首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The outs and the ins of sphingosine-1-phosphate in immunity   总被引:1,自引:0,他引:1  
The potent lipid mediator sphingosine-1-phosphate (S1P) is produced inside cells by two closely related kinases, sphingosine kinase 1 (SPHK1) and SPHK2, and has emerged as a crucial regulator of immunity. Many of the actions of S1P in innate and adaptive immunity are mediated by its binding to five G protein-coupled receptors, designated S1PR1-5, but recent findings have also identified important roles for S1P as a second messenger during inflammation. In this Review, we discuss recent advances in our understanding of the roles of S1P receptors and describe the newly identified intracellular targets of S1P that are crucial for immune responses. Finally, we discuss the therapeutic potential of new drugs that target S1P signalling and functions.  相似文献   

2.
Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid with a variety of biological activities.It is generated from the conversion of ceramide to sphingosine by ceramidase and the subsequent conversion of sphingosine to S1P,which is catalyzed by sphingosine kinases.Through increasing its intracellular levels by sphingolipid metabolism and binding to its cell surface receptors,S1P regulates several physiological and pathological processes,including cell proliferation,migration,angiogenesis and autophagy.These processes are responsible for tumor growth,metastasis and invasion and promote tumor survival.Since ceramide and S1P have distinct functions in regulating in cell fate decision,the balance between the ceramide/sphingosine/S1P rheostat becomes a potent therapeutic target for cancer cells.Herein,we summarize our current understanding of S1P signaling on tumorigenesis and its potential as a target for cancer therapy.  相似文献   

3.
Sphingosine kinase (SphK) has emerged as an attractive target for cancer therapeutics due to its role in cell survival. SphK phosphorylates sphingosine to form sphingosine 1-phosphate (S1P), which has been implicated in cancer growth and survival. SphK exists as two different isotypes, namely SphK1 and SphK2, which play different roles inside the cell. In this report, we describe SphK inhibitors based on the immunomodulatory drug, FTY720, which is phosphorylated by SphK2 to generate a S1P mimic. Structural modification of FTY720 provided a template for synthesizing new inhibitors. A diversity-oriented synthesis generated a library of SphK inhibitors with a novel scaffold and headgroup. We have discovered subtype selective inhibitors with K(i)'s in the low micromolar range. This is the first report describing quaternary ammonium salts as SphK inhibitors.  相似文献   

4.
Sphingosine 1-phosphate (S1P) is currently one of the most intensely studied lipid mediators. Interest in S1P has been propelled by the development of fingolimod, an S1P receptor agonist prodrug, which revealed both a theretofore unsuspected role of S1P in lymphocyte trafficking and that such modulation of the immune system achieves therapeutic benefit in multiple sclerosis patients. S1P is synthesized from sphingosine by two SphKs (sphingosine kinases) (SphK1 and SphK2). Manipulation of SphK levels using molecular biology and mouse genetic tools has implicated these enzymes, particularly SphK1, in a variety of pathological processes such as fibrosis, inflammation and cancer progression. The results of such studies have spurred interest in SphK1 as a drug target. In this issue of the Biochemical Journal, Schnute et al. describe a small molecule inhibitor of SphK1 that is both potent and selective. Such chemical tools are essential to learn whether targeting S1P signalling at the level of synthesis is a viable therapeutic strategy.  相似文献   

5.
The bioactive lipid molecule sphingosine 1-phosphate (S1P) binds to specific cell surface receptors and regulates several cellular processes. S1P is abundant in plasma, and physiologically its most important target cells are lymphocytes and vascular endothelial cells. S1P plays a pivotal role in the immune system by regulating lymphocyte egress from the thymus and secondary lymphoid organs. The immunomodulator FTY720 impairs this egress, causing lymphopenia. Platelets had long been considered to be the major source of plasma S1P, however recent studies revealed the importance of erythrocytes as a major supply. The sphingosine analog FTY720 is a prodrug, and FTY720 phosphate (FTY720-P) its functional form. Although both erythrocytes and platelets can produce S1P, only platelets synthesize and release FTY720-P. This review will focus on the recent advances in our understanding of the metabolism and release of S1P and FTY720-P, especially in platelets and erythrocytes.  相似文献   

