首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The induced circular dichroism (CD) of erythrocyte ghosts with anion-transport inhibitors has been studied. A ghost-EITC (eosin 5-isothiocyanate) system shows an induced CD spectrum at the wavelength region corresponding to the absorption bands of EITC. Also a ghost-EMI (eosin 5-maleimide) system shows induced CD, but has bands of opposite sign to the EITC system. From the change of the CD intensity, the number of EITC molecules bound to one erythrocyte was estimated to be about 1.4 X 10(6), being close to the number of band 3 copies per ghost. The CD spectra of EITC and EMI systems show that a configurational structure of the moiety anchoring the EMI molecule is the reverse to that of EITC. The preferred conformation of bound EITC may be twisted in a right-handed sense. From the signs of the induced CD bands in ghost-stilbene disulfonate systems, the chirality of twisted stilbene derivatives seems to be a left-handed sense, as is the case for the EMI derivative. The CD spectra of EITC in the presence of DIDS (4,4'-diisothiocyanostilbene-2,2'-disulfonate) shows that the binding site of EITC may not be identical with that of DIDS. The results observed in this study reflect the ternary arrangement of the functional amino groups in anion recognition sites.  相似文献   

2.
The characteristics of the anion transport system in human erythrocyte, which can be modified by eosin 5-isothiocyanate (EITC), were studied using the pH titration method and by measuring the sulfate efflux. Based on the pH dependence of EITC binding to the erythrocyte ghosts, it was found that the reaction rate was maximal at about pH 6.4, and that the pH profile of EITC binding was similar to that of divalent anion transport. The interaction between EITC and ghosts was interpreted by a two-step reaction, a fast ionic-binding reaction and a slow covalent-binding reaction. The induced CD spectrum of the EITC-ghost system was also dependent on pH. The intensity of the CD band at 530 nm was decreased in acidic pH region, and the inflection point was observed at about pH 6.3, indicating a participation of the histidine residue in the interaction of EITC with band 3. In order to characterize the EITC-binding site, the kinetics of sulfate efflux in intact and EITC-modified cells were examined at various pH values. The inhibitory effect of EITC was dependent on pH. From the experimental results, the followings are suggested. The rate of ionic interaction in the early stage is much slower than that in a general ionic reaction. A conformational change may participate in the reaction. The conformation of the EITC-binding site depends on pH, relating to the dissociation of the histidine residues. The EITC molecules act also as a competitive inhibitor to the sulfate efflux after binding covalently to band 3 protein.  相似文献   

3.
The pH dependence of the binding of dye, Beibrich Scarlet, to hen egg-white lysozyme[EC 3.2.1.17] was studied at ionic strength 0.3 and 25 degrees by following circular dichroic (CD)bands originating from the bound dye. This binding involved one of the catalytic groups, Glu 35. The effect of the binding of N-acetylglucosamine (GlcNAc), its dimer or trimer on the binding of this dye was also studied at pH 7.5 by measuring changes in the CD bands of the dye bound to lysozyme. It was shown that there are two sites for simultaneous binding of these saccharides in the lysozyme molecule. The stronger binding of the saccharide was noncompetitive and the weaker binding was competitive with dye binding. The binding constants for the stronger binding site (the upper portion of lysozyme cleft) were in good agreement with those previously determined by following changes in the tryptophyl CD bands of lysozyme. The binding constants to the weaker site were about 1.1 x 10(-4), 5 x 10(2), and 5M(-1) for the trimer, dimer, and monomer of GlcNAc, respectively. Assuming that the trimer, dimer, and monomer occupy subsites D, E, and F; E and F; and E, respectively, the unitary free energies of saccharide binding were estimated to be about --1.9, --3.3, and --2.7 kcal/mole for D, E, and F, respectively.  相似文献   

