首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Messenger RNA is a key component of an intricate regulatory network of its own. It accommodates numerous nucleotide signals that overlap protein coding sequences and are responsible for multiple levels of regulation and generation of biological complexity. A wealth of structural and regulatory information, which mRNA carries in addition to the encoded amino acid sequence, raises the question of how these signals and overlapping codes are delineated along non-synonymous and synonymous positions in protein coding regions, especially in eukaryotes. Silent or synonymous codon positions, which do not determine amino acid sequences of the encoded proteins, define mRNA secondary structure and stability and affect the rate of translation, folding and post-translational modifications of nascent polypeptides. The RNA level selection is acting on synonymous sites in both prokaryotes and eukaryotes and is more common than previously thought. Selection pressure on the coding gene regions follows three-nucleotide periodic pattern of nucleotide base-pairing in mRNA, which is imposed by the genetic code. Synonymous positions of the coding regions have a higher level of hybridization potential relative to non-synonymous positions, and are multifunctional in their regulatory and structural roles. Recent experimental evidence and analysis of mRNA structure and interspecies conservation suggest that there is an evolutionary tradeoff between selective pressure acting at the RNA and protein levels. Here we provide a comprehensive overview of the studies that define the role of silent positions in regulating RNA structure and processing that exert downstream effects on proteins and their functions.  相似文献   

2.
Regions flanking the translation initiation site (TIS) are thought to play a crucial role in translation efficiency of mRNAs, but their exact sequence and evolution in eukaryotes are still a matter of debate. We investigated the context sequences in 20 nucleotides around the TIS in multi-cellular eukaryotes, with a focus on two model plants and a comparison to human. We identified consensus sequences aaaaaaa(A/G)(A/C)aAUGGcgaataata and ggcggc(g/c)(A/G)(A/C)(G/C)AUGGCggcggcgg for Arabidopsis thaliana and Oryza sativa, respectively. We observe strongly conserved G at position +4 and A or C at position -2; however, the exact nucleotide frequencies vary between the three organisms even at these conserved positions. The frequency of pyrimidines, which are considered sub optimum at position -3, is higher in both plants than in human. Arabidopsis is GC-depleted (AU-enriched) compared to both rice and human, and the enrichment is slightly stronger upstream than downstream of AUG. While both plants are similar though not identical in their variation of nucleotide frequencies, rice and human are more similar to each other than Arabidopsis and human. All three organisms display clear periodicity in A + G and C + U content when analyzing normalized frequencies. These findings suggest that, besides few highly conserved positions, overall structure of the context sequence plays a larger role in TIS recognition than the actual nucleotide frequencies.  相似文献   

3.
Carlini DB  Chen Y  Stephan W 《Genetics》2001,159(2):623-633
To gain insights into the relationship between codon bias, mRNA secondary structure, third-codon position nucleotide distribution, and gene expression, we predicted secondary structures in two related drosophilid genes, Adh and Adhr, which differ in degree of codon bias and level of gene expression. Individual structural elements (helices) were inferred using the comparative method. For each gene, four types of randomization simulations were performed to maintain/remove codon bias and/or to maintain or alter third-codon position nucleotide composition (N3). In the weakly expressed, weakly biased gene Adhr, the potential for secondary structure formation was found to be much stronger than in the highly expressed, highly biased gene Adh. This is consistent with the observation of approximately equal G and C percentages in Adhr ( approximately 31% across species), whereas in Adh the N3 distribution is shifted toward C (42% across species). Perturbing the N3 distribution to approximately equal amounts of A, G, C, and T increases the potential for secondary structure formation in Adh, but decreases it in Adhr. On the other hand, simulations that reduce codon bias without changing N3 content indicate that codon bias per se has only a weak effect on the formation of secondary structures. These results suggest that, for these two drosophilid genes, secondary structure is a relatively independent, negative regulator of gene expression. Whereas the degree of codon bias is positively correlated with level of gene expression, strong individual secondary structural elements may be selected for to retard mRNA translation and to decrease gene expression.  相似文献   

