首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calreticulin (CRT) is a binding protein for apoptotic N-acetylmuramyl-L-alanyl-D-isoglutamine (L,D-MDP) or peptidoglycan in RK(13) cells. CRT on RK(13) cell surface (srCRT) forms complex(es) with tumor necrosis factor receptor 1 (TNFR1) and TNFR-associated death domain (TRADD) protein of the cell membrane. CRT polyclonal or monoclonal antibody binding to RK(13) srCRT dose-dependently inhibited L,D-MDP-induced apoptosis. In RK(13) cells, L,D-MDP up-regulated the TNFR1.TRADD complex of the plasma membrane and subsequently induced cytosolic TRADD-Fas-associated death domain protein complex. Biotinylated srCRT was capable of calcium-dependent binding of Sepharose-immobilized L,D-MDP or peptidoglycan. However, Toll-like receptors TLR-2 and TLR-4, Nod2, and CD14 of RK(13) cells did not specifically bind Sepharose-immobilized L,D-MDP. High concentrations (5-40 mm) of EGTA dose-dependently inhibited free L,D-MDP binding to purified RK(13) cell CRT and promoted free L,D-MDP dissociation from RK(13) cell CRT.MDP complex. Different concentrations of EGTA (0-40 mm) added to Dulbecco's modified essential medium with 1.8 mm calcium or phosphate-buffered saline with 0.18 mm calcium have different effects on medium free calcium concentrations but have identical inhibiting effects on L,D-MDP-induced apoptosis. More inhibition of the L,D-MDP-induced apoptotic DNA ladders and caspase-3 activity in RK(13) cells was obtained with EGTA pretreatment (83%) than just EGTA + L,D-MDP (47%). The knocking down of srCRT by antisense oligonucleotide CRTAS121 (250 nmol/ml) and stealth small interfering RNA CRT_siR479 (150 pm/ml) for 2 days (44 and 66%, respectively), resulted in the inhibition of L,D-MDP-induced caspase-3 activity (47 and 65%, respectively). The results suggest that (a) the binding of L,D-MDP to srCRT is calcium-dependent, i.e. on srCRT-bound calcium, and (b) it is srCRT, not TLR-2, TLR-4, Nod2 or CD14, that mediates L,D-MDP-induced RK(13) cell apoptosis through activating the TNFR1. TRADD-Fas-associated death domain protein apoptotic pathway.  相似文献   

2.
We have recently reported that calreticulin (CRT), a luminal resident protein, can be found in the sera of patients with rheumatoid arthritis and also that recombinant CRT (rCRT) exhibits extraordinarily strong immunological activities. We herein further demonstrate that rCRT fragments 18–412 (rCRT/18-412), rCRT/39-272, rCRT/120-308 and rCRT/120-250 can self-oligomerize in solution and are 50–100 fold more potent than native CRT (nCRT, isolated from mouse livers) in activating macrophages in vitro. We narrowed down the active site of CRT to residues 150–230, the activity of which also depends on dimerization. By contrast, rCRT/18-197 is almost completely inactive. When rCRT/18-412 is fractionated into oligomers and monomers by gel filtration, the oligomers maintain most of their immunological activities in terms of activating macrophages in vitro and inducing specific antibodies in vivo, while the monomers were much less active by comparison. Additionally, rCRT/18-412 oligomers are much better than monomers in binding to, and uptake by, macrophages. Inhibition of macrophage endocytosis partially blocks the stimulatory effect of rCRT/18-412. We conclude that the immunologically active site of CRT maps between residues 198–230 and that soluble CRT could acquire potent immuno-pathological activities in microenvironments favoring its oligomerization.  相似文献   

3.
Binding of peptidoglycan (PG), a B-cell mitogen and polyclonal activator, to mouse lymphocytes was studied using rosetting with PG-sensitized erythrocytes and a direct binding assay with 125I-labeled PG. Thirty-four percent of splenic lymphocytes formed PG rosettes, 62% of which were inhibited by preincubation of lymphocytes with free PG. Less than 1 or 3% of spleen cells formed rosettes with uncoated or albumin-coated red cells. The formation of rosettes was not inhibited by 0.1% azide and was not dependent on the presence of complement or immunoglobulins. The 125I-PG bound both specifically and nonspecifically to the lymphocytes. The binding was completed within 15-20 min, was proportional to the cell concentration, and was not inhibited by 0.1% azide or treatment of lymphocytes with formalin. The cells had one set of specific binding sites of low affinity (KD = 1.2-4.6 X 10(-7) M +/- 9% SE, based on competitive) experiments. The binding, however, was complex, probably involving interaction of multiple binding sites on PG with the cell surface. The EC50 (920 micrograms/ml) was similar to the optimal lymphocyte-activating concentration of PG (400-1000 micrograms/ml). The binding correlated with the ability of different PG preparations to stimulate lymphocytes, since only high Mr PG (not low Mr PG preparations, muramyl dipeptide (MDP), or PG pentapeptide) had the ability to specifically bind to lymphocytes, to compete with PG binding, and to stimulate lymphocytes. Also, low Mr PG preparations, MDP, or PG pentapeptide did not inhibit the mitogenic stimulation of lymphocytes by high Mr PG. These results indicate the presence of specific binding sites for PG on the surface of murine lymphocytes and suggest that the binding of PG to these binding sites is involved in lymphocyte activation by PG.  相似文献   