4.
According to its circular dichroism (CD) spectrum, modeccin, a toxic lectin from the roots of the South African plantModecca digitata, is structurally similar to the ricins and abrins. In nearly neutral and weakly alkaline solutions (pH 7.6–9.0) the CD spectra of modeccin displayed a positive CD band at 190–195 nm and a negative band at 210–220 nm, indicating the presence of some α-helix and β-sheet structures. In the near-ultraviolet zone, we observed positive CD bands at 232 and 245 nm and weak negative bands at 285 and 293 nm. In more strongly alkaline solutions of pH 9.5–10.2 the CD bands in the farultraviolet zone were not affected, but the CD band at 232 nm diminished and the CD band at 245 nm was enhanced. These transitions were reversible. At pH 11.2–11.5 the CD band at 232 nm disappeared completely, and the CD bands in the far-ultraviolet diminished. The CD bands at 285 and 293 nm were affected very little by the alkali, and these bands were assigned to buried tryptophan side chains. Sodium dodecyl sulfate and 2,2,2-trifluoroethanol disorganized the tertiary structure of modeccin and reconstructed the secondary structure into a new form with a higher helix content than in the native protein.  相似文献   

5.
The major glycoprotein of the human erythrocyte membrane has been released from ghosts, by the non-ionic detergent Tween 20 at pH 8,5 and at low ionic strength and further purified by successive passages through columns of DEAE Sephadex at pH 6,8 and CM Sephadex at pH 5 or by hydroxyapatite chromatography at pH 6,8. The purified glycoprotein thus obtained represents about 1 % of the membrane proteins, and shows two major bands upon polyacrylamide gel electrophoresis. These bands designed as PAS 1 and PAS 2 are the dimer and the monomer of the glycoprotein. Several other minor bands can also appear on SDS gels, according to experimental conditions of solubilization and purification and are probably oligomers of PAS 1 and PAS 2. This glycoprotein possess inhibitory activity against various phytohemagglutinins.  相似文献   

6.
The mechanism of spectral shift and absorption intensity change of the divalent bromocresol purple (BCP) anion was further investigated and it was characterized as a spectrophotometric membrane probe. At high concentrations (1-40 mM), the absorption intensity of th BCP anion at 590 nm (monomer band) decreased markedly with increase of the dye concentration, while another absorption band appeared at 554 nm. Analysis of the change of absorption intensity showed that the mared decrease resulted from dimer formation of BCP (polymer formation at concentrations higher than 20 mM). Wavelengths of maximum absorption (lambdamax) of the BCP anion were determined in various solvents and comparison of these lambdamax's with lambdamax of the BCP anion bound to SR showed that the hydrophobicity of the area of BCP anion binding to SR corresponded to a refractive index of 1.429. While the BCP anion bound to SR showed a monomer spectrum, a dimer band appeared for the BCP anion bound to SR-Pi (phosphorylated protein) with a marked decrease in the absorption intensity at the monomer band, indicating that two polar groups, binding sites for the BCP anions, closely approached each other in the SR-Pi configuration.  相似文献   

7.
The biotin carboxyl carrier protein (BCCP) component of Escherichia coli acetyl coenzyme A carboxylase and three peptides derived from BCCP by proteolytic digestion have been examined by circular dichroism spectroscopy. BCCP, which has a peptide molecular weight of 22,500, has a spectrum typical of globular proteins with negative extrema at 222 nm and 208 nm. The two smallest peptides, BCCP(SC) and BCCP(9,100), with molecular weights of 8,900 and 9,100, respectively, exhibit unusual positive CD bands centered at 237 nm and 220 nm. BCCP(10,400), with a molecular weight of 10,400, has a CD spectrum intermediate between BCCP and that of the smallest peptides. Since d-biotin exhibits a positive CD band at 233 nm, it was suspected that the biotin prosthetic group might be the chromophore responsible for the 237 nm CD band seen in BCCP(SC) and BCCP(9,100). Enzymatic carboxylation of BCCP(SC) to form CO2-BCCP(SC) caused the CD spectrum to change with a shift of the 237 nm band to 232 nm. The positive CD band at 220 nm was unaffected by carboxylation of the biotin prosthetic group. These date suggest that the 237 nm signal may be due either to the biotin which acts as a chromophore directly or to a chromophore that is perturbed by the carboxylation of biotin. A spectropolarimetric titration was carried out to investigate the possible contribution of the single tyrosine residue of BCCP(SC) to the CD spectrum of this peptide. At pH values over 9 the CD spetrum changed with the disappearance of the 237 nm band, suggesting that tyrosine might contribute to this CD band. Denaturation of BCCP(SC) or BCCP(9,100) with 8 M urea of 6 M guanidine HCl abolished the positive CD bands and resulted in spectra typical of a random coil, whereas treatment of BCCP(SC) with 1% sodium dodecyl sulfate abolished the positive bands and left a spectrum exhibiting a shoulder at 222 nm and a negative band at 205 nm, suggestive of a high degree of ordered structure. It is concluded that the CD band at 237 nm in BCCP(SC) and BCCP(9,100) is prabably due to a noncovalent interaction of biotin with an amino acid residue(s) of the protein. It is suggested that the biotin prosthetic group is partially buried in the surface of the protein, rather than swinging free at the end of the lysine side chain through which it is covalently linked to the protein, to permit this interaction to occur.  相似文献   

