首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hindlimb segmental kinematics and stride characteristics are quantified in several quail locomoting on a treadmill over a six-fold increase in speed. These data are used to describe the kinematics of a walking stride and to identify which limb elements are used to change stride features as speed increases. In quail, the femur does not move during locomotion and the tarsometatarsus-phalangeal joint is a major moving joint; thus, quail have lost the most proximal moving joint and added one distally. The tibiotarsus and tarsometatarsus act together as a fixed strut swinging from the knee during stance phase (the ankle angle remains constant at a given speed) and the tarsometatarsus-phalangeal joint appears to have a major role in increasing limb length during the propulsive phase of the stride. Speed is increased with greater knee extension and by lengthening the tibiotarsus/tarsometatarsus via increased ankle extension at greater speeds. Because the femur is not moved and three distal elements are, quail move the limb segments through a stride and increase speed in a way fundamentally different from other nonavian vertebrates. However, the three moving joints in quail (the knee, ankle, and tarsometatarsophangeal joint) have strikingly similar kinematics to the analogous moving joints (the hip, knee, and ankle) in other vertebrates. Comparisons to other vertebrates indicate that birds appear to have two modes of limb function (three- and four-segment modes) that vary with speed and locomotory habits.  相似文献   

2.
To reduce the effects of skin movement artefacts and apparent joint dislocations in the kinematics of whole body movement derived from marker locations, global optimisation procedures with a chain model have been developed. These procedures can also be used to reduce the number of markers when self-occlusions are hard to avoid. This paper assesses the kinematics precision of three marker sets: 16, 11 and 7 markers, for movements on high bar with straddled piked posture. A three-dimensional person-specific chain model was defined with 9 parameters and 12 degrees of freedom and an iterative procedure optimised the gymnast posture for each frame of the three marker sets. The time histories of joint angles obtained from the reduced marker sets were compared with those from the 16 marker set by means of a root mean square difference measure. Occlusions of medial markers fixed on the lower limb occurred when the legs were together and the pelvis markers disappeared primarily during the piked posture. Despite these occlusions, reconstruction was possible with 16, 11 and 7 markers. The time histories of joint angles were similar; the main differences were for the thigh mediolateral rotation and the knee flexion because the knee was close to full extension. When five markers were removed, the average angles difference was about 3 degrees . This difference increased to 9 degrees for the seven marker set. It is concluded that kinematics of sports movement can be reconstructed using a chain model and a global optimisation procedure for a reduced number of markers.  相似文献   

3.
Mechanical tuning of an ankle-foot orthosis (AFO) is important in improving gait in individuals post-stroke. Alignment and resistance are two factors that are tunable in articulated AFOs. The aim of this study was to investigate the effects of changing AFO ankle alignment on lower limb joint kinematics and kinetics with constant dorsiflexion and plantarflexion resistance in individuals post-stroke. Gait analysis was performed on 10 individuals post-stroke under four distinct alignment conditions using an articulated AFO with an ankle joint whose alignment is adjustable in the sagittal plane. Kinematic and kinetic data of lower limb joints were recorded using a Vicon 3-dimensional motion capture system and Bertec split-belt instrumented treadmill. The incremental changes in the alignment of the articulated AFO toward dorsiflexion angles significantly affected ankle and knee joint angles and knee joint moments while walking in individuals post-stroke. No significant differences were found in the hip joint parameters. The alignment of the articulated AFO was suggested to play an important role in improving knee joint kinematics and kinetics in stance through improvement of ankle joint kinematics while walking in individuals post-stroke. Future studies should investigate long-term effects of AFO alignment on gait in the community in individuals post-stroke.  相似文献   

