共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
基于CRISPR/Cas的基因编辑是近年发展起来的一项变革性生物技术。其过程包括在目标DNA位点引入双链断裂(double strand break,DSB)以及其后续的细胞修复。细胞修复DSB主要有两种方式:非同源末端连接(non-homologous end joining,NHEJ)以及同源重组介导的修复(homology-directed repair,HDR)。前者是大多数细胞修复DSB的主要方式,其特点在于修复简单、效率高但极易出错,往往会引发难以预测的核苷酸插入或删除。点突变是自然界中最常见的遗传突变类型,引起了超过半数的人类遗传疾病以及许多重要农艺性状变异。碱基编辑能够实现单个碱基的替换,既不需要引入DSB,又无需修复模板参与,具有高效、编辑结果可控等优点,在基因治疗、作物育种及生物技术研究等方面具有重大的应用潜能。自首个碱基编辑工具开发以来,碱基编辑相关技术得到快速发展及广泛应用。本文综述了目前DNA碱基编辑研究进展,重点阐述了碱基编辑器及其在编辑效率、精度以及特异性提高和编辑范围扩展等方面的最新进展以及仍存在的瓶颈,并展望其研究和应用前景。 相似文献
3.
CRISPR系统能够在基因组DNA中完成精准编辑,但依赖于细胞内的同源重组(Homology directed recombination,HDR)修复途径,且效率极低.基于CRISPR/Cas9系统开发的碱基编辑技术(Base editing)通过将失去切割活性的核酸酶与不同碱基脱氨基酶融合,构建了两套碱基编辑系统(... 相似文献
4.
基于CRISPR的碱基编辑器是生物学研究的强大工具,并为遗传病的治疗带来新的希望.然而, DNA碱基编辑器的潜在脱靶效应却带来了治疗上的风险.相比之下, RNA水平的碱基编辑具有相对灵活、可逆且风险较低的特点,并在纠正疾病相关点突变方面取得了重大进展,对生物学基础研究和治疗学的发展产生了深远的影响.本文总结了新兴的基于A-to-I、C-to-U、假尿嘧啶修饰等的RNA碱基编辑器,全面概述了其设计、效率和在疾病治疗中的应用.最后,本文深入讨论了RNA碱基编辑在疾病治疗上的局限性和可能的发展方向,以期对RNA基因编辑实践提供理论参考. 相似文献
5.
近年发展起来的人工核酸酶可通过引起特定位点的DNA双链断裂实现对目的片段的有效编辑。为进一步提高碱基修改的效率和精确度,2016年研究者们利用CRISPR/Cas9识别特定DNA序列的功能,结合胞嘧啶脱氨酶的生化活性发明了将胞嘧啶高效转换为胸腺嘧啶(C>T)的嘧啶单碱基编辑系统(base editor)。这一系统虽然能精准实现嘧啶直接转换,大大提高精确基因编辑效率,但美中不足的是无法对嘌呤进行修改。近期,Nature报道了将细菌中的tRNA腺嘌呤脱氨酶定向进化形成具有催化DNA腺嘌呤底物的脱氨酶,将其与Cas9系统融合发明了具有高效催化腺嘌呤转换为鸟嘌呤的新工具—腺嘌呤单碱基编辑系统(ABEs, adenine base editors)。本文总结了单碱基编辑工具的发展历程和最新研究进展,着重介绍ABEs的研发过程,并对单碱基编辑工具今后的应用方向和研发方向进行展望。 相似文献
7.
基于CRISPR/Cas系统出现的单碱基编辑技术可以实现高效且简便的单个碱基的替换编辑,其原理是将胞嘧啶脱氨酶(cytosine deaminase)或腺苷脱氨酶(adenosine deaminase)与Cas9n(D10A)形成融合蛋白,通过CRISPR/Cas精准识别和定位DNA上的靶位点后,利用胞嘧啶脱氨酶或腺苷脱氨酶将靶点距离sgRNA位点基序(protospacer adjacent motif,PAM)序列端的4~7位的单个碱基发生单碱基转换或颠换。对基于CRISPR/Cas系统的单碱基编辑技术发现的历史、组成和分类、工作原理进行了概述,并总结了该系统最新进展及应用。 相似文献
8.