8.
E D Matayoshi  T M Jovin 《Biochemistry》1991,30(14):3527-3538
The rotational diffusion of eosin-labeled 3 in human erythrocyte cells and hemoglobin-free ghosts at 37 degrees C has been studied in detail by polarized delayed luminescence. The time-resolved anisotropy with both cells and freshly prepared ghosts is similar, decaying with well-resolved rotational correlation times of 0.03, 0.2, and greater than or equal to 1 ms. Mild proteolytic removal of the water-soluble 41-kDa cytoplasmic domain of band 3 in ghosts results in a drastic increase in the fractional contributions of the two fastest depolarizing components. Our results, taken together with other data in the literature, imply that several classes of band 3 that differ greatly in mobility exist in ghosts and intact cells. The mobility of one class is hindered due to complexation with other membrane or cytoplasmic proteins mediated via the 41-kDa cytoplasmic domain. However, another class of band 3 molecules exists as homo-or heterooligomeric complexes larger than a dimer that are stabilized by hydrophobic interactions involving the intramembranal domain. Finally, the presence of the (previously undetected) 0.03-ms anisotropy component strongly suggests that a significant fraction of band 3 in both ghosts and intact cells is highly mobile and diffuses at the rate expected for a freely rotating dimer in the erythrocyte membrane.  相似文献   

9.
About 40% of human erythrocyte membrane protein is resistant to solubilization in 0.5% Triton X-114. These components comprise a structure called a Triton shell roughly similar in size and shape to the original erythrocyte and thus constitute a cytoskeleton. With increasing concentrations of Triton the lipid content of the Triton shell decreases dramatically, whereas the majority of the protein components remain constant. Exceptions to this rule include proteins contained in band 3, the presumed anion channel, and in band 4 which decrease with increasing Triton concentration. The Triton-insoluble complex includes spectrin (bands 1 and 2), actin (band 5), and bands 3′ and 7. Component 3′ has an apparent molecular weight of 88,000 daltons as does 3; but unlike 3, it is insensitive to protease treatment of the intact cell, has a low extinction coefficient at 280 nm, and is solubilized from the shells in alkaline water solutions. Component 7 also has a low extinction coefficient at 280 nm. Spectrin alone is solubilized from the Triton shells in isotonic media. The solubilized spectrin contains no bound Triton and coelectrophoreses with spectrin eluted in hypotonic solutions from ghosts. Electron micrographs of fixed Triton shells stained with uranyl acetate show the presence of numerous filaments which appear beaded and are 80–120 Å in diameter. The filaments cannot be composed mainly of actin, but enough spectrin is present to form the filaments. Triton shells may provide an excellent source of material useful in the investigation of the erythrocyte cytoskeleton.  相似文献   

10.
Human erythrocyte membranes (ghosts) from acid/citrate/dextrose preserved blood were digested with trypsin (protein/trypsin = 100:1) under hypotonic conditions and then analyzed by SDS-polyacrylamide gel electrophoresis. After digestion for about 20-30 s at 0 degree C, only ankyrin had disappeared and other bands including spectrin, actin, band 4.1 and band 3 remained intact. This observation was supported by electron micrographs showing that the horizontally disposed, filamentous structure was a little apart from the lipid bilayer and its components were not destroyed. In contrast to intact ghosts, treatment with chlorpromazine, or Mg-ATP did not induce shape change in these trypsin-treated ghosts. The number of transformable cells correlated closely with the amount of remaining ankyrin in the SDS-polyacrylamide gel electrophoresis pattern. Furthermore, the chlorpromazine- and Mg-ATP-induced decreases in viscosity of suspensions of erythrocyte ghosts were also prevented by trypsin treatment for 20-30 s at 0 degree C. These findings suggest that ankyrin plays an important role in the change in shape and deformability of erythrocyte ghosts. The molecular mechanism of drug-induced shape change and the role of undermembrane structure in regulating erythrocyte shape and deformability are discussed.  相似文献   

