首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PR-Set7/Set8/KMT5a is the sole histone H4 lysine 20 monomethyltransferase (H4K20me1) in metazoans and is essential for proper cell division and genomic stability. We unexpectedly discovered that normal cellular levels of monomethylated histone H3 lysine 9 (H3K9me1) were also dependent on PR-Set7, but independent of its catalytic activity. This observation suggested that PR-Set7 interacts with an H3K9 monomethyltransferase to establish the previously reported H4K20me1-H3K9me1 trans-tail ‘histone code’. Here we show that PR-Set7 specifically and directly binds the C-terminus of the Riz1/PRDM2/KMT8 tumor suppressor and demonstrate that the N-terminal PR/SET domain of Riz1 preferentially monomethylates H3K9. The PR-Set7 binding domain was required for Riz1 nuclear localization and maintenance of the H4K20me1-H3K9me1 trans-tail ‘histone code’. Although Riz1 can function as a repressor, Riz1/H3K9me1 was dispensable for the repression of genes regulated by PR-Set7/H4K20me1. Frameshift mutations resulting in a truncated Riz1 incapable of binding PR-Set7 occur frequently in various aggressive cancers. In these cancer cells, expression of wild-type Riz1 restored tumor suppression by decreasing proliferation and increasing apoptosis. These phenotypes were not observed in cells expressing either the Riz1 PR/SET domain or PR-Set7 binding domain indicating that Riz1 methyltransferase activity and PR-Set7 binding domain are both essential for Riz1 tumor suppressor function.  相似文献   

2.
3.
4.
Michaelyn A. Hartmann 《Fly》2017,11(4):253-259
Drosophila melanogaster chromosome 4 is an anomaly because of its small size, chromatin structure, and most notably its lack of crossing over during meiosis. Earlier ideas about the absence of crossovers on 4 hypothesize that these unique characteristics function to prevent crossovers. Here, we explore hypotheses about the absence of crossovers on 4, how these have been addressed, and new insights into the mechanism behind this suppression. We review recently published results that indicate that global crossover patterning, in particular the centromere effect, make a major contribution to the prevention of crossovers on 4.  相似文献   

5.
Wang W  Fu G  Luo BH 《Biochemistry》2010,49(47):10158-10165
Integrin conformational changes mediate integrin activation and signaling triggered by intracellular molecules or extracellular ligands. Even though it is known that αβ transmembrane domain separation is required for integrin signaling, it is still not clear how this signal is transmitted from the transmembrane domain through two long extracellular legs to the ligand-binding headpiece. This study addresses whether the separation of the membrane-proximal extracellular αβ legs is critical for integrin activation and outside-in signaling. Using a disulfide bond to restrict dissociation of the α-subunit Calf-2 domain and β-subunit I-EGF4 domain, we were able to abolish integrin inside-out activation and outside-in signaling. In contrast, disrupting the interface by introducing a glycosylation site into either subunit activated integrins for ligand binding through a global conformational change. Our results suggest that the interface of the Calf-2 domain and the I-EGF4 domain is critical for integrin bidirectional signaling.  相似文献   

6.
Y Ge  Y Xu  W Sun  Z Man  L Zhu  X Xia  L Zhao  Y Zhao  X Wang 《Gene》2012,508(2):157-164
Toll-like receptors (TLRs) and the nuclear factor-kappa B (NF-κB) signaling transduction pathway play important roles in the pathogenesis of several chronic inflammatory diseases, but its function in oral lichen planus (OLP) remains unclear. In this study, we examined the expression of TLR4 and NF-κB-p65 and inflammatory cytokines TNF-α and IL-1β by immunohistochemistry in OLP tissues, and found that TLR4 and NF-κB-p65 were significantly upregulated in OLP compared to normal oral mucosa (P<0.05). We used keratinocytes HaCaT stimulated with lipopolysaccharide (LPS) to simulate the local OLP immune environment to some extent. RT-PCR and immunoblotting analyses showed significant activation of TLR4 and NF-κB-p65 in the circumstance of LPS-induced inflammatory response. The high expression of TLR4 and NF-κB-p65 are correlated with expression of cytokines TNF-α and IL-1β (P<0.05). We further showed that NF-κB could act as an anti-apoptotic molecule in OLP. We conclude that TLR4 and the NF-κB signaling pathway may interact with the perpetuation of OLP. Steroids and cyclosporine are effective in the treatment of symptomatic OLP. However, there was some weak evidence for the mechanism over Dexamethasone (DeX) and Cyclosporine A (CsA) for the palliation of symptomatic OLP. In the present study, we found that Dexamethasone and Cyclosporine A negatively regulated NF-κB signaling pathway under LPS simulation in HaCaT cells by inhibiting TLR4 expression, on the other hand, Cyclosporine A could inhibit HaCaT cell proliferation by the induction of the apoptosis of HaCaT cells to protect OLP from the destruction of epidermal cells effectively.  相似文献   