4.
5.
Calreticulin (CRT) is an endoplasmic reticulum luminal Ca(2+)-binding chaperone protein. By immunizing mice with recombinant fragment (rCRT/39-272), six clones of monoclonal antibodies (mAbs) were generated and characterized. Based on these mAbs, a microplate chemiluminescent enzyme immunoassay (CLEIA) system with a measured limit of detection of 0.09?ng/ml was developed. Using this CLEIA system, it was found that soluble CRT (sCRT) level in serum samples from 58 lung cancer patients was significantly higher than that from 40 healthy individuals (only 9 were detectable, P?相似文献   

6.
Type 1 reoviruses invade the intestinal mucosa of mice by adhering selectively to M cells in the follicle-associated epithelium and then exploiting M cell transport activity. The purpose of this study was to identify the apical cell membrane component and viral protein that mediate the M cell adherence of these viruses. Virions and infectious subviral particles of reovirus type 1 Lang (T1L) adhered to rabbit M cells in Peyer's patch mucosal explants and to tissue sections in an overlay assay. Viral adherence was abolished by pretreatment of sections with periodate and in the presence of excess sialic acid or lectins MAL-I and MAL-II (which recognize complex oligosaccharides containing sialic acid linked alpha2-3 to galactose). The binding of T1L particles to polarized human intestinal (Caco-2(BBe)) cell monolayers was correlated with the presence of MAL-I and MAL-II binding sites, blocked by excess MAL-I and -II, and abolished by neuraminidase treatment. Other type 1 reovirus isolates exhibited MAL-II-sensitive binding to rabbit M cells and polarized Caco-2(BBe) cells, but type 2 or type 3 isolates including type 3 Dearing (T3D) did not. In assays using T1L-T3D reassortants and recoated viral cores containing T1L, T3D, or no sigma1 protein, MAL-II-sensitive binding to rabbit M cells and polarized Caco-2(BBe) cells was consistently associated with the T1L sigma1. MAL-II-recognized oligosaccharide epitopes are not restricted to M cells in vivo, but MAL-II immobilized on virus-sized microparticles bound only to the follicle-associated epithelium and M cells. The results suggest that selective binding of type 1 reoviruses to M cells in vivo involves interaction of the type 1 sigma1 protein with glycoconjugates containing alpha2-3-linked sialic acid that are accessible to viral particles only on M cell apical surfaces.  相似文献   

7.
As a group, poxviruses have been shown to infect a wide variety of animal species. However, there is individual variability in the range of species able to be productively infected. In this study, we observed that ectromelia virus (ECTV) does not replicate efficiently in cultured rabbit RK13 cells. Conversely, vaccinia virus (VACV) replicates well in these cells. Upon infection of RK13 cells, the replication cycle of ECTV is abortive in nature, resulting in a greatly reduced ability to spread among cells in culture. We observed ample levels of early gene expression but reduced detection of virus factories and severely blunted production of enveloped virus at the cell surface. This work focused on two important host range genes, named E3L and K3L, in VACV. Both VACV and ECTV express a functional protein product from the E3L gene, but only VACV contains an intact K3L gene. To better understand the discrepancy in replication capacity of these viruses, we examined the ability of ECTV to replicate in wild-type RK13 cells compared to cells that constitutively express E3 and K3 from VACV. The role these proteins play in the ability of VACV to replicate in RK13 cells was also analyzed to determine their individual contribution to viral replication and PKR activation. Since E3L and K3L are two relevant host range genes, we hypothesized that expression of one or both of them may have a positive impact on the ability of ECTV to replicate in RK13 cells. Using various methods to assess virus growth, we did not detect any significant differences with respect to the replication of ECTV between wild-type RK13 compared to versions of this cell line that stably expressed VACV E3 alone or in combination with K3. Therefore, there remain unanswered questions related to the factors that limit the host range of ECTV.  相似文献   