11.
A spin-labeled fatty acid (16-doxylstearic acid), linked by an ester bond to a maleimide or a nitrene residue, was covalently attached to band 3 of erythrocyte membranes. The electron spin resonance spectrum of the spin-labeled protein was examined at different temperatures in: (a) whole erythrocyte ghosts; (b) ghosts depleted of spectrin and actin; (c) alkaline-treated ghosts; (d) vesicles made with purified band 3 reassociated with dimyristoylphosphatidylcholine. Most spectra are composite with a major component corresponding to a large overall splitting. The determination of the percentage of the immobilized component was carried out by pairwise subtraction. At low temperatures (1–7°C), the highest fraction of immobilized component was found in dimyristoylphosphatidylcholine vesicles (approx. 100%); alkaline-treated membranes had approx. 75% of the immobilized component at the same temperature; whole erythrocyte, spectrin/actin-depleted and spectrin/actin/ankyrin-depleted ghosts gave identical results (approx. 60% of immobilized component). The immobilized fraction decreased in all samples with increasing temperature or addition of a nonsolubilizing concentration of dodecyl octaethylene glycol monoether. In dimyristoylphosphatidylcholine vesicles, however, the modification in the ratio of the two components was obtained only above the lipid transition temperature (23°C). The strong immobilization of the spin-labeled lipid chain at all temperatures suggested trapping of the lipid chain between proteins. At low temperature, in dimyristoylphosphatidylcholine vesicles or in alkaline-treated ghosts, lipid-protein segregation is likely to take place. In whole erythrocyte ghosts, on the other hand, the large contribution of the motionally restricted component at physiological temperature indicates the oligomeric nature of band 3. Partial dissociation of the oligomers occurs as the temperature is increased, but the presence or absence of cytoskeletal proteins has no influence on the state of oligomerization of band 3.  相似文献   

12.
S C Liu  G Fairbanks  J Palek 《Biochemistry》1977,16(18):4066-4074
Changes in pH significantly affect the morphology and physical properties of red cell membranes. We have explored the molecular basis for these phenomena by characterizing the pattern of protein disulfide cross-linkages formed spontaneously in ghost exposed to acid pH or elevated temperature (37 degrees C). Protein aggregation was analyzed by two-dimensional polyacrylamide gel electrophoresis in sodium dodecyl sulfate. incubation of ghosts at pH 4.0 to 5.5 (0-4 degrees C) yielded (i) complexes of spectrin and band 3, (ii) complexes of actin and band 3, (iii) band 3 complexes, i.e. dimer and trimer, and (iv) heterogeneous aggregates involving spectrin, band 3, band 4.2, and actin in varying proportions. Aggregation was maximal near the isoelectric points of the major membrane proteins, and appeared to reflect (i) the aggregation of intramembrane particles including band 3 and (ii) more intimate contact between spectrin-actin meshwork and band 3.  相似文献   

13.
The hemocyanin of the North American tarantula Eurypelma californicum (Dugesiella californica) is dissociated at pH 9.6 into monomers (Mr about 70 000) and dimers (Mr about 140 000), which were separated by gel filtration. The monomer peak was resolved by preparative polyacrylamide gel electrophoresis and yielded 4 protein bands, three of which (1, 3 and 4M) are apparently homogeneous. Band 2 contains two sub-fractions (2I and 2II). The dimer peak contains two dimers (bands 4D and 5). Upon treatment with 5mM cysteine the dimer band 5 is dissociated, yielding only one type of monomer identical with band 3. The other dimer, which was only partially dissociated by 10mM EDTA, is most probably a heterodimer, one component being electrophoretically indistinguishable from band 2II. After treatment of the native hemocyanin with sodium dodecylsulfate and analysis in gradient gel slabs, 6 polypeptide chains were observed (labeled a - f). They correspond to the products of alkaline dissociation as follows: band 1 = e, band 2I = a, band 2II = c, band 3 = f, band 4M = d, band 4D = b plus c, band 5 = f. The molecular weights were determined by dodecylsulfate gel electrophoresis in gradient gels, and by sedimentation equilibrium analysis and found to range between 67 000 and 76 000. The sedimentation coefficients are between 4.4 and 4.7 S for the monomers and 6.6 and 6.7 for the dimers. The isoelectric points range from pH 4.5 to pH 5.4. The findings are discussed with respect to the limitations of molecular weight determination by conventional dodecylsulfate gel electrophoresis, to the structure of the hemocyanin oligomers and to possible biological significance.  相似文献   

