首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The results of our previous work indicated that cell-mediated immune response, of importance in protection against Treponema pallidum, is distinctly inhibited at certain periods of syphilitic infection. Considering that cytokines, produced by Th1 lymphocytes, take part in this response and that their secretion may be regulated by cytokines of Th2 lymphocytes, we examined if, and in which stages of syphilis, such a regulation may exist. In this study we have examined the ability of cells to produce IL-2, IFN and TNF (Th1 or Th1 like cytokines) as well as IL-6 and IL-10 (Th2 or Th2 like cytokines). It was found that cells of syphilitic patients were able to produce IL-2, IFN, TNF, IL-10 and weakly IL-6 already in primary seronegative syphilis. At the same stage of syphilis, but seropositive, ability of Th1 lymphocytes to produce cytokines reached the highest values, whereas the cells producing IL-10 lost this ability. The cells producing IL-6 and MIF had the highest ability in secondary early syphilis. In this stage of syphilis again slightly increased the ability of cells to secrete IL-10, which reached the highest value in early latent syphilis. The growing ability to produce IL-6 and IL-10 was accompanied with a diminished production of IL-2, IFN and TNF nearly in all stages of syphilis. Only MIF, in contrast to other cytokines, was produced in late syphilis without distinct changes. The greatest suppression of Th1 lymphocytes to produce cytokines and cells to secretion of MIF was found in early latent syphilis when the level of IL-10 in cell culture supernates was the highest. High ability of Th2 lymphocytes to cytokines secretion in late syphilis and low ability of Th1 ones, which are very important for cell-mediated immune response, may be the reason for facilitating T. pallidum multiplication and development of latent stages of disease despite presence of immunologically competent cells.  相似文献   

2.
Immune cytokines are important regulators of the immune response to neoplastic cells. We previously reported that interleukin 4 (IL-4) and either tumor necrosis factor α (TNF) or interferon γ (IFN) synergistically inhibit melanoma cell growth and induce cell differentiation. In the present study we used various combinations of IL-4, IFN and TNF to enhance the antigenicity of melanoma cells. IL-4 plus TNF significantly increased the ability of melanoma cells to stimulate cytotoxic T cells (CTL) and act as targets of these CTL; IL-4 plus IFN was somewhat less effective, while TNF plus IFN was not as effective. IL-4 plus TNF also increased the expression of HLA class I and HLA-DR antigens on melanoma cells. The CTL lines examined in this study were CD3+CD4+ and oligoclonal. These preclinical results suggest that the immune response to melanoma whole-cell vaccines might be enhanced by pretreating vaccine cells with IL-4 plus TNF.  相似文献   

3.
IL-12, produced by APCs during the initial stages of an immune response, plays a pivotal role in the induction of IFN-gamma by NK and gammadeltaT cells and in driving the differentiation of Th1 cells, thus providing a critical link between innate and acquired immunity. Due to the unique position occupied by IL-12 in the regulation of immunity, many mechanisms have evolved to modulate IL-12 production. We have shown previously that macrophage-stimulating protein (MSP), the ligand for the stem cell-derived tyrosine kinase/recepteur d'origine nantais (RON) receptor, inhibits NO production by macrophages in response to IFN-gamma and enhances the expression of arginase. Mice lacking RON exhibit increased inflammation in a delayed-type hypersensitivity reaction and increased susceptibility to endotoxic shock. In this study we demonstrate that pretreatment of macrophages with MSP before IFN-gamma and LPS results in the complete inhibition of IL-12 production due to suppression of p40 expression. This response is mediated by the RON receptor, and splenocytes from RON(-/-) animals produce increased levels of IFN-gamma. MSP pretreatment of macrophages resulted in decreased tyrosine phosphorylation of Stat-1 and decreased expression of IFN consensus sequence binding protein in response to inflammatory cytokines. In addition to IL-12, the expression of IL-15 and IL-18, cytokines that are also dependent on IFN consensus sequence binding protein activation, is inhibited by pretreatment with MSP before IFN-gamma and LPS. We also show that the ability of MSP to inhibit IL-12 production is independent of IL-10. Taken together, these results suggest that MSP may actively suppress cell-mediated immune responses through its ability to down-regulate IL-12 production and thus inhibit classical activation of macrophages.  相似文献   

