首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
减数分裂是真核生物有性生殖过程中性母细胞成熟时所进行的特殊细胞分裂方式.在减数分裂过程中,同源染色体间需发生一系列有规律的重要事件,包括同源染色体配对、联会、重组、分离等,这些事件被证明是由许多遗传网络精密调控的.尽管许多调控减数分裂过程的基因已经被克隆,但减数分裂同源重组的分子机理仍不太清楚.植物是进行减数分裂研究的理想材料,近年来随着多种模式植物基因组序列测定的完成,大大加速了植物减数分裂相关基因的鉴定与功能研究.本文以拟南芥和水稻为主要对象,综述了植物减数分裂同源重组分子机理研究取得的一些重要进展,着重分析已鉴定同源重组相关蛋白的生物学功能.  相似文献   

2.
植物减数分裂中的染色体配对、联会和重组研究进展   总被引:1,自引:1,他引:1  
Liu CX  He QY  Jin WW 《遗传》2010,32(12):1223-1231
减数分裂是有性生殖的关键步骤,而染色体配对、联会和重组又是减数分裂的重要环节,也是减数分裂研究的热点之一。近些年来,借助于先进的分子生物学和细胞学技术,通过大量突变体的筛选,在植物减数分裂中染色体的配对、联会和重组研究取得了长足的进展。文章就目前克隆的植物减数分裂中染色体配对、联会和重组相关的基因及功能研究进行了总结,并进一步对其分子机制进行了探讨。  相似文献   

3.
李帆  阮继伟 《植物学报》2019,54(4):522-530
正向遗传学突变体筛选被广泛用于揭示减数分裂中涉及的遗传基因, 如调控减数分裂II型交叉形成途径的重组抑制基因。该研究利用拟南芥(Arabidopsis thaliana)花粉荧光标记系进行EMS突变体的正向遗传学筛选, 鉴定拟南芥野生型Col遗传背景下的重组抑制突变体, 共获得18个重组率显著提高3倍以上的重组抑制突变体, 其中包括显性和隐性遗传突变。研究表明, 基于荧光标记高通量鉴定重组抑制突变体是可行的, 可为植物减数分裂重组调控分子机制研究提供新方法和突变材料。  相似文献   

4.
李帆  阮继伟 《植物学报》1983,54(4):522-530
正向遗传学突变体筛选被广泛用于揭示减数分裂中涉及的遗传基因, 如调控减数分裂II型交叉形成途径的重组抑制基因。该研究利用拟南芥(Arabidopsis thaliana)花粉荧光标记系进行EMS突变体的正向遗传学筛选, 鉴定拟南芥野生型Col遗传背景下的重组抑制突变体, 共获得18个重组率显著提高3倍以上的重组抑制突变体, 其中包括显性和隐性遗传突变。研究表明, 基于荧光标记高通量鉴定重组抑制突变体是可行的, 可为植物减数分裂重组调控分子机制研究提供新方法和突变材料。  相似文献   

5.
减数分裂是真核生物适应性进化的重要机制,以8种纤毛虫作为实验对象,通过生物信息学方法对其14个减数分裂基因进行了鉴定及分子进化研究。结果表明:(1)不同的纤毛虫种类存在一些特异性的减数分裂基因的丢失与复制现象;(2)减数分裂相关基因在纤毛虫中很保守;(3)纤毛虫减数分裂重要的同源重组过程是在真核生物中不常见的Ⅱ型。本研究表明,纤毛虫减数分裂可能代表了真核生物较原始的减数分裂方式,在进化的过程中很保守,为研究真核生物减数分裂起源与进化提供了重要线索。  相似文献   

6.
Chen J  Luo WX  Li M  Luo Q 《遗传》2011,33(6):648-653
减数分裂在有性生物的生命周期中起着非常重要的作用,其过程高度保守。减数分裂过程中,染色体配对、联会和重组是遗传变异的源泉、有性生物进化的推动力,也是减数分裂研究的热点之一。在植物减数分裂研究中,还不可能直接观察到染色体在减数分裂过程中的交换情况,往往是通过交换后群体的遗传分析来推测。文章通过图示基因型方法分析了来自花药培养的32个水稻双单倍体(DH)株系,发现少数株系某些染色体部分区段为杂合状态,并利用STS分子标记对杂合状态的真实性进行了验证,推测杂合区段的出现可能与染色体的修复不完全或修复错误有关。研究结果为解释植物减数分裂的机理提供了直接证据。  相似文献   