基于CRISPR/Cas系统出现的单碱基编辑技术可以实现高效且简便的单个碱基的替换编辑,其原理是将胞嘧啶脱氨酶(cytosine deaminase)或腺苷脱氨酶(adenosine deaminase)与Cas9n(D10A)形成融合蛋白,通过CRISPR/Cas精准识别和定位DNA上的靶位点后,利用胞嘧啶脱氨酶或腺苷脱氨酶将靶点距离sgRNA位点基序(protospacer adjacent motif,PAM)序列端的4~7位的单个碱基发生单碱基转换或颠换。对基于CRISPR/Cas系统的单碱基编辑技术发现的历史、组成和分类、工作原理进行了概述,并总结了该系统最新进展及应用。 相似文献
9.
10.
作物的优良性状往往来自于其相应基因的单个碱基突变,而传统育种无法轻易获得此种定向单碱基变异。单碱基编辑技术是以成簇规律间隔短回文重复序列(clustered regularly interspaced short palindromic repeats/CRISPR?associated proteins,CRISPR/Cas)系统为基础改良的一项基因编辑技术,该技术可在不造成DNA双链断裂的情况下对靶序列上的特定碱基进行定向替换。为拓展单碱基编辑技术在作物中的识别范围,利用来自Francisella novicida细菌的FnCpf1核酸酶及胞嘧啶脱氨酶APOBEC1对单碱基编辑系统进行改良,并针对玉米BT2基因靶位点构建相应载体,通过瞬时转化手段检测其编辑能力。检测结果发现9种碱基变化类型,其中靶位点5′端第11个碱基的胞嘧啶转化为腺嘌呤,位点编辑效率达到2.5%。结果表明该系统能够识别“TTN”作为原型间隔序列毗邻基序(protospacer?adjacent motif,PAM)并对靶位点进行单碱基编辑,为单碱基编辑识别范围的拓展提供了研究思路。 相似文献
11.
遗传性变异是表型多样性的基础,靶向饱和突变作物基因可以促进产生具有优异农艺性状的突变体。相较于传统诱变育种和异源物种中的定向进化方法,基于双碱基编辑系统的植物基因靶向随机突变技术可对植物内源基因产生高效突变,从而实现原位定向进化,加快植物育种及功能基因研究进程。该文介绍了使用饱和靶向内源基因突变编辑器(STEME)对植... 相似文献
12.
近年来,基于CRISPR/Cas9的碱基编辑技术因其具有不产生DNA双链断裂、无需外源DNA模板、不依赖宿主同源重组修复的优势,已经逐渐发展成为一种强大的基因组编辑工具,在动物、植物、酵母和细菌中得到了开发和应用。研究团队前期已在重要的工业模式菌株谷氨酸棒杆菌中开发了一种多元自动化的碱基编辑技术MACBETH,为进一步优化该方法,提高碱基编辑技术在谷氨酸棒杆菌中的应用效率,本研究首先在谷氨酸棒杆菌中构建了基于绿色荧光蛋白(GFP)的检测系统:将GFP基因的起始密码子ATG人工突变为ACG,GFP无法正常表达,当该密码子的C经编辑后恢复为T,即实现GFP蛋白的复活,结合流式细胞仪分析技术,可快速衡量编辑效率。然后,构建针对靶标位点的碱基编辑工具,经测试,该位点可成功被编辑,在初始编辑条件下碱基编辑效率为(13.11±0.21)%。在此基础上,通过对不同培养基类型、诱导初始OD600、诱导时间、诱导物浓度进行优化,确定最优编辑条件是:培养基为CGXII,初始OD600为0.05,诱导时间为20 h,IPTG浓度为0.01 mmol/L。经过优化,编辑效率达到(30.35±0.75)%,较初始条件提高了1.3倍。最后,选取原编辑条件下编辑效率较低的位点,进行了优化后编辑条件下的编辑效率评估,结果显示,不同的位点在最优编辑条件下的编辑效率提高了1.7–2.5倍,进一步证实该优化条件的有效性及通用性。研究结果为碱基编辑技术在谷氨酸棒杆菌中更好的应用提供了重要的参考价值。 相似文献
13.
