首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 894 毫秒
1.
Environmental factors affecting photosynthetic activity of the typical vernal speciesErythronium japonicum Decne were examined on the floor of a deciduous broad-leavedQuercus mongolica forest (Q.m. stand) and on bare land left undisturbed for 4 years after forest clearing (bare stand). Daytime solar irradiation and air and leaf temperatures at the bare stand were significantly higher than those at theQ.m. stand. The relative air humidity was very low and did not differ much between the stands, although the leaf-air vapor pressure differences (VPD) at the bare stand were about twice as high as those at theQ.m. stand. The plants at both stands were supplied with sufficient soil water throughout their growing season by a large snowmelt. However, the aboveground parts of the plants at the bare stand were subjected to much more severe heat stress, caused by the strong radiations and high leaf temperatures, and water stress, caused by the highly transpiring conditions, than those at theQ.m. stand. When the radiation on leaves, leaf temperatures and VPD in the assimilation chamber were changed from those observed at theQ.m. stand to those at the bare stand, the photosynthetic rate and stomatal conductance fell significantly. However, the rate and conductance were immediately restored to the respective values near those measured under the conditions at theQ.m. stand when only VPD was dropped to the value similar to that observed at theQ.m. stand. These results indicate that the photosynthetic rate of the plants at the bare stand was lowered largely by a decrease in stomatal conductance. The internal CO2 partial pressure was considerably greater in leaves placed under environmental conditions similar to those at the bare stand.  相似文献   

2.
Dagmar Loske  Klaus Raschke 《Planta》1988,173(2):275-281
Gas exchange and contents of photosynthetic intermediates of leaves of Arbutus unedo L. were determined with the aim of recognizing the mechanisms of inhibition that were responsible for the midday depression of photosynthesis following exposure to dry air, and the decline in photosynthetic capacity following application of abscisic acid (ABA). Rapidly killed (<0.1 s) leaf samples were taken when gas analysis showed reduced CO2 assimilation. Determination of the contents of 3-phosphoglyceric acid (PGA), ribulose 1,5-bisphosphate (RuBP), triose phosphates, fructose 1,6-bisphosphate and hexose phosphates in the samples showed that significant variation occurred only in the level of PGA. As a result, the ratio PGA/RuBP decreased with increasing inhibition of photosynthesis, particularly when application of ABA had been the cause. A comparison of metabolite patterns did not bring out qualitative differences that would have indicated that effects of ABA and of dry air had been caused by separate mechanisms. Depression of photosynthesis occurred in the presence of sufficient RuBP which indicated that the carboxylation reaction of the carbon-reduction-cycle was inhibited after application of ABA or exposure to dry air.Abbreviations and symbols ABA abscisic acid - C a partial pressure of CO2 in the ambient air - C i partial pressure of CO2 in the intercellular spaces - I quantum flux - PGA 3-phosphoglyceric acid - RuBP ribulose 1,5-bisphosphate - I L leaf temperature - w water-vapor pressure difference between leaf and air  相似文献   