14.
Calmodulin was detected in dogfish erythrocyte lysates by means of phosphodiesterase activation. Anucleate dogfish erythrocyte cytoskeletons bound calmodulin. Binding of calmodulin was calcium- dependent, concentration-dependent, and saturable. Cytoskeletons consisted of a marginal band of microtubules containing primarily tubulin, and trans-marginal band material containing actin and spectrinlike proteins. Dogfish erythrocyte ghosts and cytoskeletons were found to contain a calcium-dependent calmodulin-binding protein, CBP, by two independent techniques: (a) 125I-calmodulin binding to cytoskeletal proteins separated by SDS PAGE, and (b) in situ azidocalmodulin binding in whole anucleate ghosts and cytoskeletons. CBP, with an apparent molecular weight of 245,000, co-migrated with the upper band of human and dogfish erythrocyte spectrin. CBP was present in anucleate ghosts devoid of marginal bands and absent from isolated marginal bands. CBP therefore appears to be localized in the trans- marginal band material and not in the marginal band. Similarities between CBP and high molecular weight calmodulin-binding proteins from mammalian species are discussed.  相似文献   

15.
The UV and CD spectra of poly-L-tyrosine were investigated at pH 10.6 and pH 11.2. At pH 10.6 (μ=0.1), the CD spectrum exhibits a medium positive band at 230mμ, an extremely small negative band at 217mμ, and a large positive band at 200mμ. At pH 11.2 (μ=0.1), a new positive CD band appears at 277mμ while the bands at 230mμ and 217mμ are shifted to longer wavelengths by 15 and 10mμ respectively. These results, together with UV spectral data and a specific rotation- pH profile, suggest that at pH 10.6, poly-L-tyrosine exists in the helical conformation with only a small fraction of its side chains ionized; at pH 11.2, the polypeptide retains its helical structure but with a considerable increase in ionization.  相似文献   

16.
Circular dichroism (CD) and absorption spectra of squid (Todarodes pacificus) rhodopsin, isorhodopsin and the intermediates were measured at low temperatures. Squid rhodopsin has positive CD bands at wavelengths corresponding the - and β-absorption bands at liquid nitrogen temperature (CD maxima: 485 nm at -band and 348 nm at β-band) as well as at room temperature (CD maxima: 474 nm at -band and 347 nm at β-band). The rotational strength of the -band has a molecular ellipticity about twice that of cattle rhodopsin. The CD spectrum of bathorhodopsin displays a negative peak at 532 nm, the rotational strength of which has an absolute value slightly larger than that of rhodopsin. The reversal in sign at -band of the CD spectrum may indicate that the isomerization of retinal chromophore from twisted 11-cis form to twisted 11-trans form has occurred in the process of conversion from rhodopsin to bathorhodopsin. Lumirhodopsin has a small negative CD band at 490 nm, the maximum of which lies at 25 nm shorter wavelengths than the absorption maximum (515 nm), and a large positive CD band near 290 nm, which is not observed in rhodopsin and the other intermediates. This band may be derived from a conformational change of the opsin. In the process of changing from lumirhodopsin to LM-rhodopsin, the CD bands at visible and near ultraviolet regions disappear. Both alkaline and acid metarhodopsins have no CD bands at visible and near ultraviolet regions.  相似文献   