14.
基因编辑技术是当今生物学研究领域最为重要的颠覆性技术之一,以CRISPR/Cas9系统为核心的基因编辑工具被广泛应用于包括人类体细胞、生殖细胞编辑相关的医学研究领域。虽然CRISPR/Cas9系统可以高效编辑靶基因,但其精准编辑能力依赖于效率极低的同源重组方式,这极大限制了其定点编辑的能力与应用范围,所以寻找一种能高效引入点突变的新型基因编辑工具具有重大的应用价值。以CRISPR/Cas9系统为基础的单碱基编辑系统可以在基因组靶位点实现精准、高效的C/G和T/A碱基间的转换,其编辑能力已经在动植物、人体细胞以及人类胚胎中得到证实。利用单碱基编辑技术,有望对人类超过70%的相关遗传性致病位点进行修复。现就人类胚胎单碱基编辑治疗遗传疾病的最新研究进展进行综述和展望。 相似文献
15.
在众多生物中利用具有切割作用的CRISPR/Cas9系统与非同源性末端连接(non-homologous end joining,NHEJ)修复系统或同源性末端连接(homology-directed repair,HDR)修复系统共同完成基因编辑工作都有报道。但是由于NHEJ的不精确性以及一些微生物中HDR效率较低导致生物体死亡限制了该工具的发展。基于CRISPR/dCas9系统构建而成的DNA碱基编辑器作为一种编辑工具,可靶向地实现碱基之间的转换,且不导致微生物死亡。DNA碱基编辑器在微生物中已经实现靶向编辑工作,可以同时多个位点进行编辑,同时可以利用该工具将编码氨基酸的密码子转化为终止密码子,提前终止翻译过程实现对基因的失活。本文主要对DNA碱基编辑器的作用原理,发展历程以及在微生物中的应用做了概述,最后提出了该工具存在的一些不足之处,并结合相关研究展望了未来的研究方向。为在微生物中开发与利用DNA碱基编辑的研究提供了思路。 相似文献
16.
规律性成簇间隔的短回文重复序列(clustered regularly interspaced short palindromic repeats, CRISPR)的发现和工程技术对生命科学的发展带来巨大的推动作用。RNA引导的Cas(CRISPR-associated)酶已被用作操纵细胞、动物和植物基因组的工具。这加速了基础研究的步伐,并使其在临床和农业上的应用成为可能。CRISPR/Cas9对在实验系统中进行的功能基因组学的研究有重大影响。CRISPR/Cas9系统自发现以来,因其操作便捷、成本低、特异性高、可同时打靶任意数量基因等优点而被广泛应用。经过近几年研究发现,Cas9变异体(Cas12a、Cas13)有利于突破和克服CRISPR/Cas9应用中的一些限制,Cas12a极大地扩展了基因编辑靶位点的选择范围,同时其介导的多基因编辑具有明显的优势;Cas13等蛋白能特异性结合和编辑RNA,开启了转录组研究的新篇章。本文主要就CRISPR/Cas的研究背景以及Cas9、Cas12a和Cas13系统研究进展和应用进行综述,并对其应用前景和发展方向进行了展望。 相似文献
17.
碱基编辑器是近两年发展起来的新型基因组编辑工具,它将碱基脱氨酶的催化活性和CRISPR/Cas系统的靶向特异性进行结合,催化DNA或RNA链上特定位点的碱基发生脱氨基反应,进而完成碱基的替换。碱基编辑器分为DNA和RNA碱基编辑器两大类,其中DNA碱基编辑器分为两种:胞嘧啶碱基编辑器和腺嘌呤碱基编辑器;前者可以实现胞嘧啶到胸腺嘧啶的转换,而后者则可以将腺嘌呤突变为鸟嘌呤。由于DNA碱基编辑器不会造成DNA的双链断裂(DSB),也不依赖于宿主的非同源末端修复和同源重组途径,因此,大大减少了DSB相关的编辑副产物,如小片段插入或缺失等。基于CRISPR/Cas系统的RNA碱基编辑器,可以实现RNA链上腺嘌呤核苷到次黄苷的转换。本文对不同类型碱基编辑器的开发过程、适用范围和编辑特点等进行梳理,并对其在细菌基因组编辑中的应用进行了介绍;最后简要探讨了细菌中碱基编辑器的缺点以及将来可能的研究方向。 相似文献
18.
