首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
产甘油假丝酵母(Candida glycerinogenes)作为优良的甘油生产菌株已经成功应用于工业化生产。但相对于酿酒酵母, 该菌株的耐高渗机理和甘油代谢的分子机制还不甚清楚。本文根据已公布的3-磷酸甘油脱氢酶基因的序列信息, 设计出一组寡核苷酸, 再运用简并PCR结合反向PCR技术从C. glycerinogenes的基因组DNA中获得了4 900 bp的核苷酸序列, 递交GenBank (No. EU186536)。该序列包含完整的编码胞浆3-磷酸甘油脱氢酶编码基因(CgGPD)开放阅读框及其上、下游调控序列。1 167 bp的开放阅读框编码388个氨基酸残基的蛋白。所演绎出氨基酸序列分析比对结果表明该基因产物的序列具有典型的胞浆3-磷酸甘油脱氢酶结构特征, 但与已鉴定的相关基因存在中等程度的同源性并在相应的辅酶催化位点和底物结合位点区域具有高度的保守性, 在氨基酸水平上与安格斯毕赤酵母的相似性最高, 达到70.9%。该基因在Saccharomyces cerevisiae W303A中异源表达能够显著提高细胞的甘油合成能力。  相似文献   

2.
Candida glycerinogenes WL2002-5 has a modest sugar tolerance and an extremely high glycerol productivity. Agrobacterium tumefaciens can transfer part of its Ti plasmid, the T-DNA, into the nuclear genome of a wide variety of host cells. In this study, we constructed the plasmid pZR and transferred it into A. tumefaciens LBA4404 to form the strain LBA4404-ZR. LBA4404-ZR was cocultivated with C. glycerologenesis, and putative transformants were identified by selection for zeocin resistance. Polymerase chain reaction and Southern blot analysis confirmed that the gene zeocin was integrated into the genome of engineered C. glycerologenesis. Optimization of the transformation condition was performed in darkness at 25 degrees C on induction medium for 24 h by cocultivation of C. glycerinogenes and LBA4404-ZR with a cell ratio of 1:500-1000. The transformation efficiency reached 2 transformants per 10(4) C. glycerologenesis cells. Our results demonstrated that A. tumefaciens-mediated transformation can be used for C. glycerinogenes. This transformation system can provide the basis for research of C. glycerologenesis in the future.  相似文献   

3.
产甘油假丝酵母(Candida glycerinogenes WL2002-5)是一株发酵生产甘油的工业化菌株。为进一步提高其产甘油能力,本研究利用前期研究中成功克隆的产甘油假丝酵母中甘油合成关键酶3-磷酸甘油脱氢酶基因CgGPD1,构建根癌农杆菌双元载体pCAM3300-zeocin-CgGPD1后,电击转化根癌农杆菌LBA4404,通过根癌农杆菌介导法(ATMT)转化产甘油假丝酵母,构建了产甘油假丝酵母重组菌。并从中筛选出一株酶活力和产甘油性能较好的产甘油假丝酵母重组菌株C.g-G8。以葡萄糖为底物摇瓶发酵96h后,重组菌C.g-G8的甘油产量比野生型菌株Candida glycerinogene提高18.06%,平均耗糖速率提高12.97%,平均酶活力提高27.55%。本研究成功利用ATMT法转化产甘油假丝酵母构建新一代高产甘油菌株。  相似文献   

4.
项峥  陈献忠  张利华  沈微  樊游  陆茂林 《遗传》2014,36(10):1053-1061
热带假丝酵母(Candida tropicalis)在发酵工业中具有重要的应用潜力,但二倍体遗传结构和较低的遗传转化效率限制了其代谢工程育种技术的应用。建立可靠的遗传转化技术并高效的删除目的基因是代谢工程改造热带假丝酵母的重要前提。文章以C. tropicalis ATCC 20336为出发菌株,通过化学诱变筛选获得了尿嘧啶缺陷型突变株C. tropicalis XZX(ura3/ura3)。以丙酮酸脱羧酶(Pyruvate decarboxylase,PDC)基因作为靶基因构建了两端包含同源臂并在选择性标记C. tropicalis URA3(Orotidine-5′-phosphate decarboxylase,乳清酸核苷-5-磷酸脱羧酶)基因两侧同向插入源于沙门氏菌(Salmonella typhimurium)的hisG序列的基因敲除盒PDC1-hisG-URA3-hisG- PDC1(PHUHP),并转化宿主菌株C. tropicalis XZX,筛选获得PHUHP片段正确整合到染色体的PDC基因位点的转化子XZX02。在此基础上,将转化子XZX02涂布于5-FOA(5-氟乳清酸)选择培养基上,筛选得到URA3基因从PHUHP片段中丢失的营养缺陷型菌株XZX03。进一步构建了第2个PDC等位基因的删除表达盒PDCm- URA3-PDCm,并转化C. tropicalis XZX03菌株,获得转化子C. tropicalis XZX04。经PCR和DNA测序确认转化子C. tropicalis XZX04细胞染色体上的两个PDC等位基因被成功敲除。文章建立了一种营养缺陷型标记可重复使用的热带假丝酵母遗传转化技术,利用该技术成功敲除了细胞的PDC基因,为进一步利用代谢工程改造热带假丝酵母奠定了基础。  相似文献   