8.
A 50-kDa protein was purified as a potential receptor, using an affinity matrix containing biotinylated F14.6 or H9.3 anti-DNA mAbs derived from autoimmune (New Zealand Black x New Zealand White)F(1) mouse and membrane extracts from cells. This protein was identified as calreticulin (CRT) by microsequencing. Confocal microscopy and FACS analysis showed that CRT was present on the surface of various cells. CRT protein was recognized by a panel of anti-DNA mAbs in ELISA. The binding of F14.6 to lymphocytes and Chinese hamster ovary cells was inhibited by soluble CRT or SPA-600. Thus, the anti-DNA mAbs used in this study bound to CRT, suggesting that CRT may mediate their penetration into the cells and play an important role in lupus pathogenesis.  相似文献   

9.
Endoplasmic reticulum (ER) stress has recently been identified as an important process involved in the pathology of pre-eclampsia (PE). Calreticulin (CRT) is an important ER resident protein which participates in the regulation of intracellular Ca(2+) homeostasis, cell adhesion, and cell apoptosis. In order to clarify the role of this protein in normal human pregnancy and in PE, this study has examined the expression of CRT in pre-eclamptic placenta compared with control placenta. The expression of CRT mRNA and protein was elevated in the pre-eclamptic placentas in comparison with control placentas. Furthermore, the expression level was related to the severity of symptoms experienced by PE patients. Therefore, this study aimed to identify the biological characteristics of the CRT gene in trophoblast cells. A CRT-expressing vector was transfected into the JEG-3 human choriocarcinoma cell line. Investigations showed that both proliferation and invasion were inhibited and apoptosis was promoted by CRT expression in JEG-3 cells. These data suggest that augmentation of CRT in the placenta may induce cell apoptosis and impair the invasion of extravillous trophoblast cells, thus leading to shallow placentation in PE.  相似文献   

10.
HL is synthesized in hepatocytes and functions while bound to heparan sulfate proteoglycans (HSPGs) in sinusoidal endothelial cells. The HL-mediated uptake of lipoprotein requires cell-surface HSPG. The present study tested whether HL plays a role in the production of HSPG. The production of HSPG in Chinese hamster ovary (CHO) cells was determined by measuring the incorporation of (35)SO(4) into PGs. HL-producing HL-CHO cells showed approximately 30% more cellular PG than did wild-type (WT) cells. In contrast, PG production in cells producing a membrane-anchored HL-glycophosphatidylinositol (GPI) that was not bound to HSPG was virtually identical to that in WT cells. When purified HL was added to the WT- or HL-GPI cells, PG production increased significantly to a level similar to that of the HL-secreting cells, suggesting that the binding of HL to HSPG triggered the increased HSPG production. Heparin reduced PG production in HL-producing cells, confirming that PG production is stimulated only when HL is present as a ligand for HSPG. Real-time PCR and Northern blots demonstrated that PG production was significantly reduced in animals lacking HL. Together, these data suggest that the binding of HL to PG on the cell surface exerts a positive feedback on cellular PG production.  相似文献   

11.
Thrombospondin (TSP) signals focal adhesion disassembly (the intermediate adhesive state) through interactions with cell surface calreticulin (CRT). TSP or a peptide (hep I) of the active site induces focal adhesion disassembly through binding to CRT, which activates phosphoinositide 3-kinase (PI3K) and extracellular signal-related kinase (ERK) through Galphai2 proteins. Because CRT is not a transmembrane protein, it is likely that CRT signals as part of a coreceptor complex. We now show that low density lipoprotein receptor-related protein (LRP) mediates focal adhesion disassembly initiated by TSP binding to CRT. LRP antagonists (antibodies, receptor-associated protein) block hep I/TSP-induced focal adhesion disassembly. LRP is necessary for TSP/hep I signaling because TSP/hep I is unable to stimulate focal adhesion disassembly or ERK or PI3K signaling in fibroblasts deficient in LRP. LRP is important in TSP-CRT signaling, as shown by the ability of hep I to stimulate association of Galphai2 with LRP. The isolated proteins LRP and CRT interact, and LRP and CRT are associated with hep I in molecular complexes extracted from cells. These data establish a mechanism of cell surface CRT signaling through its coreceptor, LRP, and suggest a novel function for LRP in regulating cell adhesion.  相似文献   