7.
8.
9.
Vitamin K (VK) has diverse protective effects against osteoporosis, atherosclerosis and carcinogenesis. We recently reported that menatetrenone, a VK2 analogue, suppressed nuclear factor (NF)-κB activation in human hepatoma cells. Although NF-κB is regulated by isoforms of protein kinase C (PKC), the involvement of PKCs in VK2-mediated NF-κB inhibition remains unknown. Therefore, the effects of VK2 on the activation and the kinase activity of each PKC isoform were investigated. The human hepatoma Huh7 cells were treated with PKC isoform-specific inhibitors and/or siRNAs against each PKC isoform with or without 12-O-tetradecanoylphorbol-13-acetate (TPA). VK2 inhibited the TPA-induced NF-κB activation in Huh7 cells. NF-κB activity was inhibited by the pan-PKC inhibitor Ro-31-8425, but not by the PKCα-specific inhibitor Gö6976. The knockdown of individual PKC isoforms including PKCα, δ and ? showed only marginal effects on the NF-κB activity. However, the knockdown of both PKCδ and PKC?, together with treatment with a PKCα-specific inhibitor, depressed the NF-κB activity. VK2 suppressed the PKCα kinase activity and the phosphorylation of PKC? after TPA treatment, but neither the activation nor the enzyme activity of PKCδ was affected. The knockdown of PKC? abolished the TPA-induced phosphorylation of PKD1, and the effects of PKD1 knockdown on NF-κB activation were similar to those of PKC? knockdown. Collectively, all of the PKCs, including α, δ and ?, and PKD1 are involved in the TPA-mediated activation of NF-κB. VK2 inhibited the NF-κB activation through the inhibition of PKCα and ? kinase activities, as well as subsequent inhibition of PKD1 activation.  相似文献   