5.
Candida parapsilosis is a human pathogenic fungus with increasing importance, particularly in nosocomial infections. For detailed molecular genetic explorations of prototrophic clinical isolates of C. parapsilosis, we developed an efficient transformation system based on a dominant selectable marker. The gene encoding resistance to mycophenolic acid (MPA) was used for selection in yeast transformation. C. parapsilosis cells were transformed with a plasmid vector containing the Candida albicans inosine monophosphate dehydrogenase gene (IMH3) responsible for mycophenolic acid resistance. Transformation was carried out both by electroporation and by the lithium acetate (LiAc) method. The LiAc method resulted in very poor transformation efficiency, while the modified electroporation method yielded a high number of mitotically stable transformants exhibiting unambiguous MPA resistance. Two hundred transformants were analysed for the presence of the C. albicans IMH3(r) gene by polymerase chain reaction. Integration of single or multiple plasmid copies into the genomic DNA of C. parapsilosis was determined by Southern hybridization. To our knowledge, the present study is the first report about a method based on a dominant selectable marker for the transformation of a prototrophic, clinical isolate of C. parapsilosis. The described technique may prove to be an efficient tool for the examination of the biology and virulence of this pathogenic yeast.  相似文献   

6.
Although charophycean algae form a relevant monophyly with embryophytes and hence occupy a fundamental place in the development of Streptophyta, no tools for genetic transformation in these organisms have been developed. Here we present the first stable nuclear transformation system for the unicellular Zygnematales, the Closterium peracerosum-strigosum-littorale complex (C. psl complex), which is one of the most useful organisms for experimental research on charophycean algae. When a vector, pSA106, containing the dominant selectable marker ble (phleomycin-resistant) gene and a reporter cgfp (Chlamydomonas-adapted green fluorescent protein) gene was introduced into cells via particle bombardment, a total of 19 phleomycin-resistant cells were obtained in the presence of a low concentration of phleomycin. Six isogenic strains isolated using conditioned medium showed consecutive cgfp expression and long-term stability for phleomycin resistance. DNA analyses verified single or tandem/redundant integration of ~10 copies of pSA106 into the C. psl complex genome. We also constructed an overexpression vector, pSA1102, and then integrated a CpPI gene encoding minus-specific sex pheromone into pSA1102. Ectopic overexpression of CpPI and the pheromonal function were confirmed when the vector pSA1102_CpPI was introduced into mt(+) cells. The present efficient transformation system for the C. psl complex should provide not only a basis for molecular investigation of Closterium but also an insight into important processes in early development and evolution of Streptophyta.  相似文献   

7.
研究了磷酸盐限量对产甘油假丝酵母甘油合成与胞内磷积累的影响。结果表明, 当酵母细胞从适磷或富磷培养基转接入低磷培养基时, 发酵过程中胞内积累的磷逐渐减少; 而当菌体从低磷培养基转接入适磷或富磷培养基时, 发酵过程中胞内聚磷酸盐的积累量迅速增加。当细胞在第14小时和第38小时从适磷培养基转接入低磷培养基时甘油得率分别高达60.9%和61.4%, 而甘油产率则分别为2.03 g/(L·h)和2.23 g/(L·h)。这些现象说明限制发酵培养基中的磷浓度是产甘油假丝酵母高产甘油的必要条件, 并为其反复分批发酵法生产甘油提供了重要依据。  相似文献   