12.
13.
The proteoglycan (PG) on the surface of NMuMG mouse mammary epithelial cells consists of at least two functional domains, a membrane- intercalated domain which anchors the PG to the plasma membrane, and a trypsin-releasable ectodomain which bears both heparan and chondroitin sulfate chains. The ectodomain binds cells to collagen types I, III, and V, but not IV, and has been proposed to be a matrix receptor. Because heparin binds to the adhesive glycoproteins fibronectin, an interstitial matrix component, and laminin, a basal lamina component, we asked whether the cell surface PG also binds these molecules. Cells harvested with either trypsin or EDTA bound to fibronectin; binding of trypsin-released cells was inhibited by the peptide GRGDS but not by heparin, whereas binding of EDTA-released cells was inhibited only by a combination of GRDS and heparin, suggesting two distinct cell binding mechanisms. In the presence of GRGDS, the EDTA-released cells bound to fibronectin via the cell surface PG. Binding via the cell surface PG was to the COOH-terminal heparin binding domain of fibronectin. In contrast with the binding to fibronectin, EDTA-released cells did not bind to laminin under identical assay conditions. Liposomes containing the isolated intact cell surface PG mimic the binding of whole cells. These results indicate that the mammary epithelial cells have at least two distinct cell surface receptors for fibronectin: a trypsin- resistant molecule that binds cells to the sequence RGD and a trypsin- labile, heparan sulfate-rich PG that binds cells to the COOH-terminal heparin binding domain. Because the cell surface PG binds cells to the interstitial collagens (types I, III, and V) and to fibronectin, but not to basal lamina collagen (type IV) or laminin, we conclude that the cell surface PG is a receptor on epithelial cells specific for interstitial matrix components.  相似文献   

14.
Glucocorticoids (GC) induce cell cycle arrest and apoptosis in lymphoblastic leukemia cells. To investigate cell cycle effects of GC in the absence of obscuring apoptotic events, we used human CCRF-CEM leukemia cells protected from cell death by transgenic bcl-2. GC treatment arrested these cells in the G1 phase of the cell cycle due to repression of cyclin D3 and c-myc. Cyclin E and Cdk2 protein levels remained high, but the kinase complex was inactive due to increased levels of bound p27(Kip1). Conditional expression of cyclin D3 and/or c-myc was sufficient to prevent GC-induced G1 arrest and p27(Kip1) accumulation but, importantly, did not interfere with the induction of apoptosis. The combined data suggest that repression of both, c-myc and cyclin D3, is necessary to arrest human leukemia cells in the G1 phase of the cell division cycle, but that neither one is required for GC-induced apoptosis.  相似文献   

15.
Purified NMuMG mouse mammary epithelial cell surface proteoglycan (PG), a membrane-intercalated core protein bearing both heparan sulfate and chondroitin sulfate glycosaminoglycan (GAG) chains, binds to a thrombospondin (TSP) affinity column and is eluted by a salt gradient. Double immunofluorescence microscopy demonstrates extensive co-localization of bound exogenous TSP and cells bearing exposed cell surface PG at their apical surface. The binding, as assayed by both methods, is heparitinase-sensitive, but not chondroitinase-sensitive. Alkali-released heparan sulfate chains bind to a TSP affinity column, similarly to native PG, whereas the chrondroitin sulfate chains do not. Core protein does not bind to TSP. These results indicate that NMuMG cells bind TSP via their surface PG and that the binding is mediated by the heparan sulfate chains.  相似文献   

16.
17.
We previously showed that an envelope A27L protein of intracellular mature virions (IMV) of vaccinia virus binds to cell surface heparan sulfate during virus infection. In the present study we identified another viral envelope protein, D8L, that binds to chondroitin sulfate on cells. Soluble D8L protein interferes with the adsorption of wild-type vaccinia virions to cells, indicating a role in virus entry. To explore the interaction of cell surface glycosaminoglycans and vaccinia virus, we generated mutant viruses from a control virus, WR32-7/Ind14K (A27L(+) D8L(+)) to be defective in expression of either the A27L or the D8L gene (A27L(+) D8L(-) or A27L(-) D8L(+)) or both (A27L(-) D8L(-)). The A27L(+) D8L(+) and A27L(-) D8L(+) mutants grew well in BSC40 cells, consistent with previous observations. However, the IMV titers of A27L(+) D8L(-) and A27L(-) D8L(-) viruses in BSC40 cells were reduced, reaching only 10% of the level for the control virus. The data suggested an important role for D8L protein in WR32-7/Ind14K virus growth in cell cultures. A27L protein, on the other hand, could not complement the functions of D8L protein. The low titers of the A27L(+) D8L(-) and A27L(-) D8L(-) mutant viruses were not due to defects in the morphogenesis of IMV, and the mutant virions demonstrated a brick shape similar to that of the control virions. Furthermore, the infectivities of the A27L(+) D8L(-) and A27L(-) D8L(-) mutant virions were 6 to 10% of that of the A27L(+) D8L(+) control virus. Virion binding assays revealed that A27L(+) D8L(-) and A27L(-) D8L(-) mutant virions bound less well to BSC40 cells, indicating that binding of viral D8L protein to cell surface chondroitin sulfate could be important for vaccinia virus entry.  相似文献   