10.
11.
The kccDHS1 allele of kazachoc (kcc) was identified as a seizure-enhancer mutation exacerbating the bang-sensitive (BS) paralytic behavioral phenotypes of several seizure-sensitive Drosophila mutants. On their own, young kccDHS1 flies also display seizure-like behavior and demonstrate a reduced threshold for seizures induced by electroconvulsive shock. The product of kcc shows substantial homology to KCC2, the mammalian neuronal K+–Cl cotransporter. The kccDHS1 allele is a hypomorph, and its seizure-like phenotype reflects reduced expression of the kcc gene. We report here that kcc functions as a K+–Cl cotransporter when expressed heterologously in Xenopus laevis oocytes: under hypotonic conditions that induce oocyte swelling, oocytes that express Drosophila kcc display robust ion transport activity observed as a Cl-dependent uptake of the K+ congener 86Rb+. Ectopic, spatially restricted expression of a UAS-kcc+ transgene was used to determine where cotransporter function is required in order to rescue the kccDHS1 BS paralytic phenotype. Interestingly, phenotypic rescue is largely accounted for by targeted, circumscribed expression in the mushroom bodies (MBs) and the ellipsoid body (EB) of the central complex. Intriguingly, we observed that MB induction of kcc+ functioned as a general seizure suppressor in Drosophila. Drosophila MBs have generated considerable interest especially for their role as the neural substrate for olfactory learning and memory; they have not been previously implicated in seizure susceptibility. We show that kccDHS1 seizure sensitivity in MB neurons acts via a weakening of chemical synaptic inhibition by GABAergic transmission and suggest that this is due to disruption of intracellular Cl gradients in MB neurons.Mushroom body (MB) expression of the kazachoc (kcc) K+–Cl cotransporter is shown here to rescue seizure-sensitive phenotypes in Drosophila through an effect on GABAergic fast synaptic inhibition. Heretofore, considerable interest has focused on the MB because of its essential role in olfactory learning and memory (Heisenberg 2003; Davis 2005; Keene and Waddell 2007; Berry et al. 2008). The MB occupies a central position in the fly nervous system, integrating incoming olfactory, mechanical, taste, and visual sensory signals and then sorting the distribution of outgoing motor signals (Heisenberg 2003). Short- and long-term alteration of individual nerve cell physiology in the MB is thought to form the basis of learning and memory (Davis 2005; Keene and Waddell 2007; Berry et al. 2008). A role for the MB in seizure susceptibility has not previously been suspected. Here we suggest that the orderly arrangements of axons and neuropile of MB Kenyon cells (KCs) not only facilitate learning and memory, but also provide the type of anatomical substrate in flies that is thought to be essential for seizure spread in the mammalian brain (Hauser and Hesdorffer 1990; Traub and Miles 1991).Inhibitory synaptic transmission in Drosophila is thought to be mediated primarily by GABAergic neurons found throughout the CNS at all stages of development (Buchner et al. 1988; Jackson et al. 1990; Harrison et al. 1996; Yasuyama et al. 2002). γ-aminobutyric acid (GABA) is synthesized from glutamate via a conserved glutamic acid decarboxylase encoded by the Drosophila Gad1 gene (Jackson et al. 1990; Buchner 1991). GABAergic activity is limited by sequestering extracellular GABA back into presynaptic neurons by GABA transporters that are sensitive to inhibition by dl-2,4-diaminobutyric acid, nipecotic acid, and valproic acid (Neckameyer and Cooper 1998; Leal et al. 2004). Three ionotropic GABAA receptor subunits have been identified in Drosophila and are encoded by the Rdl, LCCH3, and GRD loci (Hosie et al. 1997). When expressed heterotopically in Xenopus oocytes, the best studied of these, Rdl, forms GABA-gated Cl channels that are sensitive to block by picrotoxin (ffrench-Constant et al. 1991, 1993; Zhang et al. 1995). Inhibitory Cl currents are dependent on maintenance of Cl gradients, particularly in low intracellular Cl concentrations. In the fly, Cl gradients appear to be maintained by the kcc K+–Cl cotransporter (Hekmat-Scafe et al. 2006).Chemical synaptic transmission onto MB neurons has been examined in dissociated KCs in primary culture (Su and O''dowd 2003). Spontaneous miniature excitatory postsynaptic currents (EPSCs) are mediated mainly by nicotinic acetylcholine (ACh) receptors. Miniature inhibitory postsynaptic currents (IPSCs) appear to be mediated primarily by picrotoxin-sensitive GABAA receptors, probably encoded by Rdl (Su and O''dowd 2003; Harrison et al. 1996). In vivo, cholinergic inputs to the MB are thought to arise primarily from antennal lobe projection neurons (Yasuyama et al. 2002). Two antennal lobe neurons that project to the MB, the anterior paired lateral (APL) neurons, were recently shown to be GABAergic (Liu and Davis, 2009). Additional GABAergic inputs to the Drosophila MB seem likely; in locust they appear to come from a poorly understood region of the brain called the lateral horn, which is itself also driven by antennal lobe projection neurons (Perez-Orive et al. 2002).Previously, we identified the kccDHS1 partial loss-of-function mutation as a seizure enhancer that also causes increased seizure sensitivity in young flies (Hekmat-Scafe et al. 2006). The kcc product shows homology to the mammalian KCC2 K+–Cl cotransporter, and we inferred that a decrease in inhibitory synaptic strength is responsible for causing the seizure phenotypes. In this study, we describe our search for identifying the source of these vulnerable inhibitory synapses and report that they appear to lie primarily in the MBs of the Drosophila brain. Further, we speculate on the possibility of their involvement in synaptic plasticity functions of the MB.  相似文献   

