首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Autophagy is a major intracellular degradative process that delivers cytoplasmic materials to the lysosome for degradation. Since the discovery of autophagy-related (Atg) genes in the 1990s, there has been a proliferation of studies on the physiological and pathological roles of autophagy in a variety of autophagy knockout models. However, direct evidence of the connections between ATG gene dysfunction and human diseases has emerged only recently. There are an increasing number of reports showing that mutations in the ATG genes were identified in various human diseases such as neurodegenerative diseases, infectious diseases, and cancers. Here, we review the major advances in identification of mutations or polymorphisms of the ATG genes in human diseases. Current autophagy-modulating compounds in clinical trials are also summarized.  相似文献   

2.
Autophagy is an evolutionarily conserved homeostatic process for the turnover of cellular contents, organelles and misfolded proteins through the lysosomal machinery. Recently, the involvement of autophagy in the pathophysiology of neurodegenerative diseases has attracted considerable interest because autophagy deregulation has been linked to some of these neurodegenerative disorders. This interest is further heightened by the demonstration that various autophagic pathways, including macroautophagy and chaperone-mediated autophagy, are implicated in the turnover of proteins that are prone to aggregation in cellular or animal disease models. These observations have stimulated new awareness in the pivotal role of the autophagic pathways in neurodegenerative disease pathophysiology, and have sparked extensive research aimed at deciphering the mechanisms by which autophagy is altered in these disorders. Here, we summarize the latest advances in our understanding of the role of autophagy deregulation in Parkinson's, Alzheimer's and Huntington's disease.  相似文献   

3.
In neurodegenerative diseases like Alzheimer's disease (AD), tau is hyperphosphorylated and forms aggregates and neurofibrillary tangles in affected neurons. Autophagy is critical to clear the aggregates of disease‐associated proteins and is often altered in patients and animal models of AD. Because mechanistic target of rapamycin (mTOR) negatively regulates autophagy and is hyperactive in the brains of patients with AD, mTOR is an attractive therapeutic target for AD. However, pharmacological strategies to increase autophagy by targeting mTOR inhibition cause various side effects. Therefore, autophagy activation mediated by non‐mTOR pathways is a new option for autophagy‐based AD therapy. Here, we report that pimozide activates autophagy to rescue tau pathology in an AD model. Pimozide increased autophagic flux through the activation of the AMPK‐Unc‐51 like autophagy activating kinase 1 (ULK1) axis, but not of mTOR, in neuronal cells, and this function was independent of dopamine D2 receptor inhibition. Pimozide reduced levels of abnormally phosphorylated tau aggregates in neuronal cells. Further, daily intraperitoneal (i.p.) treatment of pimozide led to a recovery from memory deficits of TauC3 mice expressing a caspase‐cleaved form of tau. In the brains of these mice, we found increased phosphorylation of AMPK1 and ULK1, and reduced levels of the soluble oligomers and NP40‐insoluble aggregates of abnormally phosphorylated tau. Together, these results suggest that pimozide rescues memory impairments in TauC3 mice and reduces tau aggregates by increasing autophagic flux through the mTOR‐independent AMPK‐ULK1 axis.  相似文献   

4.
The formation of intra-neuronal mutant protein aggregates is a characteristic of several human neurodegenerative disorders, like Alzheimer's disease, Parkinson's disease (PD) and polyglutamine disorders, including Huntington's disease (HD). Autophagy is a major clearance pathway for the removal of mutant huntingtin associated with HD, and many other disease-causing, cytoplasmic, aggregate-prone proteins. Autophagy is negatively regulated by the mammalian target of rapamycin (mTOR) and can be induced in all mammalian cell types by the mTOR inhibitor rapamycin. It can also be induced by a recently described cyclical mTOR-independent pathway, which has multiple drug targets, involving links between Ca(2+)-calpain-G(salpha) and cAMP-Epac-PLC-epsilon-IP(3) signalling. Both pathways enhance the clearance of mutant huntingtin fragments and attenuate polyglutamine toxicity in cell and animal models. The protective effects of rapamycin in vivo are autophagy-dependent. In Drosophila models of various diseases, the benefits of rapamycin are lost when the expression of different autophagy genes is reduced, implicating that its effects are not mediated by autophagy-independent processes (like mild translation suppression). Also, the mTOR-independent autophagy enhancers have no effects on mutant protein clearance in autophagy-deficient cells. In this review, we describe various drugs and pathways inducing autophagy, which may be potential therapeutic approaches for HD and related conditions.  相似文献   

