice, the superoxide dismutase activity at 3 hours was decreased by 86%, 71%, and 48%, respectively, in whole blood, liver, and brain. A dose of 0.5 g of diethyldithiocarbamate/kg lowered the superoxide dismutase activity by 42% in liver at 3 hours. A study of the time course for inhibiton of superoxide dismutase in liver after 1.5 g of diethyldithiocarbamate/kg, showed a maximum decrease (81%) within 1 hour, with a slow return to 64% of normal by 24 hours. Inhibition of superoxide dismutase in vivo and in vitro was confirmed with other assay systems based on the autooxidation of pyrogallol or epinephrine or on reduction of cytochrome c or intro blue tetrazolium. Treatment of animals with diethyldithiocarbamate may provide a useful experimental model to study the role of superoxide dismutase in various tissues.  相似文献   

19.
It was found that cytochrome oxidase from bovine cardiac muscle possesses marked superoxide dismutase activity. Superoxide dismutase activity is inhibited by cyanide and azide or by alkaline or thermal treatments. This activity is also suppressed by chelating agents, e.g. bathocuproin. The data obtained indicate that superoxide dismutase activity of cytochrome oxidase is due to the copper atoms of the enzyme. The experiments on the copper-containing subunit support this conclusion. Possible physiological significance of superoxide dismutase activity of cytochrome oxidase is discussed.  相似文献   

20.
Methylene blue competes 100 to 600 times more effectively than paraquat for reduction by three different flavo-containing enzymes; xanthine oxidase, NADH cytochrome c reductase, and NADPH cytochrome c reductase. Paraquat and methylene blue both interact with deflavo xanthine oxidase, indicating that neither electron acceptor reacted at the FAD site of the enzyme where molecular oxygen is reduced to superoxide. As the paraquat radical also directly reduced acetylated cytochrome c the hemeprotein could not be utilized for measuring superoxide production in the presence of the herbicide. In the presence of cytochrome c the methylene blue caused a sharp decrease in both paraquat-induced superoxide and hydroxyl radical production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号