12.
Recent evidence shows that evolutionarily conserved signaling intermediate in Toll pathways (ECSIT) interacts with tumor necrosis factor receptor–associated factor 6 (TRAF6), is ubiquitinated, and contributes to bactericidal activity during Toll-like receptor (TLR) signaling. Here we report a new regulatory role for ECSIT in TLR4 signaling. On TLR4 stimulation, endogenous ECSIT formed a molecular complex with p65/p50 NF-κB proteins. Our biochemical studies showed that ECSIT specifically interacted with p65/p50 NF-κB proteins, which colocalized in the nucleus. Of interest, these effects were critically dependent on ubiquitination of the ECSIT lysine (K) 372 residue. K372A mutant ECSIT did not interact with p65/p50 NF-κB proteins and markedly attenuated nuclear colocalization. In addition, ECSIT-knockdown THP-1 cells could not activate NF-κB DNA-binding activities of p65 and p50, production of proinflammatory cytokines, or NF-κB–dependent gene expression in response to TLR4 stimulation. However, these activities were markedly restored by expressing the wild-type ECSIT protein but not the K372A mutant ECSIT protein. These data strongly suggest that the ubiquitination of ECSIT might have a role in the regulation of NF-κB activity in TLR4 signaling.  相似文献   

13.
1. The -->H(+)/e(-) quotients for proton release from mitochondria associated with electron flow from succinate and duroquinol to O(2), ferricyanide or ferricytochrome c, and from NNN'N'-tetramethyl-p-phenylenediamine+ascorbate to O(2), were determined from rate measurements of electron flow and proton translocation. 2. Care was taken to avoid, or to take into account, unrelated electron flow and proton translocation, which might take place in addition to the oxido-reductions that were the subject of our analysis. Spectrophotometric techniques were chosen to provide accurate measurement of the rate of consumption of oxidants and reductants. The rate of proton translocation was measured with fast pH meters with a precision of 10(-3) pH unit. 3. The -->H(+)/O quotient for succinate or duroquinol oxidation was, at neutral pH, 4, when computed on the basis of spectrophotometric determinations of the rate of O(2) consumption or duroquinol oxidation. Higher -->H(+)/O quotients for succinate oxidation, obtained from polarographic measurements of O(2) consumption, resulted from underestimation of the respiratory rate. 4. The -->H(+)/2e(-) quotient for electron flow from succinate and duroquinol to ferricyanide or ferricytochrome c ranged from 3.9 to 3.6. 5. Respiration elicited by NNN'N'-tetramethyl-p-phenylenediamine+ascorbate by antimycin-inhibited mitochondria resulted in extra proton release in addition to that produced for oxidation of ascorbate to dehydroascorbate. Accurate spectrophotometric measurement of respiration showed that the -->H(+)/e(-) ratio was only 0.25 and not 0.7-1.0 as obtained with the inadequate polarographic assay of respiration. Proton release was practically suppressed when mitochondria were preincubated aerobically in the absence of antimycin. Furthermore, the rate of scalar proton consumption for water production was lower than that expected from the stoicheiometry. Thus the extra proton release observed during respiration elicited by NNN'N'-tetramethyl-p-phenylenediamine+ascorbate is caused by oxidation of endogenous hydrogenated reductants. 6. It is concluded that (i) the -->H(+)/O quotient for the cytochrome system is, at neutral pH, 4 and not 6 or 8 as reported by others; (ii) all the four protons are released during electron flow from quinol to cytochrome c; (iii) the oxidase transfers electrons from cytochrome c to protons from the matrix aqueous phase and does not pump protons from the matrix to the outer aqueous phase.  相似文献   

14.
The cellular prion protein PrPc plays important roles in proliferation, cell death and survival, differentiation and adhesion. The participation of PrPc in tumor growth and metastasis was pointed out, but the underlying mechanisms were not deciphered completely. In the constantly renewing intestinal epithelium, our group demonstrated a dual localization of PrPc, which is targeted to cell-cell junctions in interaction with Src kinase and desmosomal proteins in differentiated enterocytes, but is predominantly nuclear in dividing cells. While the role of PrPc in the dynamics of intercellular junctions was confirmed in other biological systems, we unraveled its function in the nucleus only recently. We identified several nuclear PrPc partners, which comprise γ-catenin, one of its desmosomal partners, β-catenin and TCF7L2, the main effectors of the canonical Wnt pathway, and YAP, one effector of the Hippo pathway. PrPc up-regulates the activity of the β-catenin/TCF7L2 complex and its invalidation impairs the proliferation of intestinal progenitors. We discuss how PrPc could participate to oncogenic processes through its interaction with Wnt and Hippo pathway effectors, which are controlled by cell-cell junctions and Src family kinases and dysregulated during tumorigenesis. This highlights new potential mechanisms that connect PrPc expression and subcellular redistribution to cancer.  相似文献   