7.
李雅轩 《植物学报》1999,16(5):526-529
植物减数分裂过程中的基因调控与表达的研究已得到人们的重视,本文综述了植物减数分裂中几个重要方面的研究进展,包括减数分裂前的有丝分裂、前减数分裂、同源染色体的联会、纺锤体的形成等问题。  相似文献   

8.
植物减数分裂研究进展   总被引:5,自引:2,他引:5  
李雅轩 《植物学通报》1999,16(5):526-529
植物减数分裂过程中的基因调控与表达的研究已得到人们的重视,本文综述了植物减数分裂中几个重要方面的研究进展,包括减数分裂前的有丝分裂、前减数分裂、同源染色体的联会、纺锤体的形成等问题  相似文献   

9.
张晶  田苗  冯立芳  缪炜 《动物学杂志》2016,51(1):126-136
减数分裂是真核生物有性生殖过程的关键步骤,染色体的行为变化贯穿整个减数分裂的过程。近些年来,借助先进的分子生物学技术和细胞学实验手段,通过对突变细胞株的筛选和评价,单细胞真核模式生物原生动物嗜热四膜虫(Tetrahymena thermophila)减数分裂方面的研究取得了长足的进展。本文主要介绍嗜热四膜虫减数分裂的过程,以及在此过程中伴随染色体行为变化的相关基因的功能,从而为进一步探讨嗜热四膜虫减数分裂的分子机制提供有效信息。  相似文献   

10.
正Spol1[SPOl1 meiotic protein covalently bound to DSB homolog(S.cerevisiae)]是减数分裂染色体重组过程中的重要蛋白,参与DNA双链断裂复合物(Double-Strand breaks,DSBs)的形成。目前已经从几种脊椎动物中克隆出了spol1基因,表明Spol1可能在所有真核生物减数分裂过程中都具有保守的功能[1,2]。最新研究表明,日本鳗鲡(Anguilla japonica)spol1基因仅在精子发生过程前期的精母细胞有表达,而在卵黄发生早期却没有检测到spol1的表达[2]。尽管研究者们普遍认为spol1是检测减数分裂的分子标记,但该基因在硬骨鱼类的表达模式并非完全保守,也未见关于spol1在硬骨鱼类个体发生过程  相似文献   

11.
Meiosis is a specialized eukaryotic cell division, in which diploid cells undergo a single round of DNA replication and two rounds of nuclear division to produce haploid gametes. In most eukaryotes, the core events of meiotic prophase I are chromosomal pairing,synapsis and recombination. To ensure accurate chromosomal segregation, homologs have to identify and align along each other at the onset of meiosis. Although much progress has been made in elucidating meiotic processes, information on the mechanisms underlying chromosome pairing is limited in contrast to the meiotic recombination and synapsis events. Recent research in many organisms indicated that centromere interactions during early meiotic prophase facilitate homologous chromosome pairing, and functional centromere is a prerequisite for centromere pairing such as in maize. Here, we summarize the recent achievements of chromosome pairing research on plants and other organisms, and outline centromere interactions, nuclear chromosome orientation,and meiotic cohesin, as main determinants of chromosome pairing in early meiotic prophase.  相似文献   

12.
Meiosis is a central feature of sexual reproduction. Studies in plants have made and continue to make an important contribution to fundamental research aimed at the understanding of this complex process. Moreover, homologous recombination during meiosis provides the basis for plant breeders to create new varieties of crops. The increasing global demand for food, combined with the challenges from climate change, will require sustained efforts in crop improvement. An understanding of the factors that control meiotic recombination has the potential to make an important contribution to this challenge by providing the breeder with the means to make fuller use of the genetic variability that is available within crop species. Cytogenetic studies in plants have provided considerable insights into chromosome organization and behaviour during meiosis. More recently, studies, predominantly in Arabidopsis thaliana, are providing important insights into the genes and proteins that are required for crossover formation during plant meiosis. As a result, substantial progress in the understanding of the molecular mechanisms that underpin meiosis in plants has begun to emerge. This article summarizes current progress in the understanding of meiotic recombination and its control in Arabidopsis. We also assess the relationship between meiotic recombination in Arabidopsis and other eukaryotes, highlighting areas of close similarity and apparent differences.  相似文献   