3.
The inhibition of photosynthesis by reduced sink demand or low rates of end product synthesis was investigated by supplying detached wheat (Triticum aestivum L. cv. Tauro) leaves with 50 mM sucrose, 50 mM glycerol or water through the transpiration stream for 2 h, either at 23 or 12 °C. Lowering the temperature and sucrose and glycerol feeding decreased photosynthetic oxygen evolution at high irradiance and saturating CO2. The decrease in temperature reduced the pools of sucrose and starch, and the ratio glucose 6-phosphate (G6P)/fructose 6-phosphate (F6P), while it increased the concentrations of G6P and F6P (hexose phosphates). Sucrose feeding, in contrast to glycerol feeding, increased sucrose, glucose and fructose contents and the G6P/F6P ratio. Sucrose and glycerol incubations at 23 °C, as well as decreasing the temperature in leaves incubated in water, increased the concentration of triose-phosphates (glyceraldehyde 3-phosphate and dihydroxyacetone phosphate, TP) and decreased the glycerate 3-phosphate (PGA) content, thus increasing the TP/PGA ratio; they also tended to increase the ribulose 1,5-bisphosphate (RuBP) content and the RuBP/PGA ratio. Sucrose and glycerol feeding at 12 °C and the decrease in temperature of leaves incubated in these solutions decreased TP and RuBP contents and the TP/PGA and RuBP/PGA ratios. The results suggest that the phosphate limitation caused by accumulation of end products, restriction of their synthesis and sequestration of cytosolic phosphate can inhibit photosynthesis through decreased carboxylation of RuBP or, with increased phosphate limitation, through lowered supply of ATP. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
The relationship between the gas-exchange characteristics of attached leaves of Phaseolus vulgaris L. and the pool sizes of several carbon-reduction-cycle intermediates was examined. After determining the rate of CO2 assimilation at known intercellular CO2 pressure, O2 pressure and light, the leaf was rapidly killed (<0.1 s) and the levels of ribulose-1,5-bisphosphate (RuBP), 3-phosphoglyceric acid (PGA), fructose-1,6-bisphosphate, fructose-6-phosphate, glucose-6-phosphate, glyceraldehyde-3-phosphate, and dihydroxyacetone phosphate were measured. In 210 mbar O2, photosynthesis appeared RuBP-saturated at low CO2 pressure and RuBP-limited at high CO2 pressure. In 21 mbar (2%) O2, the level of RuBP always appeared saturating. Very high levels of PGA and other phosphate-containing compounds were found with some conditions, especially under low oxygen.Abbreviations and symbols C1 intercellular CO2 pressure - PGA 3-phosphoglyceric acid - RuBP ribulose-1,5-bisphosphate - Rubisco ribulose-1,5-bisphosphate carboxylase-oxygenase  相似文献   

5.
The reduction of 3-phosphoglycerate (PGA) to triose phosphate is a key step in photosynthesis linking the photochemical events of the thylakoid membranes with the carbon metabolism of the photosynthetic carbon-reduction (PCR) cycle in the stroma. Glyceraldehyde-3-phosphate dehydrogenase: NADP oxidoreductase (GAPDH) is one of the two chloroplast enzymes which catalyse this reversible conversion. We report on the engineering of an antisense RNA construct directed against the tobacco (Nicotiana tabacum L.) chloroplastlocated GAPDH (A subunit). The construct was integrated into the tobacco genome by Agrobacterium-mediated transformation of leaf discs. Of the resulting transformants, five plants were recovered with reduced GAPDH activities ranging from 11 to 24% of wild-type (WT) activities. Segregation analysis of the kanamycin-resistance character in self-pollinated T1 seed from each of the five transformants revealed that one plant (GAP-R) had two active DNA inserts and the others had one insert. T1 progeny from GAP-R was used to generate plants with GAPDH activities ranging from WT levels to around 7% of WT levels. These were used to study the effect of variable GAPDH activities on metabolite pools for ribulose1,5-bisphosphate (RuBP) and PGA, and the accompanying effects on the rate of CO2 assimilation and other gasexchange parameters. The RuBP pool size was linearly related to GAPDH activity once GAPDH activity dropped below the range for WT plants, but the rate of CO2 assimilation was not affected until RuBP levels dropped to 30–40% of WT levels. That is, the CO2 assimilation rate fell when RuBP per ribulose-1,5-biphosphate carboxylase-oxygenase (Rubisco) site fell below 2 mol·(mol site)–1 while the ratio for WT plants was 4–5 mol·m(mol site)–1. Leaf conductance was not reduced in leaves with reduced GAPDH activities, resulting in an increase in the ratio of intercellular to ambient CO2 partial pressure. Conductance in plants with reduced GAPDH activities was still sensitive to CO2 and showed a normal decline with increases in CO2 partial pressure. Although PGA levels did not fluctuate greatly, the effect of reduced GAPDH activity on RuBP-pool size and assimilation rate can be interpreted as being due to a blockage in the regeneration of RuBP. Concomitant gas-ex change and chlorophyll a fluorescence measurements indicated that photosynthesis changed from being Rubisco-limited to being RuBP-regeneration-limited at a lower CO2 partial pressure in the antisense plants than in WT plants. Photosynthetic electron transport was down-regulated by the build-up of a large proton gradient and the electron-transport chain did not become over-reduced due to a shortage of NADP. Plants with severely reduced GAPDH activity were not photoinhibited despite the continuous presence of a large thylakoid proton gradient in the light. Along with plant size, Rubisco activity, leaf soluble protein and chlorophyll content were reduced in plants with the lowest GAPDH activities. We conclude that chloroplastic GAPDH activity does not appear to limit steady-state photosynthetic CO2 assimilation at ambient CO2. This is because WT leaves maintain the ratio of RuBP per Rubisco site about twofold higher than the level required to achieve a maximal rate of CO2 assimilation.Abbreviations and Symbols bp base pairs - DHAP dihydroxy-acetone phosphate - GAPDH glyceraldehyde-3-phosphate dehy-drogenase - PCR photosynthetic carbon reduction - PGA 3-phosphoglycerate - pi intercellular CO2 partial pressure - qNP non-photochemical fluorescence quenching - qQ photochemicalfluorescence quenching - PSII quantum efficiency of electronflow through PSII - Rubisco ribulose-1,5-bisphosphate carboxy-lase-oxygenase - RuBP ribulose-1,5-bisphosphate - WT wild type We thank Karin Harrison, Prue Kell, Anne Gallagher and Barbara Setchell for excellent technical assistance. G.D.P. and S.V.C. acknowledge support from QE II Research Fellowships (Australian Research Council).  相似文献   