4.
A well defined model of T cell-mediated hypersensitivity-type granulomatous inflammation induced by Schistosoma mansoni eggs was used to assess the role of IL-4 and IFN-gamma in granuloma development. Synchronized pulmonary granulomas were induced and isolated from S. mansoni-infected mice during vigorous (8 wk) and modulated (20 wk) stages of the disease. The sequential production of IL-4 and IFN was determined and related to temporal changes in granuloma macrophage production of IL-1, TNF, and superoxide anion (O2-). During the vigorous stage, IL-4 was produced on days 1 and 2 of granuloma formation, whereas IFN was released in greatest amounts on days 4 to 8. The peak of IL-4 occurred in a window between the peak of IL-1 (1 day) and maximal TNF production (8 to 16 days). Maximal O2- release tended to parallel IFN production. During the modulated stage when the inflammatory response is attenuated, IL-4 production was dramatically reduced as were levels of IL-1 and TNF, but IFN production persisted and maximum O2(-)-producing capacity was only delayed in onset. mAb specific for IL-4 and IFN were used to examine the effect of in vivo depletion of these cytokines on granuloma development. Administration of a single 1.0-mg dose of anti-IL-4 antibodies to mice with synchronously developing granulomas dramatically reduced granuloma size (40 to 50% suppression of area) during an 8-day study period, whereas antibodies to IFN had no effect on size. However, the latter treatment reduced giant cell formation. Our results indicate that granuloma development involves an orchestrated production of cytokines possibly resulting from sequential participation of different Th cell populations. Moreover, IL-4 is a pivotal cytokine in anamnestic cellular recruitment and subject to endogenous regulation.  相似文献   

5.
《Cytokine》2015,74(2):326-334
Cutaneous lupus erythematosus (CLE) is an inflammatory disease with a broad range of cutaneous manifestations that may be accompanied by systemic symptoms. The pathogenesis of CLE is complex, multifactorial and incompletely defined. Below we review the current understanding of the cytokines involved in these processes. Ultraviolet (UV) light plays a central role in the pathogenesis of CLE, triggering keratinocyte apoptosis, transport of nucleoprotein autoantigens to the keratinocyte cell surface and the release of inflammatory cytokines (including interferons (IFNs), tumor necrosis factor (TNF)-α, interleukin (IL)-1, IL-6, IL-8, IL-10 and IL-17). Increased IFN, particularly type I IFN, is central to the development of CLE lesions. In CLE, type I IFN is produced in response to nuclear antigens, immune complexes and UV light. Type I IFN increases leukocyte recruitment to the skin via inflammatory cytokines, chemokines, and adhesion molecules, thereby inducing a cycle of cutaneous inflammation. Increased TNFα in CLE may also cause inflammation. However, decreasing TNFα with an anti-TNFα agent can induce CLE-like lesions. TNFα regulates B cells, increases the production of inflammatory molecules and inhibits the production of IFN-α. An increase in the inflammatory cytokines IL-1, IL-6, IL-10, IL-17 and IL-18 and a decrease in the anti-inflammatory cytokine IL-12 also act to amplify inflammation in CLE. Specific gene mutations may increase the levels of these inflammatory cytokines in some CLE patients. New drugs targeting various aspects of these cytokine pathways are being developed to treat CLE and systemic lupus erythematosus (SLE).  相似文献   

6.
Macrophages are important effector cells in cell-mediated immunity against intracellular infection. Among cytokines that macrophages are able to release are IL-12 and TNF alpha. IL-12 is a critical linker between the innate and adaptive cell-mediated immunity, capable of Th1 differentiation and IFN gamma release by T and NK cells. IFN gamma is critically required for the activation of macrophage bactericidal activities. Recently emerging evidence suggests that macrophages are able to release not only IL-12 and TNF alpha but also IFN gamma. However, the mechanisms that control the release of each of these type 1 cytokines in macrophages appear different. While macrophages release TNF alpha in an indiscriminate and IL-12-independent way, the release of IL-12, particularly bioactive IL-12 p70, and IFN gamma is under tight control. We are just beginning to understand what controls the release of IL-12 p70, a question of fundamental importance to understanding the mechanisms underlying the initiation of cell-mediated immunity. Our recent findings have shed more insights into the regulatory mechanisms of macrophage IFN gamma responses. It has become evident that IL-12 is required not only for Th1 differentiation but also for IFN gamma responses by both T cells and macrophages during intracellular infection. In this overview, we have discussed about the current understanding of the regulation of macrophage type 1 cytokine responses during intracellular infection, based upon the recent findings from us and others.  相似文献   