8.
A genetic transformation system for an industrial wine yeast strain is presented here. The system is based on the acquisition of cycloheximide resistance and is a direct adaptation of a previously published procedure for brewing yeasts (L. Del Pozo, D. Abarca, M. G. Claros, and A. Jiménez, Curr. Genet. 19:353-358, 1991). Transformants arose at an optimal frequency of 0.5 transformant per microgram of DNA, are stable in the absence of selective pressure, and produce wine in the same way as the untransformed industrial strain. By using this transformation protocol, a filamentous fungal beta-(1,4)-endoglucanase gene has been expressed in an industrial wine yeast under the control of the yeast actin gene promoter. Endoglucanolytic wine yeast secretes the fungal enzyme to the must, producing a wine with an increased fruity aroma.  相似文献   

9.
The dairy yeast Kluyveromyces marxianus is a promising cell factory for producing bioethanol and heterologous proteins, as well as a robust synthetic biology platform host, due to its safe status and beneficial traits, including fast growth and thermotolerance. However, the lack of high-efficiency transformation methods hampers the fundamental research and industrial application of this yeast. Protoplast transformation is one of the most commonly used fungal transformation methods, but it yet remains unexplored in K. marxianus. Here, we established the protoplast transformation method of K. marxianus for the first time. A series of parameters on the transformation efficiency were optimized: cells were collected in the late-log phase and treated with zymolyase for protoplasting; the transformation was performed at 0 °C with carrier DNA, CaCl2, and PEG; after transformation, protoplasts were recovered in a solid regeneration medium containing 3–4% agar and 0.8 m sorbitol. By using the optimized method, plasmids of 10, 24, and 58 kb were successfully transformed into K. marxianus. The highest efficiency reached 1.8 × 104 transformants per μg DNA, which is 18-fold higher than the lithium acetate method. This protoplast transformation method will promote the genetic engineering of K. marxianus that requires high-efficiency transformation or the introduction of large DNA fragments.  相似文献   

10.
《Experimental mycology》1991,15(3):243-254
An efficient gene transfer system is a prerequisite for the molecular genetic analysis of pathogenicity and other genes of plant pathogens. A transformation procedure for the fungusPyrenopeziza brassicae was therefore devised. Three plasmids, encoding hygromycin resistance (pAN7-1, pAN7-2) or phleomycin resistance (pAN8-1), were used to transform conidial protoplasts ofP. brassicae in the presence of calcium chloride and polyethylene glycol. Transformation arose due to integration of transforming DNA, apparently at random sites, and multiple integration events were common. The frequency of transformation was variable but similar to that reported for other phytopathogenic fungi (up to 20 μg−1 DNA) and was increased when homologous DNA was included in the vector. The pathogenicity of the transformants was unchanged by transformation and, when reisolated from inoculated host tissue, the transformants were found to have retained their antibiotic resistance. The transformation technique was used to complement adeninerequiring and extracellular enzyme-deficient, UV-induced mutants to prototrophy and extracellular protease production, respectively, with cosmids from a genomic library of the fungus.  相似文献   

11.
To identify antibiotics suitable for stable transformation, we tested the resistance of a red alga,Griffithsia japonica Okamura, to four commonly used antibiotics. Very young germlings, with 1;3 cells, that germinated from the tetraspores were cultured for 40 d in a half PES medium containing kanamycin, streptomycin, hygromycin B, or phleomycin.G. japonica was highly sensitive to 1 μg mL-1of phleomycin and g mL-1of hygromycin B. However, it was resistant to kanamycin and low levels of streptomycin and hygromycin B. These results suggest that resistance genes for phleomycin or hygromycin can be used as selectable markers for transformation of G.japonica.  相似文献   

12.
The regeneration of Candida glycerinogenes protoplasts is a major step following genetic manipulations such as fusion and DNA-mediated transformation. An investigation of protoplast formation and cytological examination was used to gain further insight into the loss of protoplast viability in osmotically stabilized support media. Protoplasts with the highest regeneration frequency (98.6% protoplasts/mL) were isolated, using lysozyme dissolved in 1M sorbitol osmoticum. The commercial enzyme preparations, osmotic stabilisers, and growth phase were effective in raising the protoplast yield. Sodium chloride was effective for protoplast preparation; however, sugars and sugar alcohols were better for protoplast regeneration. Sorbitol at a concentration of 1 M was used in regeneration agar for further studies. Regeneration of colonies from protoplasts was maximal (11 ~ 15%) when protoplasts were incorporated in cooled agar containing 0.5% glucose, supplemented with 1M sorbitol as osmotic stabilizer. C. glycerinogenes strain was highly sensitive to zeocin, so transformation of protoplasts and PEG-mediated was achieved with an improved transformation system, using plasmid pURGAP-gfp containing zeocin gene driven by a PCgGAP promoter from C. glycerinogenes to express gfp gene and be transformed into the 5.8S rDNA site of C. glycerinogenes in order to test the system for studying the yeast osmoregulation. We developed an efficient method for transformation of C. glycerinogenes, and parameters involved in transformation efficiency were optimized. Expressions of gfp at different levels were conducted under osmotic stress containing NaCl, KCl, sorbitol or glycerol for the recombinant strains. These improved procedures for protoplast isolation, regeneration and transformation proved to be useful applications in genetic studies for other Candida species and industrial yeast.  相似文献   