6.
We have examined the effect of mild water stress on photosynthetic chloroplast reactions of intact Phaseolus vulgaris leaves by measuring two parameters of ribulose bisphosphate (RuBP) carboxylase activity and the pool sizes of RuBP, 3-phosphoglycerate (PGA), triose phosphates, hexose monophosphates, and ATP. We also tested for patchy stomatal closure by feeding 14CO2. The kcat of RuBP carboxylase (moles CO2 fixed per mole enzyme per second) which could be measured after incubating the enzyme with CO2 and Mg2+ was unchanged by water stress. The ratio of activity before and after incubation with CO2 and Mg2+ (the carbamylation state) was slightly reduced by severe stress but not by mild stress. Likewise, the concentration of RuBP was slightly reduced by severe stress but not by mild stress. The concentration of PGA was markedly reduced by both mild and severe water stress. The concentration of triose phosphates did not decline as much as PGA. We found that photosynthesis in water stressed leaves occurred in patches. The patchiness of photosynthesis during water stress may lead to an underestimation of the effect of stomatal closure. We conclude that reductions in whole leaf photosynthesis caused by mild water stress are primarily the result of stomatal closure and that there is no indication of damage to chloroplast reactions.  相似文献   

7.
Net photosynthetic rate (P N) measured at the same CO2 concentration, the maximum in vivo carboxylation rate, and contents of ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (RuBPCO) and RuBPCO activase were significantly decreased, but the maximum in vivo electron transport rate and RuBP content had no significant change in CO2-enriched [EC, about 200 μmol mol−1 above the ambient CO2 concentration (AC)] wheat leaves compared with those in AC grown wheat leaves. Hence photosynthetic acclimation in wheat leaves to EC is largely due to RuBP carboxylation limitation.  相似文献   

8.
A biochemical model of C 3photosynthesis has been developed by G.D. Farquhar et al. (1980, Planta 149, 78–90) based on Michaelis-Menten kinetics of ribulose-1,5-bisphosphate (RuBP) carboxylase-oxygenase, with a potential RuBP limitation imposed via the Calvin cycle and rates of electron transport. The model presented here is slightly modified so that parameters may be estimated from whole-leaf gas-exchange measurements. Carbon-dioxide response curves of net photosynthesis obtained using soybean plants (Glycine max (L.) Merr.) at four partial pressures of oxygen and five leaf temperatures are presented, and a method for estimating the kinetic parameters of RuBP carboxylase-oxygenase, as manifested in vivo, is discussed. The kinetic parameters so obtained compare well with kinetic parameters obtained in vitro, and the model fits to the measured data give r 2values ranging from 0.87 to 0.98. In addition, equations developed by J.D. Tenhunen et al. (1976, Oecologia 26, 89–100, 101–109) to describe the light and temperature responses of measured CO2-saturated photosynthetic rates are applied to data collected on soybean. Combining these equations with those describing the kinetics of RuBP carboxylase-oxygenase allows one to model successfully the interactive effects of incident irradiance, leaf temperature, CO2 and O2 on whole-leaf photosynthesis. This analytical model may become a useful tool for plant ecologists interested in comparing photosynthetic responses of different C3 plants or of a single species grown in contrasting environments.Abbreviations PCO photorespiratory carbon oxidation - PCR photosynthetic carbon reduction - PPFD photosynthetic photon-flux density - RuBP ribulose bisphosphate  相似文献   