4.
This study evaluated the discriminant capability of stability measures, trunk kinematics, and step kinematics to classify successful and failed compensatory stepping responses. In addition, the shared variance between stability measures, step kinematics, and trunk kinematics is reported. The stability measures included the anteroposterior distance (d) between the body center of mass and the stepping limb toe, the margin of stability (MOS), as well as time-to-boundary considering velocity (TTB(v)), velocity and acceleration (TTB(a)), and MOS (TTB(MOS)). Kinematic measures included trunk flexion angle and angular velocity, step length, and the time after disturbance onset of recovery step completion. Fourteen young adults stood on a treadmill that delivered surface accelerations necessitating multiple forward compensatory steps. Thirteen subjects fell from an initial disturbance, but recovered from a second, identical disturbance. Trunk flexion velocity at completion of the first recovery step and trunk flexion angle at completion of the second step had the greatest overall classification of all measures (92.3%). TTB(v) and TTB(a) at completion of both steps had the greatest classification accuracy of all stability measures (80.8%). The length of the first recovery step (r ≤ 0.70) and trunk flexion angle at completion of the second recovery step (r ≤ -0.54) had the largest correlations with stability measures. Although TTB(v) and TTB(a) demonstrated somewhat smaller discriminant capabilities than trunk kinematics, the small correlations between these stability measures and trunk kinematics (|r| ≤ 0.52) suggest that they reflect two important, yet different, aspects of a compensatory stepping response.  相似文献   

5.
Background: Muscle fatigue is associated with biomechanical changes that may lead to anterior cruciate ligament (ACL) injuries. Alterations in trunk and pelvis kinematics may also be involved in ACL injury. Although some studies have compared the effects of muscle fatigue on lower limb kinematics between men and women, little is known about its effects on pelvis and trunk kinematics. The aim of the study was to compare the effects of fatigue on lower limb, pelvis and trunk kinematics and muscle activation between men and women during landing. Methods: The participants included forty healthy subjects. We performed kinematic analysis of the trunk, pelvis, hip and knee and muscle activation analysis of the gluteal muscles, vastus lateralis and biceps femoris, during a single-leg landing before and after fatigue. Results: Men had greater trunk flexion than women after fatigue. After fatigue, a decrease in peak knee flexion and an increase in Gmax and BF activation were observed. Conclusion: The increase in the trunk flexion can decrease the anterior tibiofemoral shear force resulted from the lower knee flexion angle, thereby decreasing the stress on the ACL.  相似文献   

6.
A high angular velocity of the thigh of the stance limb, generated by hip extensor musculature, is commonly thought to be a performance-determining factor in sprint running. However, the thigh segment is a component of a linked system (i.e., the lower limb), therefore, it is unlikely that the kinematics of the thigh will be due exclusively to the resultant joint moment (RJM) at the hip. The purpose of this study was to quantify, by means of segment-interaction analysis, the determinants of sagittal plane kinematics of the lower limb segments during the stance phase of sprint running. Video and ground reaction force data were collected from four male athletes performing maximal-effort sprints. The analysis revealed that during the first-third of the stance phase, a hip extension moment was the major determinant of the increasing angular velocity of the thigh. However, during the mid-third of stance, hip and knee extension moments and segment interaction effects all contributed to the thigh attaining its peak angular velocity. Extension moments at the ankle, and to a lesser extent the knee, were attributed with preventing the 'collapse' of the shank under the effects of the interactive moment due to ground reaction force. The angular acceleration of the foot was determined almost completely by the RJM at the ankle and the interactive moment due to ground reaction force. Further research is required to determine if similar results exit for a wide range of athletes and for other stages of a sprint race (e.g. early acceleration, maximal velocity, and deceleration phases).  相似文献   

7.
Several strategies have been described as a reaction to a stumble during gait. The elevating strategy, which tries to proceed with the perturbed step, was executed as a response to a perturbation during early swing. The lowering strategy, bringing the perturbed leg to the ground and overtaking the obstacle with the contralateral limb, was executed more frequently when the perturbation appeared at mid or late swing. The goal of this paper is to analyze which mechanical factors determine the most advantageous strategy. In order to determine these factors, a mechanical model of the recovery was developed and used to analyze a series of perturbation experiments. It was assumed that the goal of the recovery reaction was to control the trunk as an inverted pendulum during the double-stance phase. In order to be able to control the trunk angle, one foot should be up front and one foot should be behind the hips; otherwise it would be impossible to generate the required trunk torques. The trunk dynamics were expressed in terms of the ground reaction forces and their application point. A larger step (elevation strategy) gives the opportunity to dissolve the perturbation in one step. A small step (lowering strategy) necessarily results in a second quick step, after which the perturbation energy can be dissipated in the second double-stance phase. If a recovery step is too slow, it becomes impossible to counteract the forward flexion of the trunk. It is suggested that a measure of the ability to recover from a stumble could be based on the ability to perform quick steps.  相似文献   