7.
Only a few reports have been published on the interactions between Coxsackievirus B4 (CVB4) and human peripheral blood mononuclear cells (PBMC) but have not been extensively documented. Human serum containing non-neutralizing anti-CVB4 antibodies increased CVB4-induced synthesis of IFNα by PBMC. In this study, we determined if CVB4 and human serum have the ability to activate inflammatory cytokines in addition to IFNα in PBMC cultures. PBMC from healthy donors were inoculated with infectious, inactivated CVB4 or with CVB4 incubated with dilutions of human serum or polyvalent IgG with anti-CVB4 activity. Levels of IFNα, TNFα, IL-6, IL-12, IFNγ and IL-10 in the cell-free supernatants of PBMC cultures were measured using ELISA. Infection was assessed by real-time PCR. PBMC inoculated with CVB4 produced inflammatory cytokines but not IFNα. When CVB4 was incubated with serum or IgG, IFNα was detected in the culture supernatants, and high concentrations of TNFα and IL-6 were measured. The concentrations of TNFα and IL-6 were not reduced in cultures inoculated with inactivated CVB4, whereas the IgG-dependent enhancement of IFNα, IL-6 and TNFα production with inactivated virus was suppressed. The potentiation of IFNα production was associated with a high intracellular viral load. Infectious and non-infectious CVB4 can induce the production of inflammatory cytokines but not IFNα by PBMC. High levels of IFNα, in addition to TNFα and IL-6, in culture supernatants were obtained when infectious CVB4 was combined with immune serum or IgG, and they were associated with high amounts of intracellular viral RNA.  相似文献   

8.
Interferonε (IFNε) is a unique type I IFN that has distinct functions from IFNα/β. IFNε is constitutively expressed at mucosal tissues, including the female genital mucosa, and is reported to be modulated by estrogen and seminal plasma. However, its regulation by cytokines, including TNFα, IL-1β, IL-6, IL-8, IL-17, IL-22 and IFNα, which are commonly present in the female genital mucosa, is not well documented in freshly isolated primary cervical cells from tissues. We determined the effect of these cytokines on gene expression of type I IFNs in an immortalized endocervical epithelial cell line (A2EN) and in primary cervical epithelial cells. Several pro-inflammatory cytokines were found to induce IFNε, and TNFα induced the strongest response in both cell types. Pretreatment of cells with the IκB inhibitor, which blocks the NF-κB pathway, suppressed TNFα-mediated IFNε gene induction and promoter activation. Expression of IFNα, IFNβ, and IFNε was differentially regulated in response to various cytokines. Taken together, our results show that regulation of these IFNs depends on cell type, cytokine concentration, and incubation time, highlighting the complexity of the cytokine network in the cervical epithelium.  相似文献   

9.
Celiac disease (CD) results from a permanent intolerance to dietary gluten and is due to a massive T cell-mediated immune response to gliadin, the main component of gluten. In this disease, the regulation of immune responses to dietary gliadin is altered. Herein, we investigated whether IL-10 could modulate anti-gliadin immune responses and whether gliadin-specific type 1 regulatory T (Tr1) cells could be isolated from the intestinal mucosa of CD patients in remission. Short-term T cell lines were generated from jejunal biopsies, either freshly processed or cultured ex vivo with gliadin in the presence or absence of IL-10. Ex vivo stimulation of CD biopsies with gliadin in the presence of IL-10 resulted in suppression of Ag-specific proliferation and cytokine production, indicating that pathogenic T cells are susceptible to IL-10-mediated immune regulation. T cell clones generated from intestinal T cell lines were tested for gliadin specificity by cytokine production and proliferative responses. The majority of gliadin-specific T cell clones had a Th0 cytokine production profile with secretion of IL-2, IL-4, IFN-gamma, and IL-10 and proliferated in response to gliadin. Tr1 cell clones were also isolated. These Tr1 cells were anergic, restricted by DQ2 (a CD-associated HLA), and produced IL-10 and IFN-gamma, but little or no IL-2 or IL-4 upon activation with gliadin or polyclonal stimuli. Importantly, gliadin-specific Tr1 cell clones suppressed proliferation of pathogenic Th0 cells. In conclusion, dietary Ag-specific Tr1 cells are present in the human intestinal mucosa, and strategies to boost their numbers and/or function may offer new therapeutic opportunities to restore gut homeostasis.  相似文献   