6.
S1P(1) is a widely distributed G protein-coupled receptor whose ligand, sphingosine 1-phosphate, is present in high concentrations in the blood. The sphingosine 1-phosphate receptor-signaling pathway is believed to have potent effects on cell trafficking in the immune system. To determine the precise role of the S1P(1) receptor on T-cells, we established a T-cell-specific S1P(1) knock-out mouse. The mutant mice showed a block in the egress of mature T-cells into the periphery. The expression of the S1P(1) receptor was up-regulated in mature thymocytes, and its deletion altered the chemotactic responses of thymocytes to sphingosine 1-phosphate. The results indicated that the expression of the S1P(1) receptor on T-cells controls their exit from the thymus and entry into the blood and, thus, has a central role in regulating the numbers of peripheral T-cells.  相似文献   

7.
Although sphingosine 1-phosphate (S1P) has been reported to play an important role in cancer pathophysiology, little is known about S1P and hepatocellular carcinoma (HCC). To clarify the relationship between S1P and HCC, 77 patients with HCC who underwent surgical treatment were consecutively enrolled in this study. In addition, S1P and its metabolites were quantitated by LC-MS/MS. The mRNA levels of sphingosine kinases (SKs), which phosphorylate sphingosine to generate S1P, were increased in HCC tissues compared with adjacent non-HCC tissues. Higher mRNA levels of SKs in HCC were associated with poorer differentiation and microvascular invasion, whereas a higher level of SK2 mRNA was a risk factor for intra- and extra-hepatic recurrence. S1P levels, however, were unexpectedly reduced in HCC compared with non-HCC tissues, and increased mRNA levels of S1P lyase (SPL), which degrades S1P, were observed in HCC compared with non-HCC tissues. Higher SPL mRNA levels in HCC were associated with poorer differentiation. Finally, in HCC cell lines, inhibition of the expression of SKs or SPL by siRNA led to reduced proliferation, invasion and migration, whereas overexpression of SKs or SPL enhanced proliferation. In conclusion, increased SK and SPL mRNA expression along with reduced S1P levels were more commonly observed in HCC tissues compared with adjacent non-HCC tissues and were associated with poor differentiation and early recurrence. SPL as well as SKs may be therapeutic targets for HCC treatment.  相似文献   

8.
There is an increasing body of evidence demonstrating a critical role for the bioactive lipid S1P (sphingosine 1-phosphate) in cancer. S1P is synthesized and metabolized by a number of enzymes, including sphingosine kinase, S1P lyase and S1P phosphatases. S1P binds to cell-surface G-protein-coupled receptors (S1P1-S1P5) to elicit cell responses and can also regulate, by direct binding, a number of intracellular targets such as HDAC (histone deacetylase) 1/2 to induce epigenetic regulation. S1P is involved in cancer progression including cell transformation/oncogenesis, cell survival/apoptosis, cell migration/metastasis and tumour microenvironment neovascularization. In the present paper, we describe our research findings regarding the correlation of sphingosine kinase 1 and S1P receptor expression in tumours with clinical outcome and we define some of the molecular mechanisms underlying the involvement of sphingosine kinase 1 and S1P receptors in the formation of a cancer cell migratory phenotype. The role of sphingosine kinase 1 in the acquisition of chemotherapeutic resistance and the interaction of S1P receptors with oncogenes such as HER2 is also reviewed. We also discuss novel aspects of the use of small-molecule inhibitors of sphingosine kinase 1 in terms of allosterism, ubiquitin-proteasomal degradation of sphingosine kinase 1 and anticancer activity. Finally, we describe how S1P receptor-modulating agents abrogate S1P receptor-receptor tyrosine kinase interactions, with potential to inhibit growth-factor-dependent cancer progression.  相似文献   