13.
枯草芽胞杆菌作为一般认为安全(GRAS,Generally recognized as safe)菌株,被广泛应用于饲料、食品、生物防治等领域,同时,枯草芽胞杆菌作为表达宿主在工业酶的应用中扮演重要角色。然而,低效的芽胞形成率与感受态效率极大限制了枯草芽胞杆菌的应用潜力。尽管已有大量关于芽胞形成与感受态形成的分子遗传机制的研究报道,但是通过遗传改造提高枯草芽胞杆菌芽胞形成率与感受态效率的研究报道并不多。可能的原因是芽胞形成与感受态形成作为枯草芽胞杆菌生长后期两个主要的发育事件,受胞内复杂的遗传调控机制操纵,且两个遗传通路之间存在相互调控关系,对遗传改造工作形成挑战。随着基因工程与代谢工程研究的不断发展,积累了大量关于细胞生长、代谢与发育等方面的遗传信息,通过综合这些遗传信息构建细胞遗传调控网络,用于指导生产实践,已经成为当前研究的热点之一。基于此,本文简要概述了枯草芽胞杆菌芽胞形成和感受态形成的遗传通路,初步探讨了芽胞形成与感受态形成之间的遗传调控网络,及细胞在生长后期的遗传决定机制,并讨论了该遗传调控网络对枯草芽孢杆菌及其近缘种应用研究的指导作用。  相似文献   

14.
1,3-丙二醇(1,3-PD)是一种重要的化工原料,发酵法生产1,3-PD是一条新颖且具有潜在竞争力的生产途径。本研究在前期工作的基础上,将分别来源于大肠杆菌和肺炎克雷伯氏菌的基因片段yqhD和dhaB串联表达,构建重组表达载体pYX212-zeocin-pGAP-yqhD-pGAP-dhaB;并得到重组酿酒酵母(Saccharomyces cerevisiae)W303-1A/pYX212-zeocin-pGAP-yqhD-pGAP-dhaB。该重组菌和对照S.cerevisiae分别以葡萄糖为底物摇瓶发酵72h后,重组酿酒酵母发酵液中1,3-PD含量约为1.5g/L;而对照菌株不产1,3-PD。以上结果表明本研究在国内首次成功构建了直接以葡萄糖为底物发酵生产1,3-PD的酿酒酵母基因工程菌。为进一步将dhaB、yqhD基因导入其他以葡萄糖为底物高产甘油的酵母宿主中表达,获得以葡萄糖为底物一步法发酵高产1,3-丙二醇工程菌打下了坚实的基础。  相似文献   

15.
摘要:【目的】产甘油假丝酵母作为一株优良高产甘油菌株,已成功应用于工业生产15年。近年来由于产甘油假丝酵母染色体倍性尚不明确,限制了对其进行遗传改造的研究进展,因而我们对产甘油假丝酵母染色体倍性研究,分析确定其染色体倍性。【方法】选用酿酒酵母细胞进行生孢,制备酿酒酵母单倍体细胞作对照,并选用热带假丝酵母作为二倍体酵母细胞对照,利用血球计数板得到热带假丝酵母、产甘油假丝酵母、单倍体及二倍体酿酒酵母细胞数,提取染色体,通过二苯胺检测法测定DNA含量。由于在相同紫外照射条件下单倍体细胞比二倍体细胞更容易死亡,因  相似文献   