15.
16.
Summary When Drosophila melanogaster males coming from a class of strains known as inducer are crossed with females from the complementary class (reactive), a quite specific kind of sterile female (SF) is obtained that exhibits other dysgenic traits such as non-disjunctions and non-randomly distributed mutations. This syndrome is caused by the interaction of the I factor linked to inducer chromosomes with the maternally inherited reactive state R. This I-R interaction is also responsible for chromosomal contamination that is likely to result from very frequent I factor insertions into reactive chromosomes. Such insertions might be responsible for the I-R induced mutations and some data concerning this hypothesis are reported here.Out of nine I-R-generated mutants one, the white IR1 (w IR1) allele, is closely linked to an I factor, which maps either at the site of the mutation or within less than 0.02 map units. In addition, w IR1 is somewhat unstable when transmitted through SF females.In contrast, the typical I factor does not seem to be associated with any of the eight other mutants as judged by their inability to induce the female sterility characteristic of the I-R syndrome. The possibility is discussed that most of I-R-induced mutations are nevertheless caused by insertions of either undetectable I factors or other transposable elements, not related to I, whose transposition is dependent on the I-R interaction.  相似文献   

17.
《Carbohydrate research》1999,315(1-2):89-97
The infrared (4000–400 cm−1) and, in part, Raman spectra were recorded for the two isomeric polycrystalline sugar alcohols, dl-threitol and erythritol. Samples were pure substances and isotopically diluted OH/OD compounds. IR spectra were recorded in the 300–20 K range. Assignment of hydrogen bond structure sensitive out-of-plane bending vibrational modes for OH/OD-groups of different H-bond systems is based on isotope exchange and temperature variations. At least seven bands for threitol and two for erythritol correspond to differently H-bonded OH/OD-groups. Relative strengths and quantity of different H-bonds were evaluated. Unlike erythritol, threitol contains over 5% of weak H-bonds. The formation from the melt of a crystalline racemate as a molecular compound of d- and l-forms is suggested. Comparisons with previous neutron scattering results are discussed. In solution, all four OH-groups of both tetritols form H-bonds of equal strength in accord with the basicity of the solvent.  相似文献   

18.
The tumor-promoting arm of transforming growth factor beta(TGF-β)receptor signaling contributes to advanced cancer progression and is considered a master regulator of breast cancer metastasis.In mammals,there are six distinct members in the tumor-necrosis factor receptor(TNFR)-associated factor(TRAF)family(TRAF1–TRAF6),with the function of TRAF4 not being extensively studied in the past decade.Although numerous studies have suggested that there is elevated TRAF4 expression in human cancer,it is still unknown in which oncogenic pathway TRAF4 is mainly implicated.This review highlights TGF-β-induced SMAD-dependent signaling and non-SMAD signaling as the major pathways regulated by TRAF4 involved in breast cancer metastasis.  相似文献   

19.
Metazoan replication-dependent histone pre-mRNAs undergo a unique 3′-cleavage reaction which does not result in mRNA polyadenylation. Although the cleavage site is defined by histone-specific factors (hairpin binding protein, a 100-kDa zinc-finger protein and the U7 snRNP), a large complex consisting of cleavage/polyadenylation specificity factor, two subunits of cleavage stimulation factor and symplekin acts as the effector of RNA cleavage. Here, we report that yet another protein involved in cleavage/polyadenylation, mammalian cleavage factor I 68-kDa subunit (CF Im68), participates in histone RNA 3′-end processing. CF Im68 was found in a highly purified U7 snRNP preparation. Its interaction with the U7 snRNP depends on the N-terminus of the U7 snRNP protein Lsm11, known to be important for histone RNA processing. In vivo, both depletion and overexpression of CF Im68 cause significant decreases in processing efficiency. In vitro 3′-end processing is slightly stimulated by the addition of low amounts of CF Im68, but inhibited by high amounts or by anti-CF Im68 antibody. Finally, immunoprecipitation of CF Im68 results in a strong enrichment of histone pre-mRNAs. In contrast, the small CF Im subunit, CF Im25, does not appear to be involved in histone RNA processing.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号