4.
大黄鱼与小黄鱼细胞色素b基因全序列的比较分析   总被引:2,自引:1,他引:2  
陈艺燕  钱开诚  任岗  陈迪  章群 《生态科学》2005,24(2):143-145
对大黄鱼、小黄鱼线粒体细胞色素b基因进行了PCR扩增及序列测定,得到1140bp的全序列。大黄鱼和小黄鱼的碱基组成相似,前者T、C、A、G含量分别为28.4%、33.0%、23.2%和15.4%,A+T含量为51.6%;后者T、C、A、G含量分别为26.7%、34.1%、23.8%和15.4%,A+T含量为50.5%。大、小黄鱼cytb基因中三联体密码子中碱基的使用频率很相似,第一位较均一,第二位富含T,第三位富含C。大小黄鱼cytb基因存在明显差异,序列相似性仅为88.95%;两序列间具有126个差异位点;碱基转换/颠换率为3.1,碱基替换多发生在密码子第三位;碱基转换中C\T显著高于A\G,表现出转换偏歧。  相似文献   

5.
Synonymous codon usage is less biased at the start of Escherichia coli genes than elsewhere. The rate of synonymous substitution between E.coli and Salmonella typhimurium is substantially reduced near the start of the gene, which suggests the presence of an additional selection pressure which competes with the selection for codons which are most rapidly translated. Possible competing sources of selection are the presence of secondary ribosome binding sites downstream from the start codon, the avoidance of mRNA secondary structure near the start of the gene and the use of sub-optimal codons to regulate gene expression. We provide evidence against the last of these possibilities. We also show that there is a decrease in the frequency of A, and an increase in the frequency of G along the E.coli genes at all three codon positions. We argue that these results are most consistent with selection to avoid mRNA secondary structure.  相似文献   

6.
Messmer BT 《BioTechniques》2005,39(3):353-358
The analysis of mutations in immunoglobulin heavy chain variable (IGHV) region genes is a tedious process when performed by hand on multiple sequences. This report describes a set of linked Microsoft Excel files that perform several common analyses on large numbers of IGHV sequences. The spreadsheet analysis of immunoglobulin VH gene mutations (SAIVGeM) package determines the distribution of mutations among each nucleotide, the nature of the mutation at both the nucleotide and amino acid level, the frequency of mutation in the A/G G C/T A/T (RGYW) hotspot motifs of both strand polarity, and the distribution of replacement and silent mutations among the complementarity determining regions (CDRs) and the framework regions (FRs) of the immunoglobulin gene as defined by either the Kabat or IMGT conventions. These parameters are summarized and graphically presented where appropriate. In addition, the SAIVGeM package analyzes those mutations that occur in third positions of redundant codons. Because any nucleotide change in these positions is inherently silent, these positions can be used to study the mutational spectra without biases from the selection of protein structure.  相似文献   

7.
Two commonly used methods based on likelihood-ratio tests (LRTs) for detecting positive Darwinian selection at the molecular level were applied to a data set of 604 gene families containing two members in the human genome and two members in the mouse genome. These methods detected positive selection in a very high proportion of families; in over 50% of families, there was significant evidence of positive selection by one or both methods. However, less than a third of families showing evidence for positive selection by at least one of the methods showed evidence of positive selection by both methods. The outcome of these tests was predicted better by sequence length, G+C content at third-codon positions, and the level of synonymous substitution than by the level of nonsynonymous substitution or the ratio of nonsynonymous to synonymous substitution. These results suggested that LRT-based tests for positive selection may be sensitive to certain factors that make it difficult to reconstruct the true pattern of nucleotide substitution.  相似文献   

8.
9.
Phylogenetic codon models are routinely used to characterize selective regimes in coding sequences. Their parametric design, however, is still a matter of debate, in particular concerning the question of how to account for differing nucleotide frequencies and substitution rates. This problem relates to the fact that nucleotide composition in protein-coding sequences is the result of the interactions between mutation and selection. In particular, because of the structure of the genetic code, the nucleotide composition differs between the three coding positions, with the third position showing a more extreme composition. Yet, phylogenetic codon models do not correctly capture this phenomenon and instead predict that the nucleotide composition should be the same for all three positions. Alternatively, some models allow for different nucleotide rates at the three positions, an approach conflating the effects of mutation and selection on nucleotide composition. In practice, it results in inaccurate estimation of the strength of selection. Conceptually, the problem comes from the fact that phylogenetic codon models do not correctly capture the fixation bias acting against the mutational pressure at the mutation–selection equilibrium. To address this problem and to more accurately identify mutation rates and selection strength, we present an improved codon modeling approach where the fixation rate is not seen as a scalar, but as a tensor. This approach gives an accurate representation of how mutation and selection oppose each other at equilibrium and yields a reliable estimate of the mutational process, while disentangling the mean fixation probabilities prevailing in different mutational directions.  相似文献   