18.
Vaccinia virus intracellular mature virus (IMV) binds to glycosaminoglycans (GAGs) on cells via three virion proteins, H3L, A27L, and D8L. In this study, we demonstrated that binding of IMV to BSC40 cells was competitively inhibited by soluble laminin but not by fibronectin or collagen V, suggesting that this cell surface extracellular matrix (ECM) protein may play a role in vaccinia virus entry. Moreover, IMV infection of GAG(-) sog9 cells was also inhibited by laminin, demonstrating that virion binding to laminin does not involve a prior interaction with GAGs. Furthermore, comparative envelope protein analyses of wild-type vaccinia virus strain Western Reserve, which binds to laminin, and of a mutant virus, IA27L, which does not, showed that the A26L open reading frame (ORF), encoding an envelope protein, was mutated in IA27L, resulting in A26L being absent from the IMV. Expression of the wild-type A26L ORF in IA27L resulted in laminin binding activity. Moreover, recombinant A26L protein bound to laminin in vitro with a high affinity, providing direct evidence that A26L is the laminin binding protein on IMV. In summary, these results reveal a novel role for the vaccinia viral envelope protein A26L in binding to the ECM protein laminin, an association that is proposed to facilitate IMV entry.  相似文献   

19.
To examine the contribution of different G-protein pathways to lysophosphatidic acid (LPA)-induced protein kinase D (PKD) activation, we tested the effect of LPA on PKD activity in murine embryonic cell lines deficient in Galpha(q/11) (Galpha(q/11) KO cells) or Galpha(12/13) (Galpha(12/13) KO cells) and used cells lacking rhodopsin kinase (RK cells) as a control. In RK and Galpha(12/13) KO cells, LPA induced PKD activation through a phospholipase C/protein kinase C pathway in a concentration-dependent fashion with maximal stimulation (6-fold for RK cells and 4-fold for Galpha(12/13) KO cells in autophosphorylation activity) achieved at 3 microm. In contrast, LPA did not induce any significant increase in PKD activity in Galpha(q/11) KO cells. However, LPA induced a significantly increased PKD activity when Galpha(q/11) KO cells were transfected with Galpha(q). LPA-induced PKD activation was modestly attenuated by prior exposure of RK cells to pertussis toxin (PTx) but abolished by the combination treatments of PTx and Clostridium difficile toxin B. Surprisingly, PTx alone strikingly inhibited LPA-induced PKD activation in a concentration-dependent fashion in Galpha(12/13) KO cells. Similar results were obtained when activation loop phosphorylation at Ser-744 was determined using an antibody that detects the phosphorylated state of this residue. Our results indicate that G(q) is necessary but not sufficient to mediate LPA-induced PKD activation. In addition to G(q), LPA requires additional G-protein pathways to elicit a maximal response with G(i) playing a critical role in Galpha(12/13) KO cells. We conclude that LPA induces PKD activation through G(q), G(i), and G(12) and propose that PKD activation is a point of convergence in the action of multiple G-protein pathways.  相似文献   

20.
Infection by Helicobacter pylori leads to injury of the gastric epithelium and a cellular infiltrate that includes CD4+ T cells. H. pylori binds to class II MHC molecules on gastric epithelial cells and induces their apoptosis. Because urease is an abundant protein expressed by H. pylori, we examined whether it had the ability to bind class II MHC and induce apoptosis in class II MHC-bearing cells. Flow cytometry revealed the binding of PE-conjugated urease to class II MHC+ gastric epithelial cell lines. The binding of urease to human gastric epithelial cells was reduced by anti-class II MHC Abs and by staphylococcal enterotoxin B. The binding of urease to class II MHC was confirmed when urease bound to HLA-DR1-transfected COS-1 (1D12) cells but not to untransfected COS-1 cells. Urease also bound to a panel of B cell lines expressing various class II MHC alleles. Recombinant urease induced apoptosis in gastric epithelial cells that express class II MHC molecules, but not in class II MHC- cells. Also, Fab from anti-class II MHC and not from isotype control Abs blocked the induction of apoptosis by urease in a concentration-dependent manner. The adhesin properties of urease might point to a novel and important role of H. pylori urease in the pathogenesis of H. pylori infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号