9.
A heterotrophic cotton (Gossypium hirsutum L. cv. Stoneville 825) cell suspension culture was adapted to grow photoautotrophically. After two years in continuous photoautotrophic culture at 5% CO2 (balance air), the maximum growth rate of the photoautotrophic cell line was a 400% fresh weight increase in eight days. The Chl concentration was approximately 500 g per g fresh weight.Elevated CO2 (1%–5%) was required for culture growth, while the ambient air of the culture room (600 to 700 ul CO2 1–1) or darkness were lethal. The cell line had no net photosynthesis at 350 ul 1–1 CO2, 2% O2, and dark respiration ranged from 29 to 44 mol CO2 mg–1 Chl h–1. Photosynthesis was inhibited by O2. The approximate 1:1 ratio of ribulose 1,5-bisphosphate carboxylase (RuBPcase) to phosphoenolpyruvate carboxylase (PEPcase) (normally about 6:1 in mature leaves of C3 plants) was due to low RuBPcase activity relative to that of C3 leaves, not to high PEPcase activity. The PEPcase activity per unit Chl in the cell line was identical to that of spinach leaves, while the RuBPcase activity was only 15% of the spinach leaf RuBPcase activity. RuBPcase activity in the photoautotrophic cells was not limited by a lack of activation in vivo, since the enzyme in a rapidly prepared cell extract was 73% activated. No evidence of enzyme inactivation by secondary compounds in the cells was found as can be found with cotton leaves. Low RuBPcase activity and high respiration rates are most likely important factors in the low photosynthetic efficiency of the cells at ambient CO2.Abbreviations Chl chlorophyll - COT heterotrophic cotton cell line - COT-P photoautotrophic cotton cell line - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - Rubisco ribulose 1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose 1,5-bisphosphate - RuBPcase RuBP carboxylase - PEP phosphoenolpyruvate - PEPcase phosphoenolpyruvate carboxylase - MX Murashige and Skoog medium with 0.4 mg 1–1 2,4-D - KT photomixotrophic medium with 1% sucrose - KTo KT medium with no carbohydrate - KTPo KTo medium supplemented with 0.3 M Picloram - CER CO2 exchange rate - PCER CO2 exchange rate in the light  相似文献   

10.
Abstract The pattern of photosynthetic carbon fixation by leaves of Amaranthus paniculatus L. (a C4 plant) and Oryza sativa L. (a C3 plant) varied with age. Younger leaves of A. paniculatus incorporated 14CO2 into malate and aspartate while senescent leaves fixed predominantly into phosphoglycerate (PGA) and sugar phosphates. Only developing leaves of O. sativa formed malate/aspartate whereas mature and senescent leaves produced PGA/sugar phosphates as the initial labelled products. Correspondingly the ratio of phosphoenolpyruvate/ribulose bisphosphate (RuBP) carboxylase activities was higher in younger leaves of A. paniculatus and developing leaves of O. sativa than in older leaves. However, pulse chase experiments revealed that the main donors of carbon to end products, irrespective of leaf stage, were C4 acids and PGA in A. paniculatus and O. sativa respectively. The results suggest that although an apparent change from initial β-carboxylation to RuBP carboxylation occurs during leaf ontogeny in both the plants, the overall leaf photosynthesis remains C4 or C3. The high rate of 14CO2 incorporation into PGA/sugar phosphates by senescent leaves of A. paniculatus is suggested to be partly due to the increased intercellular spaces in their mesophyll, allowing greater access of CO2 directly to RuBP carboxylase in the bundle sheath.  相似文献   