10.
Ribosomal RNAs have secondary structures that are maintained by internal Watson-Crick pairing. Through analysis of chordate, arthropod, and plant 5S ribosomal RNA sequences, we show that Darwinian selection operates on these nucleotide sequences to maintain functionally important secondary structure. Insect phylogenies based on nucleotide positions involved in pairing and the production of secondary structure are incongruent with those constructed on the basis of positions that are not. Furthermore, phylogeny reconstruction using these nonpairing bases is concordant with other, morphological data.   相似文献   

11.
T Ohama  A Muto    S Osawa 《Nucleic acids research》1990,18(6):1565-1569
The GC (G + C, or G or C)-contents of codon silent positions in all two-codon sets and three codons AUY/A (IIe), and in most of the family boxes of Micrococcus luteus (genomic GC-content: 74%) are 95% to 100% in both the highly and weakly expressed genes. In some family boxes, there is a decrease in NNC codons and an increase in NNG codons from the highly expressed to weakly expressed genes without apparent involvement of NNU and NNA codons. From these observations, we conclude that the selective use of synonymous codons in M. luteus may be largely determined by GC-biased mutation pressure and that in the highly expressed genes tRNAs would act as a weak selection pressure in some family boxes. Available data suggest that the effect of selection pressure by tRNAs on the synonymous codon choice becomes more apparent in the highly expressed genes in eubacteria with intermediate GC-contents such as Escherichia coli and Bacillus subtilis, and that the U/C ratio of the codon third positions in NNU/C-type two-codon sets in the weakly expressed genes would represent the approximate magnitude of directional mutation pressure throughout eubacteria.  相似文献   

12.
The FGLamide allatostatins (ASTs) are invertebrate neuropeptides which inhibit juvenile hormone biosynthesis in Dictyoptera and related orders. They also show myomodulatory activity. FGLamide AST nucleotide frequencies and codon bias were investigated with respect to possible effects on mRNA secondary structure. 367 putative FGLamide ASTs and their potential endoproteolytic cleavage sites were identified from 40 species of crustaceans, chelicerates and insects. Among these, 55% comprised only 11 amino acids. An FGLamide AST consensus was identified to be (X)1→16Y(S/A/N/G)FGLGKR, with a strong bias for the codons UUU encoding for Phe and AAA for Lys, which can form strong Watson-Crick pairing in all peptides analyzed. The physical distance between these codons favor a loop structure from Ser/Ala-Phe to Lys-Arg. Other loop and hairpin loops were also inferred from the codon frequencies in the N-terminal motif, and the first amino acids from the C-terminal motif, or the dibasic potential endoproteolytic cleavage site. Our results indicate that nucleotide frequencies and codon usage bias in FGLamide ASTs tend to favor mRNA folds in the codon sequence in the C-terminal active peptide core and at the dibasic potential endoproteolytic cleavage site.  相似文献   

13.
The purpose of our work was to analyze the case of the strong mutational GC-pressure influence on the ratio between nonsynonymous (DN) and synonymous (DS) distances (DN/DS ratio). We have used as the material the genes coding for ICP0 from five completely sequenced genomes of simplexviruses. DN/DS ratio, total GC-content (G + C), and GC-content in first, second, and third codon positions (1GC, 2GC, and 3GC, respectively) have been calculated separately for exon 2, nonconserved part of exon 3, and conserved part of exon 3 from ICP0 genes. Results showed that DN is more than DS only in the conserved part of exon 3 of ICP0 genes from cercopithecine herpesvirus 2 and cercopithecine herpesvirus 16. However, the cause of this result (DN/DS = 2.54) is the GC-pressure acting on the coding districts with 3GC = 99% rather than the biological process called positive selection. Only in these two viruses, because of the strong GC-pressure, 3GC has reached 99% in the conserved part of ICP0 exon 3, and so nucleotide substitutions that increase the GC-content practically cannot occur in third codon positions, where most substitutions are synonymous. In this case, GC-pressure has a substrate for nucleotide substitutions only in first and second codon positions, where most substitutions are nonsynonymous.  相似文献   