8.
The soft-tissue interface between skin-mounted markers and the underlying bones poses a major limitation to accurate, non-invasive measurement of joint kinematics. The aim of this study was twofold: first, to quantify lower limb soft-tissue artifact in young healthy subjects during functional activity; and second, to determine the effect of soft-tissue artifact on the calculation of knee joint kinematics. Subject-specific bone models generated from magnetic resonance imaging (MRI) were used in conjunction with X-ray images obtained from single-plane fluoroscopy to determine three-dimensional knee joint kinematics for four separate tasks: open-chain knee flexion, hip axial rotation, level walking, and a step-up. Knee joint kinematics was derived using the anatomical frames from the MRI-based, 3D bone models together with the data from video motion capture and X-ray fluoroscopy. Soft-tissue artifact was defined as the degree of movement of each marker in the anteroposterior, proximodistal and mediolateral directions of the corresponding anatomical frame. A number of different skin-marker clusters (total of 180) were used to calculate knee joint rotations, and the results were compared against those obtained from fluoroscopy. Although a consistent pattern of soft-tissue artifact was found for each task across all subjects, the magnitudes of soft-tissue artifact were subject-, task- and location-dependent. Soft-tissue artifact for the thigh markers was substantially greater than that for the shank markers. Markers positioned in the vicinity of the knee joint showed considerable movement, with root mean square errors as high as 29.3 mm. The maximum root mean square errors for calculating knee joint rotations occurred for the open-chain knee flexion task and were 24.3°, 17.8° and 14.5° for flexion, internal–external rotation and abduction–adduction, respectively. The present results on soft-tissue artifact, based on fluoroscopic measurements in healthy adult subjects, may be helpful in developing location- and direction-specific weighting factors for use in global optimization algorithms aimed at minimizing the effects of soft-tissue artifact on calculations of knee joint rotations.  相似文献   

9.
Asymmetry in the alignment of the lower limbs during weight-bearing activities is associated with patellofemoral pain syndrome (PFPS), caused by an increase in patellofemoral (PF) joint stress. High neuromuscular demands are placed on the lower limb during the propulsion phase of the single leg triple hop test (SLTHT), which may influence biomechanical behavior. The aim of the present cross-sectional study was to compare kinematic, kinetic and muscle activity in the trunk and lower limb during propulsion in the SLTHT using women with PFPS and pain free controls. The following measurements were made using 20 women with PFPS and 20 controls during propulsion in the SLTHT: kinematics of the trunk, pelvis, hip, and knee; kinetics of the hip, knee and ankle; and muscle activation of the gluteus maximus (GM), gluteus medius (GMed), biceps femoris (BF) and vastus lateralis (VL). Differences between groups were calculated using three separate sets of multivariate analysis of variance for kinematics, kinetics, and electromyographic data. Women with PFPS exhibited ipsilateral trunk lean; greater trunk flexion; greater contralateral pelvic drop; greater hip adduction and internal rotation; greater ankle pronation; greater internal hip abductor and ankle supinator moments; lower internal hip, knee and ankle extensor moments; and greater GM, GMed, BL, and VL muscle activity. The results of the present study are related to abnormal movement patterns in women with PFPS. We speculated that these findings constitute strategies to control a deficient dynamic alignment of the trunk and lower limb and to avoid PF pain. However, the greater BF and VL activity and the extensor pattern found for the hip, knee, and ankle of women with PFPS may contribute to increased PF stress.  相似文献   

10.
In order to obtain the lower limb kinematics from skin-based markers, the soft tissue artefact (STA) has to be compensated. Global optimization (GO) methods rely on a predefined kinematic model and attempt to limit STA by minimizing the differences between model predicted and skin-based marker positions. Thus, the reliability of GO methods depends directly on the chosen model, whose influence is not well known yet.This study develops a GO method that allows to easily implement different sets of joint constraints in order to assess their influence on the lower limb kinematics during gait. The segment definition was based on generalized coordinates giving only linear or quadratic joint constraints. Seven sets of joint constraints were assessed, corresponding to different kinematic models at the ankle, knee and hip: SSS, USS, PSS, SHS, SPS, UHS and PPS (where S, U and H stand for spherical, universal and hinge joints and P for parallel mechanism). GO was applied to gait data from five healthy males.Results showed that the lower limb kinematics, except hip kinematics, knee and ankle flexion–extension, significantly depend on the chosen ankle and knee constraints. The knee parallel mechanism generated some typical knee rotation patterns previously observed in lower limb kinematic studies. Furthermore, only the parallel mechanisms produced joint displacements.Thus, GO using parallel mechanism seems promising. It also offers some perspectives of subject-specific joint constraints.  相似文献   