11.
Our previous study has demonstrated that both RuBP carboxylation limitation and RuBP regeneration limitation exist simultaneously in rice grown under free-air CO2 enrichment (FACE, about 200 μmol mol−1 above the ambient air CO2 concentration) conditions [G.-Y. Chen, Z.-H. Yong, Y. Liao, D.-Y. Zhang, Y. Chen, H.-B. Zhang, J. Chen, J.-G. Zhu, D.-Q. Xu, Photosynthetic acclimation in rice leaves to free-air CO2 enrichment related to both ribulose-1,5-bisphosphate carboxylase limitation and ribulose-1,5-bisphosphate regeneration limitation. Plant Cell Physiol. 46 (2005) 1036–1045]. To explore the mechanism for forming of RuBP regeneration limitation, we conducted the gas exchange measurements and some biochemical analyses in FACE-treated and ambient rice plants. Net CO2 assimilation rate (Anet) in FACE leaves was remarkably lower than that in ambient leaves when measured at the same CO2 concentration, indicating that photosynthetic acclimation to elevated CO2 occurred. In the meantime the maximum electron transport rate (ETR) (Jmax), maximum carboxylation rate (Vcmax) in vivo, and RuBP contents decreased significantly in FACE leaves. The whole chain electron transport rate and photophosphorylation rate reduced significantly while ETR of photosystem II (PSII) did not significantly decrease and ETR of photosystem I (PSI) was significantly increased in the chloroplasts from FACE leaves. Further, the amount of cytochrome (Cyt) f protein, a key component localized between PSII and PSI, was remarkably declined in FACE leaves. It appears that during photosynthetic acclimation the decline in the Cyt f amount is an important cause for the decreased RuBP regeneration capacity by decreasing the whole chain electron transport in FACE leaves.  相似文献   

12.
Usuda H 《Plant physiology》1987,84(2):549-554
The rate of CO2 assimilation and levels of metabolites of the C4 cycle and reductive pentose phosphate pathway in attached leaves of maize (Zea mays L.) were measured over a range of light intensity from 0 to 1,900 microEinsteins per square meter per second under a saturated CO2 concentration of 350 microliters per liter and a limiting CO2 concentration of 133 microliters per liter. The level of ribulose 1,5-bisphosphate (RuBP) stayed almost constant (around 60 nanomoles per milligram chlorophyll [Chl]) from low to high light intensities under 350 microliters per liter. Levels of 3-phosphoglycerate (PGA) increased from 100 to 650 nanomoles per milligram Chl under 350 microliters per liter CO2 with increasing light intensity. The calculated RuBP concentration of 6 millimolar (corresponded to 60 nanomoles per milligram Chl) was about two times above the estimated RuBP binding-site concentration on ribulose bisphosphate carboxylase-oxygenase (Rubisco) of ~2.6 millimolar in maize bundle sheath chloroplasts in the light. The ratio of RuBP/PGA increased with decreasing light intensity under 350 microliters per liter CO2. These results suggest that RuBP carboxylation is under control of light intensity possibly due to a limited supply of CO2 to Rubisco through the C4 cycle whose activity is highly dependent on light intensity. Pyruvate level increased with increasing light intensity as long as photosynthesis rate increased. A positive relationship between levels of PGA and those of pyruvate during steady-state photosynthesis under various conditions suggests that an elevated concentration of PGA increases the carbon input into the C4 cycle through the conversion of PGA to PEP and consequently the level of total intermediates of the C4 cycle can be raised to mediate higher photosynthesis rate.  相似文献   