14.
The usage of alternative synonymous codons in the apicomplexan Cryptosporidium parvum has been investigated. A data set of 54 genes was analysed. Overall, A- and U-ending codons predominate, as expected in an A+T-rich genome. Two trends of codon usage variation among genes were identified using correspondence analysis. The primary trend is in the extent of usage of a subset of presumably translationally optimal codons, that are used at significantly higher frequencies in genes expected to be expressed at high levels. Fifteen of the 18 codons identified as optimal are more G+C-rich than the otherwise common codons, so that codon selection associated with translation opposes the general mutation bias. Among 40 genes with lower frequencies of these optimal codons, a secondary trend in G+C content was identified. In these genes, G+C content at synonymously variable third positions of codons is correlated with that in 5' and 3' flanking sequences, indicative of regional variation in G+C content, perhaps reflecting regional variation in mutational biases.  相似文献   

15.
The frequencies of A, C, G, and T in mitochondrial DNA vary among species due to unequal rates of mutation between the bases. The frequencies of bases at fourfold degenerate sites respond directly to mutation pressure. At first and second positions, selection reduces the degree of frequency variation. Using a simple evolutionary model, we show that first position sites are less constrained by selection than second position sites and, therefore, that the frequencies of bases at first position are more responsive to mutation pressure than those at second position. We define a measure of distance between amino acids that is dependent on eight measured physical properties and a similarity measure that is the inverse of this distance. Columns 1, 2, 3, and 4 of the genetic code correspond to codons with U, C, A, and G in their second position, respectively. The similarity of amino acids in the four columns decreases systematically from column 1 to column 2 to column 3 to column 4. We then show that the responsiveness of first position bases to mutation pressure is dependent on the second position base and follows the same decreasing trend through the four columns. Again, this shows the correlation between physical properties and responsiveness. We determine a proximity measure for each amino acid, which is the average similarity between an amino acid and all others that are accessible via single point mutations in the mitochondrial genetic code structure. We also define a responsiveness for each amino acid, which measures how rapidly an amino acid frequency changes as a result of mutation pressure acting on the base frequencies. We show that there is a strong correlation between responsiveness and proximity, and that both these quantities are also correlated with the mutability of amino acids estimated from the mtREV substitution rate matrix. We also consider the variation of base frequencies between strands and between genes on a strand. These trends are consistent with the patterns expected from analysis of the variation among genomes. [Reviewing Editor: Dr. David Pollock]  相似文献   

16.
DNA replication in vertebrate mitochondria is usually directional, leaving different portions of the genome single-stranded for different periods of time. During this time, mutations resulting from deaminations of cytosines to thymines and adenines to guanines accumulate on the heavy strand. Therefore, T/C and G/A ratios increase along mitochondrial genomes, proportionally to the time spent single-stranded during replication. Such trends exist at third codon positions for base ratios averaged across genes in individual genomes as well as for gene-specific and site-specific substitution frequencies estimated using phylogenetic methods. We use multiple regressions to test for the potential functioning of all 12 tRNA clusters in 19 primate mitochondrial genomes as alternative origins of light strand replication (OL). We provide a general algorithm for calculating time spent single stranded by a given site for any possible locations of the site and OL. For codon positions 1, 2, and 3, respectively, 23%, 9% and 35% of tRNA gene clusters have significant (p < 0.05) deamination gradients originating from them. The strength of the deamination gradient originating from tRNA gene clusters varies among species, and for five clusters, correlates with the tendency of tRNA genes in each of these clusters to form secondary structures that resemble the OL's structure. This is notably true for all codon positions for tRNA-Lys, which in absence of nuclear regulation, forms secondary structures resembling the hairpin structure of OL. For two tRNA gene clusters, correlations were statistically significant, but opposite to the direction expected by the known unidirectional replication, putatively compatible with bi-directional replication. Few substitutions in tRNA sequences can be neutral at the level of cloverleaf structure and function, yet significantly alter capacities to form OL-like structures, causing sudden evolution of genome-wide nucleotide contents.  相似文献   