10.
BackgroundWhile Syk has been shown to associate with TLR4, the immune consequences of Syk–TLR interactions and related molecular mechanisms are unclear.MethodsGain- and loss-of-function approaches were utilized to determine the regulatory function of Syk and elucidate the related molecular mechanisms in TLR4-mediated inflammatory responses. Cytokine production was measured by ELISA and phosphorylation of signaling molecules determined by Western blotting.ResultsSyk deficiency in murine dendritic cells resulted in the enhancement of LPS-induced IFNβ and IL-10 but suppression of pro-inflammatory cytokines (TNFα, IL-6). Deficiency of Syk enhanced the activity of PI3K and elevated the phosphorylation of PI3K and Akt, which in turn, lead to the phospho-inactivation of the downstream, central gatekeeper of the innate response, GSK3β. Inhibition of PI3K or Akt abrogated the ability of Syk deficiency to enhance IFNβ and IL-10 in Syk deficient cells, confirmed by the overexpression of Akt (Myr–Akt) or constitutively active GSK3β (GSK3 S9A). Moreover, neither inhibition of PI3K–Akt signaling nor neutralization of de novo synthesized IFNβ could rescue TNFα and IL-6 production in LPS-stimulated Syk deficient cells. Syk deficiency resulted in decreased phosphorylation of IKKβ and the NF-κB p65 subunit, further suggesting a divergent influence of Syk on pro- and anti-inflammatory TLR responses.ConclusionsSyk negatively regulates TLR4-mediated production of IFNβ and IL-10 and promotes inflammatory responses in dendritic cells through divergent regulation of downstream PI3K–Akt and NF-κB signaling pathways.General significanceSyk may represent a novel target for manipulating the direction or intensity of the innate response, depending on clinical necessity.  相似文献   

11.
A low-virulence, agerminative strain of Candida albicans (PCA-2) is able to confer a high degree of nonspecific protection against subsequent challenge with highly virulent microorganisms in mice. In an attempt to better define the effect of PCA-2 vaccination on the immune system and the nature of the mechanisms involved in this protective state, we evaluated the pattern and kinetics of production of selected cytokines in PCA-2-treated mice. Thus, granulocyte/monocyte colony-stimulating factor (GM-CSF), tumor necrosis factor-alpha (TNF-alpha), interferon-gamma (IFN-gamma), and interleukin 1 (IL-1) were measured in the sera and spleen cell supernatants of vaccinated mice. In both cases, high levels of CSF, TNF, IL-1, and IFN were found 6 hr after PCA-2 infection and persisted for many days. There was always a correlation between the ability of PCA-2 to induce antimicrobial protection in vivo and its ability to cause cytokine production in vitro. Supernatants of splenocyte cultures from PCA-2-infected animals possessed macrophage-activating activity, as measured in microbiological assays. These data suggest an important involvement of cytokines in the nonspecific anti-infectious immunity induced by PCA-2, and also suggest a crucial role for IL-1 as an endogenous adjuvant in the initiation of the immune response to PCA-2.  相似文献   

12.
13.
Non-human primates could prove to be suitable models for the study of infectious diseases such as malaria, tuberculosis, and hepatitis; the molecules of their immune systems are in the process of being fully characterized. Due to the relevance of cytokines in the modulation of the immune response, a molecular analysis of these proteins in non-human primates from the Aotus genus was carried out. Peripheral blood mononuclear cells from four species of Aotusmonkey were obtained and their mRNAs for interleukin-2 (IL-2), IL-4, IL-6, IL-10, interferon-gamma (IFN), and tumor necrosis factor (TNF)-alpha were characterized. This study shows a high degree of conservation between nucleotide and amino acid sequences of cytokines from different Aotus species and those from humans. The TNF-alpha molecules were identical in amino acid sequences for both.  相似文献   