13.
Photorespiratory metabolism of the C3-C4 intermediate species Moricandia arvensis (L.) DC has been compared with that of the C3 species, Moricandia moricandioides (Boiss.) Heywood. Assays of glycollate oxidase (EC 1.1.3.1), glyoxylate aminotransferases (EC 2.6.1.4, EC 2.6.1.45) and hydroxypyruvate reductase (EC 1.1.1.29) indicate that the capacity for flux through the photorespiratory cycle is similar in both species. Immunogold labelling with monospecific antibodies was used to investigate the cellular locations of ribulose 1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39), glycollate oxidase, and glycine decarboxylase (EC 2.1.2.10) in leaves of the two species. Ribulose 1,5-bisphosphate carboxylase/oxygenase was confined to the stroma of chloroplasts and glycollate oxidase to the peroxisomes of all photosynthetic cells in leaves of both species. However, whereas glycine decarboxylase was present in the mitochondria of all photosynthetic cells in M. moricandioides, it was only found in the mitochondria of bundle-sheath cells in M. arvensis. We suggest that localized decarboxylation of glycine in the leaves of M. arvensis will lead to improved recapture of photorespired CO2 and hence a lower rate of photorespiration.Abbreviations kDa kilodalton - RuBP ribulose-1,5-bisphosphate  相似文献   

14.
The aim of this work was to examine the effect of temperature in the range 5 to 30 ° C upon the regulation of photosynthetic carbon assimilation in leaves of the C4 plant maize (Zea mays L.) and the C3 plant barley (Hordeum vulgare L.). Measurements of the CO2-assimilation rate in relation to the temperature were made at high (735 bar) and low (143 bar) intercellular CO2 pressure in barley and in air in maize. The results show that, as the temperature was decreased, (i) in barley, pools of phosphorylated metabolites, particularly hexose-phosphate, ribulose 1,5-bisphosphate and fructose 1,6-bisphosphate, increased in high and low CO2; (ii) in maize, pools of glycerate 3-phosphate, triose-phosphate, pyruvate and phosphoenolpyruvate decreased, reflecting their role in, and dependence on, intercellular transport processes, while pools of hexose-phosphate, ribulose 1,5-bis phosphate and fructose 1,6-bisphosphate remained approximately constant; (iii) the redox state of the primary electron acceptor of photosystem II (QA) increased slightly in barley, but rose abruptly below 12° C in maize. Non-photochemical quenching of chlorophyll fluorescence increased slightly in barley and increased to high values below 20 ° C in maize. The data from barley are consistent with the development of a limitation by phosphate status at low temperatures in high CO2, and indicate an increasing regulatory importance for regeneration of ribulose 1,5-bisphosphate within the Calvin cycle at low temperatures in low CO2. The data from maize do not show that any steps of the C4 cycle are particularly cold-sensitive, but do indicate that a restriction in electron transport occurs at low temperature. In both plants the data indicate that regulation of product synthesis results in the maintenance of pools of Calvin-cycle intermediates at low temperatures.Abbreviations Glc6P glucose-6-phosphate - Fru6P fructase-6-phosphate - Frul,6bisP fructose-1,6-bisphosphate - PGA glycerate-3-phosphate - p i intercellular partial pressure of CO2 - RuBP ribulose-1,5-bisphosphate - triose-P sum of glyceraldehyde-3-phosphate and dihydroxyacetone phosphate We thank the Agricultural and Food Research Council, UK (Research grant PG50/67) and the Science and Engineering Research Council, UK for financial support. C.A.L. was supported by the British Council, by the Conselho Nacional de Desenvolvimento Cientiflco e Tecnologico (CNPq), Brazil and by an Overseas Research Student Award. We also thank Mark Stitt (Bayreuth, FRG) and Debbie Rees for helpful discussions.  相似文献   