17.
《朊病毒》2013,7(6):449-462
ABSTRACT

The sequence of the prion protein gene (PRNP) affects susceptibility to spongiform encephalopathies, or prion diseases in many species. In white-tailed deer, both coding and non-coding single nucleotide polymorphisms have been identified in this gene that correlate to chronic wasting disease (CWD) susceptibility. Previous studies examined individual nucleotide or amino acid mutations; here we examine all nucleotide polymorphisms and their combined effects on CWD. A 626 bp region of PRNP was examined from 703 free-ranging white-tailed deer. Deer were sampled between 2002 and 2010 by hunter harvest or government culling in Illinois and Wisconsin. Fourteen variable nucleotide positions were identified (4 new and 10 previously reported). We identified 68 diplotypes comprised of 24 predicted haplotypes, with the most common diplotype occurring in 123 individuals. Diplotypes that were found exclusively among positive or negative animals were rare, each occurring in less than 1% of the deer studied. Only one haplotype (C, odds ratio 0.240) and 2 diplotypes (AC and BC, odds ratios of 0.161 and 0.108 respectively) has significant associations with CWD resistance. Each contains mutations (one synonymous nucleotide 555C/T and one nonsynonymous nucleotide 286G/A) at positions reported to be significantly associated with reduced CWD susceptibility. Results suggest that deer populations with higher frequencies of haplotype C or diplotypes AC and BC might have a reduced risk for CWD infection – while populations with lower frequencies may have higher risk for infection. Understanding the genetic basis of CWD has improved our ability to assess herd susceptibility and direct management efforts within CWD infected areas.  相似文献   

18.
Lobry JR  Sueoka N 《Genome biology》2002,3(10):research0058.1-research005814

Background

When there are no strand-specific biases in mutation and selection rates (that is, in the substitution rates) between the two strands of DNA, the average nucleotide composition is theoretically expected to be A = T and G = C within each strand. Deviations from these equalities are therefore evidence for an asymmetry in selection and/or mutation between the two strands. By focusing on weakly selected regions that could be oriented with respect to replication in 43 out of 51 completely sequenced bacterial chromosomes, we have been able to detect asymmetric directional mutation pressures.

Results

Most of the 43 chromosomes were found to be relatively enriched in G over C and T over A, and slightly depleted in G+C, in their weakly selected positions (intergenic regions and third codon positions) in the leading strand compared with the lagging strand. Deviations from A = T and G = C were highly correlated between third codon positions and intergenic regions, with a lower degree of deviation in intergenic regions, and were not correlated with overall genomic G+C content.

Conclusions

During the course of bacterial chromosome evolution, the effects of asymmetric directional mutation pressures are commonly observed in weakly selected positions. The degree of deviation from equality is highly variable among species, and within species is higher in third codon positions than in intergenic regions. The orientation of these effects is almost universal and is compatible in most cases with the hypothesis of an excess of cytosine deamination in the single-stranded state during DNA replication. However, the variation in G+C content between species is influenced by factors other than asymmetric mutation pressure.
  相似文献   

19.
The nucleotide sequences of a segment of mitochondrial DNA (mtDNA) have been determined for nine species or subspecies of the subgenus Drosophila of the genus Drosophila. This segment contains two complete protein-coding genes (i.e., NADH dehydrogenase subunit 1 and cytochrome b) and a transfer RNA gene (tRNA(ser)). The G+C content at third-codon positions for the two protein-coding genes was 1.5 times higher than that in the D. melanogaster species group, which belongs to the subgenus Sophophora. However, there was a substantial difference between the nucleotide frequencies of G and C. The number of nucleotide substitutions per silent site was more than three times higher than that for nuclear DNA, although it was only 60% of that for mammalian mtDNA. Both parametric and nonparametric analyses revealed a strong transition-transversion bias in nucleotide substitution, as was observed in mammalian mtDNA. Moreover, the rate of substitution of A and T for G and C is higher than that for the opposite direction. This bias seems to be responsible for the extremely A+T-rich base composition of Drosophila mtDNA. It is also noted that the rate of transitional change between A and G is higher than that between T and C.  相似文献   

20.
J Pines  T Hunter 《Cell》1989,58(5):833-846
This paper reports the nucleotide and predicted amino acid sequence of a human B-type cyclin. The predicted protein sequence shows strong homology to the other known cyclins in the central third of the protein. We show that the level of cyclin mRNA is regulated during the cell cycle, increasing during G2 phase to four time that present in G1. The protein accumulates steadily during G2 to at least 20 times its level in G1 and is abruptly destroyed at mitosis. In G2/M phase, cyclin is associated with p34cdc2, the human homolog of the fission yeast gene cdc2+, and this complex has histone H1 kinase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号