14.
There is growing interest in HIV-specific antibody-dependent cellular cytotoxicity (ADCC) as an effective immune response to prevent or control HIV infection. ADCC relies on innate immune effector cells, particularly NK cells, to mediate control of virus-infected cells. The activation of NK cells (i.e., expression of cytokines and/or degranulation) by ADCC antibodies in serum is likely subject to the influence of other factors that are also present. We observed that the HIV-specific ADCC antibodies, within serum samples from a panel of HIV-infected individuals induced divergent activation profiles of NK cells from the same donor. Some serum samples primarily induced NK cell cytokine expression (i.e., IFNγ), some primarily initiated NK cell expression of a degranulation marker (CD107a) and others initiated a similar magnitude of responses across both effector functions. We therefore evaluated a number of HIV-relevant soluble factors for their influence on the activation of NK cells by HIV-specific ADCC antibodies. Key findings were that the cytokines IL-15 and IL-10 consistently enhanced the ability of NK cells to respond to HIV-specific ADCC antibodies. Furthermore, IL-15 was demonstrated to potently activate "educated" KIR3DL1(+) NK cells from individuals carrying its HLA-Bw4 ligand. The cytokine was also demonstrated to activate "uneducated" KIR3DL1(+) NK cells from HLA-Bw6 homozygotes, but to a lesser extent. Our results show that cytokines influence the ability of NK cells to respond to ADCC antibodies in vitro. Manipulating the immunological environment to enhance the potency of NK cell-mediated HIV-specific ADCC effector functions could be a promising immunotherapy or vaccine strategy.  相似文献   

15.
This study evaluated the release of Th1 and Th2 cytokines from human lymphomononuclear cells (LMC) in response to purified human (HI) or bovine (BI) islets, and the role of long-term (3-4 weeks) islet culture and removal of monocyte-macrophage cells. The results showed that HI and BI caused a similar increase of the release of gamma interferon (IFN), IL-2 and IL-6 from LMC, whereas BI had a more marked effect than HI on IL-10 release. Culturing the islets had possible positive effects (reduction of IFN and IL-2), but also potentially negative effects (increase of TNF). Removal of monocyte-macrophage cells determined a significant reduction of IL-6, IL-10 and TNF production in response to xeno-islets.  相似文献   

16.
T-cell based vaccines against HIV have the goal of limiting both transmission and disease progression by inducing broad and functionally relevant T cell responses. Moreover, polyfunctional and long-lived specific memory T cells have been associated to vaccine-induced protection. CD4(+) T cells are important for the generation and maintenance of functional CD8(+) cytotoxic T cells. We have recently developed a DNA vaccine encoding 18 conserved multiple HLA-DR-binding HIV-1 CD4 epitopes (HIVBr18), capable of eliciting broad CD4(+) T cell responses in multiple HLA class II transgenic mice. Here, we evaluated the breadth and functional profile of HIVBr18-induced immune responses in BALB/c mice. Immunized mice displayed high-magnitude, broad CD4(+)/CD8(+) T cell responses, and 8/18 vaccine-encoded peptides were recognized. In addition, HIVBr18 immunization was able to induce polyfunctional CD4(+) and CD8(+) T cells that proliferate and produce any two cytokines (IFNγ/TNFα, IFNγ/IL-2 or TNFα/IL-2) simultaneously in response to HIV-1 peptides. For CD4(+) T cells exclusively, we also detected cells that proliferate and produce all three tested cytokines simultaneously (IFNγ/TNFα/IL-2). The vaccine also generated long-lived central and effector memory CD4(+) T cells, a desirable feature for T-cell based vaccines. By virtue of inducing broad, polyfunctional and long-lived T cell responses against conserved CD4(+) T cell epitopes, combined administration of this vaccine concept may provide sustained help for CD8(+) T cells and antibody responses- elicited by other HIV immunogens.  相似文献   