9.
Nearly two decades ago, the sphingolipid metabolite sphingosine 1-phosphate was discovered to function as a lipid mediator and regulator of cell proliferation. Since that time, sphingosine 1-phosphate has been shown to mediate a diverse array of fundamental biological processes including cell proliferation, migration, invasion, angiogenesis, vascular maturation and lymphocyte trafficking. Sphingosine 1-phosphate acts primarily via signaling through five ubiquitously expressed G protein-coupled receptors. Intracellular sphingosine 1-phosphate molecules are transported extracellularly and gain access to cognate receptors for autocrine and paracrine signaling and for signaling at distant sites reached through blood and lymphatic circulation systems. Intracellular pools of sphingosine 1-phosphate available for signaling are tightly regulated primarily by three enzymes: sphinosine kinase, S1P lyase and S1P phosphatase. Alterations in sphingosine 1-phosphate as well as the enzymes involved in its synthesis and catabolism have been observed in many types of malignancy. These enzymes are being evaluated for their role in mediating cancer formation and progression, as well as their potential to serve as targets of anti-cancer therapeutics. In this review, the impact of sphingosine 1-phosphate, its cognate receptors, and the enzymes of sphingosine 1-phosphate metabolism on cell survival, apoptosis, autophagy, cellular transformation, invasion, angiogenesis and hypoxia in relation to cancer biology and treatment are discussed.  相似文献   

10.
The sphingolipid metabolite, sphingosine-1-phosphate (S1P), formed by phosphorylation of sphingosine, has been implicated in cell growth, suppression of apoptosis, and angiogenesis. In this study, we have examined the contribution of intracellular S1P to tumorigenesis of breast adenocarcinoma MCF-7 cells. Enforced expression of sphingosine kinase type 1 (SPHK1) increased S1P levels and blocked MCF-7 cell death induced by anti-cancer drugs, sphingosine, and TNF-alpha. SPHK1 also conferred a growth advantage, as determined by proliferation and growth in soft agar, which was estrogen dependent. While both ERK and Akt have been implicated in MCF-7 cell growth, SPHK1 stimulated ERK1/2 but had no effect on Akt. Surprisingly, parental growth of MCF-7 cells was only weakly stimulated by S1P or dihydro-S1P, ligands for the S1P receptors which usually mediate growth effects. When injected into mammary fat pads of ovariectomized nude mice implanted with estrogen pellets, MCF-7/SPHK1 cells formed more and larger tumors than vector transfectants with higher microvessel density in their periphery. Collectively, our results suggest that SPHK1 may play an important role in breast cancer progression by regulating tumor cell growth and survival.  相似文献   

11.
SphK (sphingosine kinase) is the major source of the bioactive lipid and GPCR (G-protein-coupled receptor) agonist S1P (sphingosine 1-phosphate). S1P promotes cell growth, survival and migration, and is a key regulator of lymphocyte trafficking. Inhibition of S1P signalling has been proposed as a strategy for treatment of inflammatory diseases and cancer. In the present paper we describe the discovery and characterization of PF-543, a novel cell-permeant inhibitor of SphK1. PF-543 inhibits SphK1 with a K(i) of 3.6 nM, is sphingosine-competitive and is more than 100-fold selective for SphK1 over the SphK2 isoform. In 1483 head and neck carcinoma cells, which are characterized by high levels of SphK1 expression and an unusually high rate of S1P production, PF-543 decreased the level of endogenous S1P 10-fold with a proportional increase in the level of sphingosine. In contrast with past reports that show that the growth of many cancer cell lines is SphK1-dependent, specific inhibition of SphK1 had no effect on the proliferation and survival of 1483 cells, despite a dramatic change in the cellular S1P/sphingosine ratio. PF-543 was effective as a potent inhibitor of S1P formation in whole blood, indicating that the SphK1 isoform of sphingosine kinase is the major source of S1P in human blood. PF-543 is the most potent inhibitor of SphK1 described to date and it will be useful for dissecting specific roles of SphK1-driven S1P signalling.  相似文献   

12.
鞘氨醇-1-磷酸(sphingosine-1 phosphate,S1P)是来源于鞘脂代谢途径的多效性信号分子,其代谢受到多种因素调控。S1P由细胞内的鞘氨醇激酶(sphingosine kinases,SphKs)催化鞘氨醇的磷酸化而合成,可通过转运蛋白释放至细胞外。S1P可通过在胞外结合其特异性G蛋白偶联受体及胞内作用而调节多种重要生物学效应。作为细胞外介质和细胞内信使,S1P在免疫系统中也发挥重要的调节作用。S1P参与免疫细胞的迁移、增殖、分化及死亡细胞清除等过程。本文对S1P的代谢以及其对于免疫细胞的调节作用进行综述。  相似文献   