11.
Earlier work from our laboratory showed that principal component waveforms (PCs) from an ensemble of DSCT movement responses correlated with either the waveform of the limb axis length or orientation trajectories, suggesting that DSCT circuitry might elaborate an explicit representation of limb endpoint kinematics independent from limb geometry. In this study, we tested this idea by decoupling limb geometry from endpoint position with mechanical constraints that blocked the motion of the knee joint during step-like movements applied passively to the hindlimb of anesthetized cats. Only about half of the 50 cells studied showed statistically different response patterns when the limb was constrained compared to the unconstrained condition (control). However, the PC waveforms extracted from responses that showed significant changes with the knee constrained were found to be identical to those extracted from control responses. Instead, the differences between constrained and control responses could be accounted for by changes in the weighting of PCs suggesting a modulation of global response components rather than an explicit representation of local parameters.  相似文献   

12.
To characterize the electromyographic (EMG) activity, ground reaction forces, and kinematics were used in the running jump with different takeoff angles. Two male long jumpers volunteered to perform running jumps at different approach speeds by varying the number of steps (from 3 to 9) in the run-up. Subject TM achieved a greater vertical velocity of the center of gravity (CG) at takeoff for all approach distances. This jumping strategy was associated with greater backward trunk lean at touchdown and takeoff, a lesser range of motion for the thigh during the support phase, more extended knee and ankle angles at touchdown, and a more flexed knee angle at takeoff. Accompanying these differences in kinematics, TM experienced greater braking impulses and lesser propulsion impulses for the forward-backward component of the ground reaction force. Furthermore, TM activated mainly the rectus femoris, vastus medialis, lateral gastrocnemius, and tibialis anterior, while if rarely activated the biceps femoris from just before contact to roughly the first two-thirds of the support phase. These results indicate that TM used a greater takeoff angle in the running jump because he enabled and sustained a greater blocking effect via the coordination patterns of the muscles relative to the hip, knee, and ankle joints. These findings also suggest that the muscle activities recorded in the present experiment are reflected in kinematics and kinetics. Further, the possible influence of these muscle activities on joint movements in the takeoff leg, and their effect on the vertical and/or horizontal velocity of the jump are discussed.  相似文献   

13.
IntroductionMusculoskeletal modeling allows insight into the interaction of muscle force and knee joint kinematics that cannot be measured in the laboratory. However, musculoskeletal models of the lower extremity commonly use simplified representations of the knee that may limit analyses of the interaction between muscle forces and joint kinematics. The goal of this research was to demonstrate how muscle forces alter knee kinematics and consequently muscle moment arms and joint torque in a musculoskeletal model of the lower limb that includes a deformable representation of the knee.MethodsTwo musculoskeletal models of the lower limb including specimen-specific articular geometries and ligament deformability at the knee were built in a finite element framework and calibrated to match mean isometric torque data collected from 12 healthy subjects. Muscle moment arms were compared between simulations of passive knee flexion and maximum isometric knee extension and flexion. In addition, isometric torque results were compared with predictions using simplified knee models in which the deformability of the knee was removed and the kinematics at the joint were prescribed for all degrees of freedom.ResultsPeak isometric torque estimated with a deformable knee representation occurred between 45° and 60° in extension, and 45° in flexion. The maximum isometric flexion torques generated by the models with deformable ligaments were 14.6% and 17.9% larger than those generated by the models with prescribed kinematics; by contrast, the maximum isometric extension torques generated by the models were similar. The change in hamstrings moment arms during isometric flexion was greater than that of the quadriceps during isometric extension (a mean RMS difference of 9.8 mm compared to 2.9 mm, respectively).DiscussionThe large changes in the moment arms of the hamstrings, when activated in a model with deformable ligaments, resulted in changes to flexion torque. When simulating human motion, the inclusion of a deformable joint in a multi-scale musculoskeletal finite element model of the lower limb may preserve the realistic interaction of muscle force with knee kinematics and torque.  相似文献   