13.
In most eukaryotic species, three basic steps of pairing, recombination and synapsis occur during prophase of meiosis I. Homologous chromosomal pairing and recombination are essential for accurate segregation of chromosomes. In contrast to the well-studied processes such as recombination and synapsis, many aspects of chromosome pairing are still obscure. Recent progress in several species indicates that the telomere bouquet formation can facilitate homologous chromosome pairing by bringing chromosome ends into close proximity, but the sole presence of telomere clustering is not sufficient for recognizing homologous pairs. On the other hand, accurate segregation of the genetic material from parent to offspring during meiosis is dependent on the segregation of homologs in the reductional meiotic division (MI) with sister kinetochores exhibiting mono-orientation from the same pole, and the segregation of sister chromatids during the equational meiotic division (MII) with kinetochores showing bi-orientation from the two poles. The underlying mechanism of orientation and segregation is still unclear. Here we focus on recent studies in plants and other species that provide insight into how chromosomes find their partners and mechanisms mediating chromosomal segregation.  相似文献   

14.
Genetic control of chromosome synapsis in yeast meiosis   总被引:17,自引:0,他引:17  
Both meiosis-specific and general recombination functions, recruited from the mitotic cell cycle, are required for elevated levels of recombination and for chromosome synapsis (assembly of the synaptonemal complex) during yeast meiosis. The meiosis-specific SPO11 gene (previously shown to be required for meiotic recombination) has been isolated and shown to be essential for synaptonemal complex formation but not for DNA metabolism during the vegetative cell cycle. In contrast, the RAD52 gene is required for mitotic and meiotic recombination but not for synaptonemal complex assembly. These data suggest that the synaptonemal complex may be necessary but is clearly not sufficient for meiotic recombination. Cytological analysis of spread meiotic nuclei demonstrates that chromosome behavior in yeast is comparable with that observed in larger eukaryotes. These spread preparations support the immunocytological localization of specific proteins in meiotic nuclei. This combination of genetic, molecular cloning, and cytological approaches in a single experimental system provides a means of addressing the role of specific gene products and nuclear structures in meiotic chromosome behavior.  相似文献   

15.
Three activities hallmark meiotic cell division: homologous chromosome pairing, synapsis, and recombination. Recombination and synapsis are well-studied but homologous pairing still holds many black boxes. In the past several years, many studies in plants have yielded insights into the mechanisms of chromosome pairing interactions. Research in several plant species showed the importance of telomere clustering on the nuclear envelope (telomere bouquet formation) in facilitating alignment of homologous chromosomes. Homologous pairing was also shown to be tied to the early stages of recombination by mutant analyses in Arabidopsis and maize. In contrast, little is known about the mechanisms that guide homolog interaction after their rough alignment by the bouquet and before the close-range recombination-dependent homology search. The relatively large and complex genomes of plants may require additional mechanisms, not needed in small genome eukaryotes, to distinguish between local homology of duplicated genes or transposable elements and global chromosomal homology. Plants provide an excellent large genome model for the study of homologous pairing and dissection of this process.  相似文献   

16.
Homologous DNA recombination in eukaryotes is necessary to maintain genome stability and integrity and for correct chromosome segregation and formation of new haplotypes in meiosis. At the same time, genetic determination and nonrandomness of meiotic recombination restrict the introgression of genes and generation of unique genotypes. As one of the approaches to study and induce meiotic recombination in plants, it is recommended to use the recA gene of Escherichia coli. It is shown that the recA and NLS-recA-licBM3 genes have maternal inheritance and are expressed in the progeny of transgenic tomato plants. Plants expressing recA or NLS-recA-licBM3 and containing one T-DNA insertion do not differ in pollen fertility from original nontransgenic forms and can therefore be used for comparative studies of the effect of bacterial recombinases on meiotic recombination between linked genes.  相似文献   