5.
活性氧与自噬的研究进展   总被引:1,自引:0,他引:1  
朱京  谭晓荣 《生命科学》2011,(10):987-992
活性氧(reactive oxygen species,ROS)和自噬在人体内作用广泛,且与人类的健康密切相关。两者之间关系复杂,ROS作为诱导自噬的信号分子,参与多种诱导自噬的信号途径,在自噬的形成过程中起着重要作用,而自噬具有减少ROS损伤的作用。对ROS与自噬之间的关系,包括ROS介导自噬的分子机制,以及ROS和自噬在肿瘤、神经退行性疾病和衰老中的作用进行综述。  相似文献   

6.
7.
The common underlying feature of most neurodegenerative diseases such as Alzheimer disease (AD), prion diseases, Parkinson disease (PD), and amyotrophic lateral sclerosis (ALS) involves accumulation of misfolded proteins leading to initiation of endoplasmic reticulum (ER) stress and stimulation of the unfolded protein response (UPR). Additionally, ER stress more recently has been implicated in the pathogenesis of HIV-associated neurocognitive disorders (HAND). Autophagy plays an essential role in the clearance of aggregated toxic proteins and degradation of the damaged organelles. There is evidence that autophagy ameliorates ER stress by eliminating accumulated misfolded proteins. Both abnormal UPR and impaired autophagy have been implicated as a causative mechanism in the development of various neurodegenerative diseases. This review highlights recent advances in the field on the role of ER stress and autophagy in AD, prion diseases, PD, ALS and HAND with the involvement of key signaling pathways in these processes and implications for future development of therapeutic strategies.  相似文献   

8.
In an aging society, research involving neurodegenerative disorders is of paramount importance. Over the past few years, research on Alzheimer's and Parkinson's diseases has made tremendous progress. Experimental studies, however, rely mostly on transgenic animal models, preferentially using mice. Although experiments on mice have enormous advantages, they also have some inherent limitations, some of which can be overcome by the use of Drosophila melanogaster as an experimental animal. Among the major advantages of using the fly is its small genome, which can also be modified very easily. The fact that its genome lends itself to diverse alterations (e. g. mutagenesis, transposons) has made the fly a useful organism to perform large‐scale and genome‐wide screening approaches. This has opened up an entirely new field of experimental research aiming to elucidate genetic interactions and screen for modifiers of disease processes in vivo. Here, we provide a brief overview of how flies can be used to analyze molecular mechanisms underlying human neurodegenerative diseases.  相似文献   

9.
Enormous strides have been made in the last 100 years to extend human life expectancy and to combat the major infectious diseases. Today, the major challenges for medical science are age‐related diseases, including cancer, heart disease, lung disease, renal disease, and late‐onset neurodegenerative disease. Of these, only the neurodegenerative diseases represent a class of disease so poorly understood that no general strategies for prevention or treatment exist. These diseases, which include Alzheimer's disease, Parkinson's disease, Huntington's disease, the transmissible spongiform encephalopathies, and amyotrophic lateral sclerosis (ALS), are generally fatal and incurable. The first section of this review summarizes the diversity and common features of the late‐onset neurodegenerative diseases, with a particular focus on protein misfolding and aggregation—a recurring theme in the molecular pathology. The second section focuses on the particular case of ALS, a late‐onset neurodegenerative disease characterized by the death of central nervous system motor neurons, leading to paralysis and patient death. Of the 10% of ALS cases that show familial inheritance (familial ALS), the largest subset is caused by mutations in the SOD1 gene, encoding the Cu, Zn superoxide dismutase (SOD1). The unusual kinetic stability of SOD1 has provided a unique opportunity for detailed structural characterization of conformational states potentially involved in SOD1‐associated ALS. This review discusses past studies exploring the stability, folding, and misfolding behavior of SOD1, as well as the therapeutic possibilities of using detailed knowledge of misfolding pathways to target the molecular mechanisms underlying ALS and other neurodegenerative diseases. Proteins 2013; 81:1285–1303. © 2013 Wiley Periodicals, Inc.  相似文献   

10.
During the past year, the Drosophila genome has been sequenced. More than 60% of genes implicated in human disease have Drosophila orthologues. Developments in RNA-mediated interference and homologous recombination have made 'reverse genetics' feasible in Drosophila. Conventional Drosophila genetics is being used increasingly to place human disease genes of unknown function in the context of functional pathways.  相似文献   