14.
Currently there is no commonly accepted way to define, much less quantify, locomotor stability. In engineering, "orbital stability" is defined using Floquet multipliers that quantify how purely periodic systems respond to perturbations discretely from one cycle to the next. For aperiodic systems, "local stability" is defined by local divergence exponents that quantify how the system responds to very small perturbations continuously in real time. Triaxial trunk accelerations and lower extremity sagittal plane joint angles were recorded from ten young healthy subjects as they walked for 10 min over level ground and on a motorized treadmill at the same speed. Maximum Floquet multipliers (Max FM) were computed at each percent of the gait cycle (from 0% to 100%) for each time series to quantify the orbital stability of these movements. Analyses of variance comparing Max FM values between walking conditions and correlations between Max FM values and previously published local divergence exponent results were computed. All subjects exhibited orbitally stable walking kinematics (i.e., magnitudes of Max FM < 1.0), even though these same kinematics were previously found to be locally unstable. Variations in orbital stability across the gait cycle were generally small and exhibited no systematic patterns. Walking on the treadmill led to small, but statistically significant improvements in the orbital stability of mediolateral (p = 0.040) and vertical (p = 0.038) trunk accelerations and ankle joint kinematics (p = 0.002). However, these improvements were not exhibited by all subjects (p < or = 0.012 for subject x condition interaction effects). Correlations between Max FM values and previously published local divergence exponents were inconsistent and 11 of the 12 comparisons made were not statistically significant (r2 < or = 19.8%; p > or = 0.049). Thus, the variability inherent in human walking, which manifests itself as local instability, does not substantially adversely affect the orbital stability of walking. The results of this study will allow future efforts to gain a better understanding of where the boundaries lie between locally unstable movements that remain orbitally stable and those that lead to global instability (i.e., falling).  相似文献   

15.
Interestingly, young and highly active people with lower limb amputation appear to maintain a similar trunk and upper body stability during walking as able-bodied individuals. Understanding the mechanisms underlying how this stability is achieved after lower-leg amputation is important to improve training regimens for improving walking function in these patients. This study quantified how superior (i.e., head, trunk, and pelvis) and inferior (i.e., thigh, shank, and feet) segments of the body respond to continuous visual or mechanical perturbations during walking. Nine persons with transtibial amputation (TTA) and 12 able-bodied controls (AB) walked on a 2 m×3 m treadmill in a Computer Assisted Rehabilitation Environment (CAREN). Subjects were perturbed by continuous pseudo-random mediolateral movements of either the treadmill platform or the visual scene. TTA maintained a similar local and orbital stability in their superior body segments as AB throughout both perturbation types. However, for their inferior body segments, TTA subjects exhibited greater dynamic instability during perturbed walking. In TTA subjects, these increases in instability were even more pronounced in their prosthetic limb compared to their intact leg. These findings demonstrate that persons with unilateral lower leg amputation maintain upper body stability in spite of increased dynamic instability in their impaired lower leg. Thus, transtibial amputation does significantly impair sensorimotor function, leading to substantially altered dynamic movements of their lower limb segments. However, otherwise relatively healthy patients with unilateral transtibial amputation appear to retain sufficient remaining sensorimotor function in their proximal and contralateral limbs to adequately compensate for their impairment.  相似文献   

16.
The region of limb stability (ROLS) is an inertial sensor-based measure of static knee joint stability, defined by thigh and shank movements of the supporting limb during single limb stance. Changes in thigh and shank movements and/or symmetry differences between limbs may predict risk of injury to the less stable limb or the need for rehabilitation. In this study, construct validity of the ROLS metrics was examined in twelve Division I women’s basketball players during pre-season in preparation for their exercise training program. The subjects were categorized based on their injury history during the season: (Group 1) No reported injuries throughout the season, (Group 2) lower limb injury that did not result in missing any games, and (Group 3) lower limb injury that resulted in missing both practice and the remainder of their season. Significant differences were found in ROLS metrics at pre-season between Group 3 and other groups in a prospective cohort study (p < 0.05). Study findings provided pilot data for supporting ROLS as a measure of postural stability impairment and potential risk for lower limb injury in athletes.  相似文献   