13.
Sphingosine 1-phosphate (S1P) is a bioactive lipid that is produced by the sphingosine kinase-catalysed phosphorylation of sphingosine. S1P is an important regulator of cell function, mediating many of its effects through a family of five closely related G protein-coupled receptors (GPCR) termed S1P(1-5) which exhibit high affinity for S1P. These receptors function to relay the effects of extracellular S1P via well-defined signal transduction networks linked to the regulation of cell proliferation, survival, migration etc. Diverse agonists (e.g. cytokines) also activate sphingosine kinase and the resulting S1P formed may bind to specific undefined intracellular targets to elicit cellular responses. The purpose of this review is to discuss some of the spatial/temporal aspects of intracellular S1P signalling and to define the function of sphingosine kinases and lipid phosphate phosphatases (which catalyse dephosphorylation of S1P) in terms of their regulation of cell function. Finally, we survey the function of S1P in relation to disease, where the major challenge is to dissect the role of intracellular versus extracellular actions of S1P in terms of association with defined diseased phenotypes.  相似文献   

14.
Sphingosine-1-phosphate(S1P) is a potent pleotropic bioactive lipid mediator involved in immune cell trafficking, cell survival,cell proliferation, cell migration, angiogenesis and many other cellular processes. S1 P either activates S1 P receptors(S1PR1-5) through "inside-out signaling" or acts directly on intracellular targets to regulate various cellular processes. In the past two decades, much progress has been made in exploring S1 P signaling and its pathogenic roles in diseases as well as in developing modulators of S1 P signaling, including S1 P agonists, S1 P antagonists and sphingosine kinase(SphK) inhibitors.Ceramide and S1 P have been defined as reciprocal regulators of cell fate, and S1 P signaling has been shown to be crucial for the pathogenesis of various diseases, including autoimmune diseases, inflammation and cancer; therefore, targeting S1 P signaling may curtail the process of pathogenesis and serve as a potential therapeutic target for the treatment of these diseases. In this review, we describe recent advances in our understanding of S1 P signaling in cancer development(particularly in inflammationassociated cancer) as well as in innate and adaptive immunity, and we also discuss modulators of S1 P signaling in cancer treatment.  相似文献   

15.
We have investigated the extracellular and intracellular actions of sphingosine 1-phosphate (S1P) by using cultured airway smooth muscle cells. We have demonstrated that exogenous S1P elicited an activation of mitogen-activated protein kinase (p42/p44 MAPK) that was abolished by pertussis toxin (0.1 microg/mL, 24 h), which was used to inactivate Gi. The effect of exogenous S1P might therefore be attributed to an action at a putative Gi-coupled receptor. The regulation of the p42/p44 MAPK cascade by S1P was also shown to include a protein kinase C (PKC)-dependent intermediate step. Platelet-derived growth factor (PDGF) stimulates intracellular S1P formation and was therefore used to evaluate the intracellular action of S1P. This has previously been investigated by others using the sphingosine kinase inhibitors D,L-threo-dihydrosphingosine and N,N-dimethylsphingosine. We have demonstrated here that both inhibitors block the PDGF-dependent activation of p42/p44 MAPK. However, both are also PKC inhibitors, which might account for their effect because PDGF utilises PKC as an intermediate in the regulation of the p42/p44 MAPK cascade. Significantly, sphingosine, which is the substrate of sphingosine kinase and a PKC inhibitor, blocked the activation of p42/p44 MAPK by PDGF with an almost identical concentration dependence compared with D,L-threo-dihydrosphingosine and N,N-dimethylsphingosine. Therefore, the use of so-called sphingosine kinase inhibitors might lead to misleading interpretations because of their additional effect on PKC. Other approaches, such as oligodeoxynucleotide anti-sense against sphingosine kinase, are required to address the intracellular role of S1P.  相似文献   