17.
In meiosis, the exchange of DNA between chromosomes by homologous recombination is a critical step that ensures proper chromosome segregation and increases genetic diversity. Products of recombination include reciprocal exchanges, known as crossovers, and non-reciprocal gene conversions or non-crossovers. The mechanisms underlying meiotic recombination remain elusive, largely because of the difficulty of analyzing large numbers of recombination events by traditional genetic methods. These traditional methods are increasingly being superseded by high-throughput techniques capable of surveying meiotic recombination on a genome-wide basis. Next-generation sequencing or microarray hybridization is used to genotype thousands of polymorphic markers in the progeny of hybrid yeast strains. New computational tools are needed to perform this genotyping and to find and analyze recombination events. We have developed a suite of programs, ReCombine, for using short sequence reads from next-generation sequencing experiments to genotype yeast meiotic progeny. Upon genotyping, the program CrossOver, a component of ReCombine, then detects recombination products and classifies them into categories based on the features found at each location and their distribution among the various chromatids. CrossOver is also capable of analyzing segregation data from microarray experiments or other sources. This package of programs is designed to allow even researchers without computational expertise to use high-throughput, whole-genome methods to study the molecular mechanisms of meiotic recombination.  相似文献   

18.
Evidence is now increasing that many functions and processes of meiotic genes are similar in yeast and higher eukaryotes. However, there are significant differences and, most notably, yeast has considerably higher recombination frequencies than higher eukaryotes, different cross-over interference and possibly more than one pathway for recombination, one late and one early. Other significant events are the timing of double-strand breaks (induced by Spo11) that could be either cause or consequence of homologous chromosome synapsis and SC formation depending on the organisms, yeast plants and mammals versus Drosophila melanogaster and Caenorhabditis elegans. Many plant homologues and heterologues to meiotic genes of yeast and other organisms have now been isolated, in particular in Arabidopsis thaliana, showing that overall recombination genes are very conserved while synaptonemal complex and cohesion proteins are not. In addition to the importance of unravelling the meiotic processes by gene discovery, this review discusses the significance of chromatin packaging, genome organization, and distribution of specific repeated DNA sequences for homologous chromosome cognition and pairing, and the distribution of recombination events along the chromosomes.  相似文献   

19.
A central event in sexual reproduction is the reduction in chromosome number that occurs at the meiosis I division. Most eukaryotes rely on crossing over between homologs, and the resulting chiasmata, to direct meiosis I chromosome segregation, yet make very few crossovers per chromosome pair. This indicates that meiotic recombination must be tightly regulated to ensure that each chromosome pair enjoys the crossover necessary to ensure correct segregation. Here, we investigate control of meiotic crossing over in Caenorhabditis elegans, which averages only one crossover per chromosome pair per meiosis, by constructing genetic maps of end-to-end fusions of whole chromosomes. Fusion of chromosomes removes the requirement for a crossover in each component chromosome segment and thereby reveals a propensity to restrict the number of crossovers such that pairs of fusion chromosomes composed of two or even three whole chromosomes enjoy but a single crossover in the majority of meioses. This regulation can operate over physical distances encompassing half the genome. The meiotic behavior of heterozygous fusion chromosomes further suggests that continuous meiotic chromosome axes, or structures that depend on properly assembled axes, may be important for crossover regulation.  相似文献   

20.
Meiosis is the crucial process by which sexually propagating eukaryotes give rise to haploid gametes from diploid cells. Several key processes, like homologous chromosomes pairing, synapsis, recombination, and segregation, sequentially take place in meiosis. Although these widely conserved events are under both genetic and epigenetic control, the accurate details of molecular mechanisms are continuing to investigate. Rice is a good model organism for exploring the molecular mechanisms of meiosis in higher plants. So far, 28 rice meiotic genes have been characterized. In this review, we give an overview of the discovery of rice meiotic genes in the last ten years, with a particular focus on their functions in meiosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号