17.
Primary infection with human herpesvirus‐6 (HHV‐6), is followed by its lifelong persistence in the host. Most T‐cell responses to HHV‐6 have been characterized using peripheral blood from healthy adults; however, the role of HHV‐6 infection in immune modulation has not been elucidated for some diseases. Therefore, in this study the immune response to HHV‐6 infection in patients with B‐acute lymphoblastic leukemia (B‐ALL) was analyzed. HHV‐6 load was quantified in blood samples taken at the time of diagnosis of leukemia and on remission. The same concentrations of anti‐ and pro‐inflammatory cytokines (IL‐4, IL‐1, IL‐6, IL‐8, IL‐12p70, IL‐17a, TNF‐α and IFN‐γ) were detected in plasma samples from 20 patients with and 20 without detectable HHV‐6 virus loads in blood. Characterization of T‐cell responses to HHV‐6 showed low specific T‐cells frequencies of 2.08% and 1.46% in patients with and without detectable viral loads, respectively. IFN‐γ‐producing T cells were detected in 0.03%–0.23% and in 0%–0.2% of CD4+T cells, respectively. Strong production of IL‐6 was detected in medium supernatants of challenged T‐cells whatever the HHV‐6 status of the patients (973.51 ± 210.06 versus 825.70 ± 210.81 pg/mL). However, concentrations of TNF‐α and IFN‐γ were low. Thus, no association between plasma concentrations of cytokines and detection of HHV‐6 in blood was identified, suggesting that HHV‐6 is not strongly associated with development of B‐ALL. The low viral loads detected may correspond with latently infected cells. Alternatively, HHV‐6B specific immune responses may be below the detection threshold of the assays used.  相似文献   

18.
Tumor cells engineered to secrete TNF were used as a model to examine how persistently high local concentrations of TNF suppress tumor growth. TNF secretion had no effect on tumor cell proliferation in vitro but caused a very impressive growth arrest in vivo that was dependent on both bone marrow- and non-bone marrow-derived host cells expressing TNFR. Suppression also required an endogenous IFN-gamma pathway consisting minimally of IFN-gamma, IFN-gamma receptor, Stat1, and IFN regulatory factor 1 since mice with targeted disruption of any of the four genes failed to arrest tumor growth. The ability of these mice to suppress tumor growth was restored after they were reconstituted with bone marrow cells from Wt mice. Interestingly, mice lacking the major IFN-gamma-inducing cytokines IL-12 and IL-18 or T cells, B cells, and the majority of NK cells that are potential sources of IFN-gamma nevertheless inhibited tumor development. Moreover, multiple lines of evidence indicated that local release of IFN-gamma was not required to inhibit tumor formation. These results strongly suggest a novel function for the endogenous IFN-gamma pathway that without measurable IFN-gamma production or activity affects the ability of TNF to suppress tumor development.  相似文献   

19.
We examined the effects of IL-4, a cytokine produced by Th2 cells, on the development of an Ag-specific, T cell-mediated inflammatory response in a hapten-induced model of contact sensitivity (CS). Intravenous administration of IL-4 was ineffective in modulating the development of CS when administered on days 0, 1, and 2 after sensitization with the hapten trinitrochlorobenzene. In contrast, such treatment significantly reduced the response when given on the day of challenge. Conversely, treatment with anti-IL-4 mAb on day 4 markedly increased the magnitude of CS but was without effect when administered on days 0, 1, and 2. These results suggest that IL-4 interferes with CS at the efferent but not the afferent limb of the response. IL-4 had no inhibitory effect on the ability of immune lymph node cells to transfer adoptively CS or their proliferation upon restimulation with hapten. However, the expression of CS by immune cells was severely curtailed in mice treated with IL-4 prior to immune cell transfer. Furthermore, IL-4 inhibited monokine (gamma-IFN inducible protein [IP-10] and TNF-alpha) expression in macrophages induced by treatment with culture supernatants from the Ag-stimulated immune lymph node cells. These results indicate that suppression of Ag-specific inflammatory CS response by IL-4 may be mediated at least in part through inhibition of cytokine production by mononuclear phagocytes infiltrating the site.  相似文献   

20.
The regulatory effects of the combined treatment of tumour necrosis factorα (TNFα), interleukin-1α (IL-1α) and interferonα(IFNα) on the growth and differentiation of Daudi lymphoma cells were investigated. By means of anti-BrdU monoclonal antibodies and [3H-thymidine] incorporation a reduced proliferation rate was shown both through a combi-nation of TNFα with either IL-1α or IFNα and, above all, through simultaneous treatment with the three cytokines. In parallel, the degree of differentiation was evaluated via morphological criteria and detection of Fc receptors (FcR) and appeared higher after treatment with the three cytokines. Our results provide evidence of the increased sensitivity of this cell line to this combined treatment supporting the existence of a synergistic interaction in inducing the antiproliferative and differentiative effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号