15.
The short-term, in-vivo response to elevated CO2 of ribulose-1,5-bisphosphate carboxylase (RuBPCase, EC 4.1.1.39) activity, and the pool sizes of ribulose 1,5-bisphosphate, 3-phosphoglyceric acid, triose phosphates, fructose 1,6-bisphosphate, glucose 6-phosphate and fructose 6-phosphate in bean were studied. Increasing CO2 from an ambient partial pressure of 360–1600 bar induced a substantial deactivation of RuBPCase at both saturating and subsaturating photon flux densities. Activation of RuBPCase declined for 30 min following the CO2 increase. However, the rate of photosynthesis re-equilibrated within 6 min of the switch to high CO2, indicating that RuBPCase activity did not limit photosynthesis at high CO2. Following a return to low CO2, RuBPCase activation increased to control levels within 10 min. The photosynthetic rate fell immediately after the return to low CO2, and then increased in parallel with the increase in RuBPCase activation to the initial rate observed prior to the CO2 increase. This indicated that RuBPCase activity limited photosynthesis while RuBPCase activation increased. Metabolite pools were temporarily affected during the first 10 min after either a CO2 increase or decrease. However, they returned to their original level as the change in the activation state of RuBPCase neared completion. This result indicates that one role for changes in the activation state of RuBPCase is to regulate the pool sizes of photosynthetic intermediates.Abbreviations and symbols A net CO2 assimilation rate - Ca ambient CO2 partial pressure - Ci intercellular CO2 partial pressure - CABP 2-carboxyarabinitol 1,5-bisphosphate - kcat catalytic turnover rate per RuBPCase molecule - PFD photon flux density (400 to 700 nm on an area basis) - PGA 3-phosphoglyceric acid - Pi orthophosphate - RuBP ribulose 1,5-bisphosphate - RuBPCase ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39)  相似文献   

16.
The mechanisms regulating transient photosynthesis by soybean (Glycine max) leaves were examined by comparing photosynthetic rates and carbon reduction cycle enzyme activities under flashing (saturating 1 s lightflecks separated by low photon flux density (PFD) periods of different durations) and continuous PFD. At the same mean PFD, the mean photosynthetic rates were reduced under flashing as compared to continuous light. However, as the duration of the low PFD period lengthened, the CO2 assimilation attributable to a lightfleck increased. This enhanced lightfleck CO2 assimilation was accounted for by a greater postillumination CO2 fixation occurring after the lightfleck. The induction state of photosynthesis, ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco), fructose 1,6-bisphosphatase (FBPase) and ribulose 5-phosphate kinase (Ru5P kinase) activities all responded similarly and were all lower under flashing as compared to constant PFD of the same integrated mean value. However, the fast phase of induction and FBPase and Ru5P kinase activities were reduced more than were the slow phase of induction and rubisco activity. This was consistent with the role of the former enzymes in the fast induction component that limited RuBP regeneration. Competition for reducing power between carbon metabolism and thioredoxin-mediated enzyme activation may have resulted in lower enzyme activation states and hence lower induction states under flashing than continuous PFD, especially at low lightfleck frequencies (low mean PFD).Abbreviations FBPase fructose 1,6-bisphosphatase (EC 3.1.3.11) - LUE lightfleck use efficiency - P-glycerate 3-phosphoglycerate - PICF post-illumination CO2 fixation - Ru5P kinase ribulose 5-phosphate kinase (EC 2.7.1.19) - RuBP ribulose 1,5-bisphosphate - rubisco ribulose 1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) - SBpase sedoheptulose 1,7-bisphosphatase (EC 3.1.3.37)  相似文献   