16.
17.
Sphingosine kinases (isoforms SK1 and SK2) catalyse the formation of a bioactive lipid, sphingosine 1-phosphate (S1P). S1P is a well-established ligand of a family of five S1P-specific G protein coupled receptors but also has intracellular signalling roles. There is substantial evidence to support a role for sphingosine kinases and S1P in health and disease. This review summarises recent advances in the area in relation to receptor-mediated signalling by S1P and novel intracellular targets of this lipid. New evidence for a role of each sphingosine kinase isoform in cancer, the cardiovascular system, central nervous system, inflammation and diabetes is discussed. There is continued research to develop isoform selective SK inhibitors, summarised here. Analysis of the crystal structure of SK1 with the SK1-selective inhibitor, PF-543, is used to identify residues that could be exploited to improve selectivity in SK inhibitor development for future therapeutic application.  相似文献   

18.
Sphingolipids are amphiphatic molecules ubiquitously expressed in all eukaryotic cell membranes. Initially characterized as structural components of cell membranes, sphingolipids have emerged as sources of important signalling molecules over the past decade. Sphingolipid metabolites, such as ceramide and S1P (sphingosine 1-phosphate), have been demonstrated to have roles as potent bioactive messengers involved in cell differentiation, proliferation, apoptosis, migration and angiogenesis. The importance of SphK (sphingosine kinase) and S1P in inflammation has been demonstrated extensively. The prevalence of asthma is increasing in many developed nations. Consequently, there is an urgent need for the development of new agents for the treatment of asthma, especially for patients who respond poorly to conventional therapy. Recent studies have demonstrated the important role of SphK and S1P in the development of asthma by regulating pro-inflammatory responses. These novel pathways represent exciting potential therapeutic targets in the treatment of asthma and are described in the present review.  相似文献   

19.
Sphingosine 1-phosphate (S1P)/S1P receptor 1 (S1P1) signaling plays an important role in synovial cell proliferation and inflammatory gene expression by rheumatoid arthritis (RA) synoviocytes. The purpose of this study is to clarify the role of S1P/S1P1 signaling in the expression of receptor activator of NF-κB ligand (RANKL) in RA synoviocytes and CD4(+) T cells. We demonstrated MH7A cells, a human RA synovial cell line, and CD4(+) T cells expressed S1P1 and RANKL. Surprisingly, S1P increased RANKL expression in MH7A cells and CD4(+) T cells in a dose-dependent manner. Moreover, S1P enhanced RANKL expression induced by stimulation with TNF-α in MH7A cells and CD4(+) T cells. These effects of S1P in MH7A cells were inhibited by pretreatment with PTX, a specific Gi/Go inhibitor. These findings suggest that S1P/S1P1 signaling may play an important role in RANKL expression by MH7A cells and CD4(+) T cells. S1P/S1P1 signaling of RA synoviocytes is closely connected with synovial hyperplasia, inflammation, and RANKL-induced osteoclastogenesis in RA. Thus, regulation of S1P/S1P1 signaling may become a novel therapeutic target for RA.  相似文献   

20.
Sphingosine-1-phosphate (S1P) is a lipid mediator that exerts multiple cellular functions through activation of a subfamily of G-protein-coupled receptors. Although there is evidence that S1P plays a role in the developing and adult CNS, little is known about the ability of brain parenchyma to synthesize this lipid. We have therefore analyzed the brain distribution of the enzymatic activity of the S1P synthesizing enzyme, sphingosine kinase (SPHK) [EC:2.7.1.91], as well as mRNA distribution for one of the two isoforms of this enzyme, sphingosine kinase 2. SPHK activity, measured by the conversion of [(3)H]sphingosine to [(3)H]S1P, is highest in cerebellum, followed by cortex and brainstem. Lowest activities were found in striatum and hippocampus. Sensitivity to 0.1% Triton-X suggests that this activity is accounted for by SPHK2. RT-PCR and in situ hybridization studies show that mRNA for this isoform has a distribution similar to that of SPHK activity. In vivo and in vitro ischemia increase SPHK activity and SPHK2 mRNA levels. These results indicate that SPHK2 is the predominant S1P-synthesizing isoform in normal brain parenchyma. Its heterogeneous distribution, in particular laminar distribution in cortex, suggests a neuronal localization and a possible role in cortical and cerebellar functions, in normal as well as ischemic brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号