16.
产甘油假丝酵母(Candida glycerinogenes)染色体倍性分析   总被引:2,自引:0,他引:2  
摘要:【目的】产甘油假丝酵母作为一株优良高产甘油菌株,已成功应用于工业生产15年。近年来由于产甘油假丝酵母染色体倍性尚不明确,限制了对其进行遗传改造的研究进展,因而我们对产甘油假丝酵母染色体倍性研究,分析确定其染色体倍性。【方法】选用酿酒酵母细胞进行生孢,制备酿酒酵母单倍体细胞作对照,并选用热带假丝酵母作为二倍体酵母细胞对照,利用血球计数板得到热带假丝酵母、产甘油假丝酵母、单倍体及二倍体酿酒酵母细胞数,提取染色体,通过二苯胺检测法测定DNA含量。由于在相同紫外照射条件下单倍体细胞比二倍体细胞更容易死亡,因  相似文献   

17.
[目的]为建立根癌农杆菌介导的莱茵衣藻快速简便高效的遗传转化体系,本研究以模式生物莱茵衣藻为受体材料,从转化方法和转化子快速鉴定两个方面进行了优化.[方法]比较了固体培养基共培养转化方法和液体培养基共培养转化方法对根癌农杆菌LBA 4404介导的莱茵衣藻CC425转化效率的影响;研究并比较了(1)首先经过TE裂解再进行...  相似文献   

18.
苔藓植物小立碗藓是迄今发现的同源重组率最高的陆生植物,堪与酵母媲美,具有"绿色酵母"之称。高的同源重组频率、简单的发育模式以及单倍体配子体为主的生活史使其渐渐成为研究生物学进程和发育模式的新型模式生物。现对近年来小立碗藓遗传转化系统研究的进展进行总结和分析,为相关研究工作者充分利用这一体系提供帮助。对小立碗藓遗传表达系统的载体构建、转化方法及宿主细胞准备等方面的进展进行了综述,对小立碗藓在基因打靶方面的应用进行了简要总结。  相似文献   

19.
高兴喜  杨谦 《微生物学报》2005,45(1):129-131
根癌农杆菌介导的遗传转化系统是植物基因工程常用方法,目前已将这一转化系统应用到酵母、丝状真菌以及人类细胞的转化。利用这一转化系统,成功地实现了丝状真菌球毛壳菌(Chaetomium globosum)的遗传转化,转化率约为60~180个转化子/10.7个孢子 。通过对转化子的PCR检测和Southern 杂交分析表明,TDNA已整合进毛壳菌基因组中,而且在所检测的转化子中都是以单拷贝的形式整合,转化子都能够稳定遗传。根癌农杆菌介导的遗传转化具有转化率高、低拷贝、遗传稳定、操作简便等优点,因此有可能成为丝状真菌遗传转化和功能基因组研究的有力工具。  相似文献   

20.
We asked if single-stranded vector DNA molecules could be used to reintroduce cloned DNA sequences into a eukaryotic cell and cause genetic transformation typical of that observed using double-stranded DNA vectors. DNA was presented to Saccharomyces cerevisiae following a standard transformation protocol, genetic transformants were isolated, and the physical state of the transforming DNA sequence was determined. We found that single-stranded DNA molecules transformed yeast cells 10- to 30-fold more efficiently than double-stranded molecules of identical sequence. More cells were competent for transformation by the single-stranded molecules. Single-stranded circular (ssc) DNA molecules carrying the yeast 2 μ plasmid-replicator sequence were converted to autonomously replicating double-stranded circular (dsc) molecules, suggesting their efficient utilization as templates for DNA synthesis in the cell. Single-stranded DNA molecules carrying 2 μ plasmid non-replicator sequences recombined with the endogenous multicopy 2 μ plasmid DNA. This recombination yielded either the simple molecular adduct expected from homologous recombination (40% of the transformants examined) or aberrant recombination products carrying incomplete transforming DNA sequences, endogenous 2 μ plasmid DNA sequences, or both (60% of the transformants examined). These aberrant recombination products suggest the frequent use of a recombination pathway that trims one or both of the substrate DNA molecules. Similar aberrant recombination products were detected in 30% of the transformants in cotransformation experiments employing single-stranded and double-stranded DNA molecules, one carrying the 2 μ plasmid replicator sequence and the other the selectable genetic marker. We conclude that single-stranded DNA molecules are useful vectors for the genetic transformation of a eukaryotic cell. They offer the advantage of high transformation efficiency, and yield the same intracellular DNA species obtained upon transformation with double-stranded DNA molecules. In addition, single-stranded DNA molecules can participate in a recombination pathway that trims one or both DNA recombination substrates, a pathway not detected, at least at the same frequency, when transforming with double-stranded DNA molecules  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号