17.
We report on spectral features for two and three diphenylacetylene chromophores aligned in close proximity in aqueous solution by self assembly of attached oligonucleotide arms. Two duplex systems were examined in detail. One was formed by hybridization (Watson-Crick base pairing) of two oligonucleotide 10-mers, each containing the diphenylacetylene insert. The other was generated by self-folding of a 36-mer oligonucleotide containing two diphenylacetylene inserts. The triplex system was obtained by hybridization (Hoogsteen base pairing) of a 16-mer oligonucleotide diphenylacetylene conjugate to the folded 36-mer hairpin. Formation of duplex and triplex entities from these conjugates was demonstrated experimentally by thermal dissociation and spectroscopic studies. The UV and CD spectra for the duplex systems exhibit bands in the 300-350 nm region attributable to exciton coupling between the two chromophores, and the emission spectra show a strong band centered at 410 nm assigned to excimer fluorescence. Addition of the third strand to the hairpin duplex has little effect on the CD spectrum in the 300-350 nm region, but leads to a negative band at short wavelengths characteristic of a triplex and to a strongly enhanced band at 410 nm in the fluorescence spectrum. The third strand alone shows a broad fluorescence band at approximately 345-365 nm, but this band is virtually absent in the triplex system. A model for the triplex system is proposed in which two of the three aligned diphenylacetylenes function as a ground state dimer that on excitation gives rise to the exciton coupling observed in the UV and CD spectra and to the excimer emission observed in the fluorescence spectrum. Excitation of the third chromophore results in enhanced excimer fluorescence, as a consequence of energy transfer from the locally excited singlet of one chromophore to the ground state dimer formed by the other two chromophores.  相似文献   

18.
Synthesis of a radioactive photoactivable heterobifunctional reagent, N-oxysuccinimide ester of 2-[14C]glycyl carboxy-9-diazofluorene is described. This reagent on photolysis gives rise to a reactive carbene which rapidly inserts into solvents like methanol. The probe can be easily linked to aldolase which on photolysis gives rise to aldolase dimer, trimer and tetramer depending on the density of linked probe. This probe has also been linked to concanavalin A. The radioactive concanavalin A so obtained was incubated with erythrocyte ghosts and photolysed. The membrane protein analysis by gel electrophoresis indicated that concanavalin A has been covalently crosslinked to band 3.  相似文献   

19.
The structural basis for the spectral red shift in the near-IR absorption band of the B875 light-harvesting complex was examined by treatment of membranes from Rhodobacter sphaeroides M21 with acid. This mutant strain lacks the overlapping spectral bands of the B800–850 light-harvesting antenna and gives rise to membrane fragments with both surfaces accessible to protons. At pH 2.2, about half the absorption at 876 nm was converted within 10 min to a free pigment band; the remaining absorption appeared at 880 nm and shifted to 845 nm over the next three hours. These spectral shifts could not be reversed by alkali. Approximately one-third of the characteristic near-IR CD signal of B875 was also lost initially and replaced by a broad trough centered near 854 nm. Thereafter, the CD spectrum was dominated by the strong conservative signal of the 845 nm absorbing component which was attributed to an oligomeric bacteriopheophytin a species, probably a dimer. A kinetic analysis of the acid-induced absorption changes suggested a multi-step model with rate constants of 0.37 min-1 for the initial rapid change and 0.05 and 0.11 min-1 for the respective subsequent steps. The non-conservative nature of the near-IR CD spectrum of the intact complex, together with the spectral changes observed after the initial loss of near-IR absorption and CD, suggest that pigment-pigment interactions are not solely responsible for the red shift in this complex.Abbreviations BChl bacteriochlorophyll a - BPheo bacteriopheophytin a  相似文献   

20.
Allophycocyanin II in its trimer form (α3β3) at pH 7.0 has an absorption maximum at 652 nm. This band is selectively reduced in intensity at pH 7.0 when various salts are added. The loss of 652 nm absorption follows the order: NaClO4 ? NaNO3 > NaBr > NaCl. When the NaClO4 concentration is in the range 0.6-1.0 m the 652-nm band is entirely lost, and sedimentation equilibrium and velocity studies suggest that the trimer is completely dissociated to monomers (αβ). Hydrophobic interactions appear to be important in maintaining the trimer. The monomer absorption maximum is at 616 nm. A series of experiments using these salts demonstrated at intermediate 652-nm intensities and the two extrema that an isobestic point at 626 nm is present which indicates an equilibrium between two species. Corresponding to the loss of 652 nm absorption is the disappearance of 661 nm fluorescence emission and the appearance of a new band at 642 nm. Removal of the NaClO4 by dialysis essentially restores the 652-nm absorption and 661-nm emission and the trimeric protein structure. The near ultraviolet region is only slightly perturbed during the loss of 652 nm absorption. In the absence of any additional salts these spectral changes also occur in pH 7.0 buffer at very low protein concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号