17.
John Kobza  Gerald E. Edwards 《Planta》1987,171(4):549-559
The photosynthetic induction response was studied in whole leaves of wheat (Triticum aestivum L.) following 5-min, 30-min and 10-h dark periods. After the 5-min dark treatment there was a rapid burst in the rate of photosynthesis upon illumination (half of maximum after 30s), followed by a slight decrease after 1.5 more min and then a gradual rise to the maximum rate. During this initial burst in photosynthesis, there was a rapid rise in the level of 3-phosphoglycerate (PGA) and a high PGA/triose-phosphate (triose-P) ratio was obtained. In addition, after the 5-min dark treatment, ribulose-1,5-bisphosphate carboxylase (Rubisco, EC 4.1.1.39), ribulose-5-phosphate kinase (EC 2.7.1.19) and chloroplastic fructose-1,6-bisphosphatase (EC 3.1.3.11) maintained a relatively high state of activation, and maximum activation occurred within 1 min of illumination. The results indicate there is a high capacity for CO2 fixation in the cycle upon illumination but attaining maximum rates requires an increase in the ribulose-1,5-bisphosphate (RuBP) pool (adjustment in triose-P utilization for carbohydrate synthesis versus RuBP synthesis). With both the 30-min and 10-h dark pretreatments there was only a slight rise in photosynthesis upon illumination, followed by a lag, then a gradual increase to steady-state (half-maximum rate after 6 min). In contrast to the 5-min dark treatment, the level of PGA was low and actually decreased initially, whereas the level of RuBP increased and was high during induction, indicating that Rubisco is limiting. This regulation via the carboxylase was not reflected in the initial extractable activity, which reached a maximum by 1 min after illumination. The light activation of chloroplastic fructose-1,6-bisphosphatase in leaves darkened for 30 min and 10 h prior to illumination was relatively slow (reaching a maximum after 8 min). However, this was not considered to limit carbon flux through the carbon-fixation cycle during induction since RuBP was not limiting. When photosynthesis approached the maximum steady-state rate, a high PGA/triose-P ratio and a high PGA/RuBP ratio were obtained. This may allow a high rate of photosynthesis by producing a favorable mass-action ratio for the reductive phase (the conversion of PGA to triose phosphate) while stimulating starch and sucrose synthesis.Abbreviations Chl chlorophyll - FBP fructose-1,6-bisphosphate - FBPase fructose-1,6-bisphosphatase - Fru6P fructose-6-phosphate - Glc6P glucose-6-phosphate - PGA 3-phosphoglycerate - Pi inoganic phosphate - Rubisco RuBP carboxylase/oxygenase - RuBP ribulose-1,5-bisphosphate - Ru5P ribulose-5-phosphate - triose-P triose phosphates (dihydroxyacetone phosphate+glyceraldehyde-3-phosphate)  相似文献   

18.
A simple approach to determine CO2/O2 specificity factor () of ribulose 1,5-bisphosphate carboxylase/oxygenase is described. The assay measures the amount of CO2 fixation at varying [CO2]/[O2] ratios after complete consumption of ribulose 1,5-bisphosphate (RuBP). Carbon dioxide fixation catalyzed by the carboxylase was monitored by directly measuring the moles of 14CO2 incorporated into 3-phosphoglycerate (PGA). This measurement at different [CO2]/[O2] ratios is used to determine graphically by several different linear plots the total RuBP consumed by the two activities and the CO2/O2 specificity factor. The assay can be used to measure the amounts of products of the carboxylase and oxygenase reactions and to determine the concentration of the substrate RuBP converted to an endpoint amount of PGA and phosphoglycolate. The assay was found to be suitable for all [CO2]/[O2] ratios examined, ranging from 14 to 215 micromolar CO2 (provided as 1–16 mM NaHCO3) and 614 micromolar O2 provided as 50% O2. The procedure described is extremely rapid and sensitive. Specificity factors for enzymes of highly divergent values are in good agreement with previously published data.Abbreviations HEPPS N-(2-hydroxyethyl)piperazine-N-(3-propanesulfonic acid) - L large subunit of rubisco - PGA 3-phosphoglyceric acid - rubisco ribulose 1,5-bisphosphate carboxylase/oxygenase - RuBP d-ribulose 1,5-bisphosphate - S small subunit of rubisco - XuBP d-xylulose 1,5-bisphosphate  相似文献   

19.
The levels of ribulose 1,5-bisphosphate (RuBP), 3-phosphoglyceric acid (PGA), glycolate, glycine, and serine were measured in soybean leaflets during photosynthesis in atmospheres ranging from 1 to 60% O2 and from 0 to 500 microliters per liter CO2.  相似文献   

20.
The activities of ribulose 1,5-bisphosphate carboxylase and of carbonic anhydrase were studied in cell-free extracts of two symbiotic Chlorella strains isolated from Paramecium bursaria and from Spongilla sp., and of two nonsymbiotic strains of Chlorella (Chlorella fusca and Chlorella vulgaris) cultivated at varied CO2-concentrations. The symbiotic Chlorella of Paramecium bursaria differs distinctly from the other Chlorella strains by a higher activity of ribulose 1,5-bisphosphate carboxylase, which is independent of the actual CO2-concentration, and by a lack of carbonic anhydrase activity. These properties are discussed with respect to their ecological significance.Abbreviations CA carbonic anhydrase - Pbi Paramecium bursaria isolate - RuBP ribulose 1,5-bisphosphate Dedicated to Prof. Dr. André Pirson on the occasion of his 70th birthday  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号