碱基编辑是一种新兴的基因组编辑技术,具有不产生双键断裂、不依赖同源重组且不需要添加外源模板的优势,在真核及原核生物中得到了广泛的开发与应用。为了进一步扩展碱基编辑技术在谷氨酸棒杆菌中的基因组覆盖范围,本研究将3种PAM限制较为宽松的新型Cas9突变体应用于胞嘧啶碱基编辑工具中,分别为近乎PAMless的SpRY突变体(NRN>NYN PAM)、SpG突变体(NGN PAM),以及ScCas9++蛋白(NNG PAM),实现对碱基编辑工具的PAM拓展。结合SpRY突变体的碱基编辑系统展示出了更宽松的PAM识别,除对CAT、CAC、TAA PAM的位点完全没有编辑外,对其他NRN种类的PAM位点均出现了不同程度的识别,但整体编辑效率低,难以推广应用;结合SpG突变体的碱基编辑系统可实现对所有NGN种类PAM位点的编辑,且编辑效率优于SpRY突变体,但对NGG PAM位点的编辑,相比原始Cas9蛋白,编辑效率下降9.3%-55.9%;结合ScCas9++蛋白的碱基编辑系统,除对TCG、CTG PAM的基因组位点没有编辑外,可实现对其他测试NNG PAM的基因组位点编辑,大部分位点基因组... 相似文献
19.
基因组定点编辑技术是研究基因功能和生物体改造的重要工具。CRISPR-Cas(Clustered regularly interspaced short palindromic repeats and CRISPR-associated proteins)系统是近年来发展的一种新型基因组编辑技术,该技术通过一段向导RNA和配套的核酸酶就可对特定的基因组序列进行定点编辑,具有简单高效、应用广泛的特点,受到了生物学家的广泛关注。本文着重介绍CRISPR-Cas系统在植物中的研究进展,包括CRISPR-Cas9系统在植物中的应用与完善、扩大基因组编辑范围的研究、Cas9切口酶和失活酶的拓展、特异性单碱基突变编辑系统的研究、无外源DNA污染的植物基因编辑技术的发展以及基因组编辑技术在作物育种上的应用等方面。同时也提出了还需解决的问题,并展望了基因组编辑系统在作物育种中的应用前景,为开展这一领域的研究工作提供参考。 相似文献
20.
近年来,基于成簇的规律间隔短回文重复序列及其相关系统(Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein,CRISPR/Cas)的基因编辑技术飞速发展,该系统可以利用同源定向重组(Homology directed repair,HDR)来完成其介导的精准编辑,但效率极低,限制了其在农业和生物医学等领域上的推广应用。基于CRISPR/Cas系统的DNA碱基编辑技术作为一种新兴的基因组编辑技术,能在不产生双链断裂的情况下实现碱基的定向突变,相对于CRISPR/Cas介导的HDR编辑具有更高的编辑效率和特异性。目前,已开发出了可将C碱基突变为T碱基的胞嘧啶碱基编辑器(Cytidine base editors,CBE),将A碱基突变为G碱基的腺嘌呤碱基编辑器(Adenine base editors,ABE),以及可实现碱基任意变换和小片段精准插入和缺失的Prime编辑器(Prime editors,PE)。另外,能实现C到G颠换的糖基化酶碱基编辑器(Glycosylase base editors,GBE)以及能同时编辑A和C两种底物的双碱基编辑器也已被开发出来。文中主要综述了几种DNA碱基编辑器的开发历程、研究进展及各自优点和局限性;介绍了DNA碱基编辑技术在生物医学以及农业中的成功应用案例,以期为DNA碱基编辑器的进一步优化和选择应用提供借鉴。 相似文献