11.
自噬是进化上高度保守并受到多途径严密调控的细胞生物学过程,其向溶酶体递送多种细胞质组分以进行细胞内物质的降解以及再循环.这一过程涉及到细胞器的更新、错误折叠蛋白质和蛋白质聚集体以及细胞内病原体的清除.因此,自噬对于细胞稳态的维持至关重要,与许多人类疾病的发生发展密切相关.随着细胞自噬调节机制研究的不断深入,越来越多的去泛素化酶被证明在自噬相关的泛素信号调控系统中发挥了重要的作用.这些去泛素化酶作用于细胞自噬的不同阶段,靶向调节不同的泛素化自噬功能元件或自噬底物.去泛素化酶作为包括神经退行性疾病以及肿瘤在内的细胞自噬相关疾病的治疗靶点受到了广泛的关注,其中各类小分子抑制剂的发现为进一步研究去泛素化酶的自噬调节活性及相关疾病的治疗提供了可能.  相似文献   

12.
衰老机理的研究是揭示衰老的本质和防治老年性疾病的一个重要环节,同时也为抗衰老提供理论依据.诸多研究表明,阿兹海默症(Alzheimer’s disease,AD)等神经退行性疾病与衰老密切相关.在老年性AD病研究中,果蝇是一种通常被用于研究其发病机理与治疗方法的重要模型.本文就AD病的发病机制、与衰老相关通路的联系、以及果蝇模型在AD病中的研究进展进行了综述.为研究老年性AD病的机理和治疗提供参考.  相似文献   

13.
Degradation processes are important for optimal functioning of eukaryotic cells. The two major protein degradation pathways in eukaryotes are the ubiquitin–proteasome pathway and autophagy. This contribution focuses on autophagy. This process is important for survival of cells during nitrogen starvation conditions but also has a house keeping function in removing exhausted, redundant or unwanted cellular components. We present an overview of the molecular mechanism involved in three major autophagy pathways: chaperone mediated autophagy, microautophagy and macroautophagy. Various recent reports indicate that autophagy plays a crucial role in human health and disease. Examples are presented of lysosomal storage diseases and the role of autophagy in cancer, neurodegenerative diseases, defense against pathogens and cell death.  相似文献   

14.
The quality of mitochondria, essential organelles that produce ATP and regulate numerous metabolic pathways, must be strictly monitored to maintain cell homeostasis. The loss of mitochondrial quality control systems is acknowledged as a determinant for many types of neurodegenerative diseases including Parkinson's disease (PD). The two gene products mutated in the autosomal recessive forms of familial early‐onset PD, Parkin and PINK1, have been identified as essential proteins in the clearance of damaged mitochondria via an autophagic pathway termed mitophagy. Recently, significant progress has been made in understanding how the mitochondrial serine/threonine kinase PINK1 and the E3 ligase Parkin work together through a novel stepwise cascade to identify and eliminate damaged mitochondria, a process that relies on the orchestrated crosstalk between ubiquitin/phosphorylation signaling and autophagy. In this review, we highlight our current understanding of the detailed molecular mechanisms governing Parkin‐/PINK1‐mediated mitophagy and the evidences connecting Parkin/PINK1 function and mitochondrial clearance in neurons.  相似文献   

15.
The two major intracellular catabolic pathways, the ubiquitin-proteasome system (UPS) and macroautophagy (autophagy), have each been implicated as playing roles in neurodegenerative proteinopathies. We have investigated the relationship between the UPS and autophagy using Drosophila models of neurodegenerative diseases. We identified histone deacetylase 6 (HDAC6) as a genetic modifier of polyglutamine-induced neurodegeneration and determined that its mechanism of action is autophagy-dependent. The ability of HDAC6 to suppress degeneration has been extended to additional neurodegenerative disease models, including a fly model expressing pathological Abeta fragments, presented here, but is not a universal modifier of degenerative phenotypes. Importantly, HDAC6 was also found to suppress degeneration associated with proteasome mutations in an autophagy-dependent manner, revealing a compensatory relationship between these two degradation pathways. Our findings indicate that HDAC6 facilitates degradation of potentially noxious protein substrates, contributing vitally to the neuroprotective role of autophagy.  相似文献   