17.
The “walking backward” mode was achieved within a single model of cat hind-limb locomotion with the balance maintenance only due to a change in the controlling actions (in addition to the “forward walking” mode). The skeletal part of the model contains the spine, pelvis, and two limbs consisting of the thigh, shin, and foot. The hip joint and spine mount in the thoracic region have three degrees of freedom; the knee and ankle joints have one degree of freedom. The pelvis is rigidly connected to the spine. Control is performed by model muscles (flexors and extensors of the thigh, shin, and foot). The muscle activation is performed by the effects that are typical for motoneurons that control the muscles. The feet in the support phase touch the treadmill, which moves at a constant speed. The model qualitatively reproduces multiple characteristics of feline movements during forward and backward walking (supporting its validity).  相似文献   

18.
Biomechanical model assumptions affect the interpretation of the role of the muscle or joint moments to the segmental power estimated by induced acceleration analysis (IAA). We evaluated the effect of modeling the pelvis and trunk segments as two separate segments (8 SM) versus as a single segment (7 SM) on the segmental power, support of the body, knee and hip extension acceleration produced by the joint moments during the stance phase of normal walking. Significant differences were observed in the contribution of the stance hip abductor and extensor moments to support, ipsilateral knee and hip acceleration, and ipsilateral thigh and upper body power. The primary finding was that the role of the stance hip moment in generating ipsilateral thigh and upper body power differed based on degrees of freedom in the model. Secondarily, the magnitude of contributions also differed. For example, the hip abductor and extensor moments showed greater contribution to support, hip and knee acceleration in the 8 SM. IAA and segment power analysis are sensitive to the degrees of freedom between the pelvis and trunk. There is currently no gold standard by which to evaluate the accuracy of IAA predictions. However, modeling the pelvis and trunk as separate segments is closer to the anatomical architecture of the body. An 8 SM appears to be more appropriate for estimating the role of joint moments, particularly to motion of more proximal segments during normal walking.  相似文献   

19.
The aim of the present study was to analyze the net joint moment distribution, joint forces and kinematics during cycling to exhaustion. Right pedal forces and lower limb kinematics of ten cyclists were measured throughout a fatigue cycling test at 100% of POMAX. The absolute net joint moments, resultant force and kinematics were calculated for the hip, knee and ankle joint through inverse dynamics. The contribution of each joint to the total net joint moments was computed. Decreased pedaling cadence was observed followed by a decreased ankle moment contribution to the total joint moments in the end of the test. The total absolute joint moment, and the hip and knee moments has also increased with fatigue. Resultant force was increased, while kinematics has changed in the end of the test for hip, knee and ankle joints. Reduced ankle contribution to the total absolute joint moment combined with higher ankle force and changes in kinematics has indicated a different mechanical function for this joint. Kinetics and kinematics changes observed at hip and knee joint was expected due to their function as power sources. Kinematics changes would be explained as an attempt to overcome decreased contractile properties of muscles during fatigue.  相似文献   

20.
Post-stroke individuals often exhibit abnormal kinematics, including increased pelvic obliquity and hip abduction coupled with reduced knee flexion. Prior examinations suggest these behaviors are expressions of abnormal cross-planar coupling of muscle activity. However, few studies have detailed the impact of gait-retraining paradigms on three-dimensional joint kinematics. In this study, a cross-tilt walking surface was examined as a novel gait-retraining construct. We hypothesized that relative to baseline walking kinematics, exposure to cross-tilt would generate significant changes in subsequent flat-walking joint kinematics during affected limb swing. Twelve post-stroke participants walked on a motorized treadmill platform during a flat-walking condition and during a 10-degree cross-tilt with affected limb up-slope, increasing toe clearance demand. Individuals completed 15 min of cross-tilt walking with intermittent flat-walking catch trials and a final washout period (5 min). For flat-walking conditions, we examined changes in pelvic obliquity, hip abduction/adduction and knee flexion kinematics at the spatiotemporal events of swing initiation and toe-off, and the kinematic event of maximum angle during swing. Pelvic obliquity significantly reduced at swing initiation and maximum obliquity in the final catch trial and late washout. Knee flexion significantly increased at swing initiation, toe-off, and maximum flexion across catch trials and late washout. Hip abduction/adduction was not significantly influenced following cross-tilt walking. Significant decrease in the rectus femoris and medial hamstrings muscle activity across catch trials and late washout was observed. Exploiting the abnormal features of post-stroke gait during retraining yielded desirable changes in muscular and kinematic patterns post-training.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号