16.
Paneth cells (PCs) are located at the base of small intestinal crypts and secrete the α‐defensins, human α‐defensin 5 (HD‐5) and human α‐defensin 6 (HD‐6) in response to bacterial, cholinergic and other stimuli. The α‐defensins are broad‐spectrum microbicides that play critical roles in controlling gut microbiota and maintaining intestinal homeostasis. Inflammatory bowel disease, including ulcerative colitis and Crohn's disease (CD), is a complicated autoimmune disorder. The pathogenesis of CD involves genetic factors, environmental factors and microflora. Surprisingly, with regard to genetic factors, many susceptible genes and pathogenic pathways of CD, including nucleotide‐binding oligomerization domain 2 (NOD2), autophagy‐related 16‐like 1 (ATG16L1), immunity‐related guanosine triphosphatase family M (IRGM), wingless‐related integration site (Wnt), leucine‐rich repeat kinase 2 (LRRK2), histone deacetylases (HDACs), caspase‐8 (Casp8) and X‐box‐binding protein‐1 (XBP1), are relevant to PCs. As the underlying mechanisms are being unravelled, PCs are identified as the central element of CD pathogenesis, integrating factors among microbiota, intestinal epithelial barrier dysfunction and the immune system. In the present review, we demonstrate how these genes and pathways regulate CD pathogenesis via their action on PCs and what treatment modalities can be applied to deal with these PC‐mediated pathogenic processes.  相似文献   

17.
In the present paper, we will discuss on the importance of autophagy in the central nervous system, and outline the relation between autophagic pathways and the pathogenesis of neurodegenerative disorders. The potential therapeutic benefits of naturally occurring phytochemicals as pharmacological modulators of autophagy will also be addressed. Our findings provide renewed insight on the molecular modes of protection by polyphenols, which is likely to be at least in part mediated not only by their potent antioxidant and anti-inflammatory effects, but also through modulation of autophagic processes to remove the aberrant protein aggregates.  相似文献   

18.
Wenming Li 《Autophagy》2018,14(6):1094-1096
Chaperone-mediated autophagy (CMA), a form of selective autophagy, maintains cellular proteostasis in response to diverse stress conditions. Whether and how endoplasmic reticulum (ER) stress triggers CMA remains elusive. In our recent study, we demonstrate that various types of ER stress activate the CMA pathway via an EIF2AK3/PERK-MAP2K4/MKK4-MAPK14/p38-dependent manner. We term this process ERICA for ER stress-induced chaperone-mediated autophagy. This pathway is activated in response to stress associated with Parkinson disease and is required for the viability of the SNc dopaminergic neurons in an animal model of Parkinson disease.  相似文献   

19.
(Macro)autophagy is a membrane-trafficking process that serves to sequester cellular constituents in organelles termed autophagosomes, which target their degradation in the lysosome. Autophagy operates at basal levels in all cells where it serves as a homeostatic mechanism to maintain cellular integrity. The levels and cargoes of autophagy can, however, change in response to a variety of stimuli, and perturbations in autophagy are known to be involved in the aetiology of various human diseases. Autophagy must therefore be tightly controlled. We report here that the Drosophila cyclin-dependent kinase PITSLRE is a modulator of autophagy. Loss of the human PITSLRE orthologue, CDK11, initially appears to induce autophagy, but at later time points CDK11 is critically required for autophagic flux and cargo digestion. Since PITSLRE/CDK11 regulates autophagy in both Drosophila and human cells, this kinase represents a novel phylogenetically conserved component of the autophagy machinery.  相似文献   

20.
Expansions of polyglutamine (polyQ) tracts in different proteins cause 9 neurodegenerative conditions, such as Huntington disease and various ataxias. However, many normal mammalian proteins contain shorter polyQ tracts. As these are frequently conserved in multiple species, it is likely that some of these polyQ tracts have important but unknown biological functions. Here we review our recent study showing that the polyQ domain of the deubiquitinase ATXN3/ataxin-3 enables its interaction with BECN1/beclin 1, a key macroautophagy/autophagy initiator. ATXN3 regulates autophagy by deubiquitinating BECN1 and protecting it from proteasomal degradation. Interestingly, expanded polyQ tracts in other polyglutamine disease proteins compete with the shorter ATXN3 polyQ stretch and interfere with the ATXN3-BECN1 interaction. This competition results in decreased BECN1 levels and impaired starvation-induced autophagy, which phenocopies the loss of autophagic function mediated by ATXN3. Our findings describe a new autophagy-protective mechanism that may be altered in multiple neurodegenerative diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号