首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
The Expression of Nerve Growth Factor Receptor on Schwann Cells and the Effect of These Cells on Regeneration of Axons in Tra...  相似文献   

2.

Background

After spinal cord injury (SCI), the formation of glial scar contributes to the failure of injured adult axons to regenerate past the lesion. Increasing evidence indicates that olfactory ensheathing cells (OECs) implanted into spinal cord are found to migrate into the lesion site and induce axons regeneration beyond glial scar and resumption of functions. However, little is known about the mechanisms of OECs migrating from injection site to glial scar/lesion site.

Methods and Findings

In the present study, we identified a link between OECs migration and reactive astrocytes in glial scar that was mediated by the tumor necrosis factor-α (TNF-α). Initially, the Boyden chamber migration assay showed that both glial scar tissue and reactive astrocyte-conditioned medium promoted OECs migration in vitro. Reactive astrocyte-derived TNF-α and its type 1 receptor TNFR1 expressed on OECs were identified to be responsible for the promoting effect on OECs migration. TNF-α-induced OECs migration was demonstrated depending on activation of the extracellular signal-regulated kinase (ERK) signaling cascades. Furthermore, TNF-α secreted by reactive astrocytes in glial scar was also showed to attract OECs migration in a spinal cord hemisection injury model of rat.

Conclusions

These findings showed that TNF-α was released by reactive astrocytes in glial scar and attracted OECs migration by interacting with TNFR1 expressed on OECs via regulation of ERK signaling. This migration-attracting effect of reactive astrocytes on OECs may suggest a mechanism for guiding OECs migration into glial scar, which is crucial for OECs-mediated axons regrowth beyond the spinal cord lesion site.  相似文献   

3.
During development, dorsal root ganglion (DRG) neurons extend their axons toward the dorsolateral part of the spinal cord and enter the spinal cord through the dorsal root entry zone (DREZ). After entering the spinal cord, these axons project into the dorsal mantle layer after a ‘waiting period’ of a few days. We revealed that the diffusible axonal guidance molecule netrin-1 is a chemorepellent for developing DRG axons. When DRG axons orient themselves toward the DREZ, netrin-1 proteins derived from the ventral spinal cord prevent DRG axons from projecting aberrantly toward the ventral spinal cord and help them to project correctly toward the DREZ. In addition to the ventrally derived netrin-1, the dorsal spinal cord cells adjacent to the DREZ transiently express netrin-1 proteins during the waiting period. This dorsally derived netrin-1 contributes to the correct guidance of DRG axons to prevent them from invading the dorsal spinal cord. In general, there is a complete lack of sensory axonal regeneration after a spinal cord injury, because the dorsal column lesion exerts inhibitory activities toward regenerating axons. Netrin-1 is a novel candidate for a major inhibitor of sensory axonal regeneration in the spinal cord; because its expression level stays unchanged in the lesion site following injury, and adult DRG neurons respond to netrin-1-induced axon repulsion. Although further studies are required to show the involvement of netrin-1 in preventing the regeneration of sensory axons in CNS injury, the manipulation of netrin-1-induced repulsion in the CNS lesion site may be a potent approach for the treatment of human spinal injuries.  相似文献   

4.
Abstract: Biochemical methods were used to study the time course of transport of choline phospholipids (labeled by the injection of [3H]choline into the ventral horn of the lumbar spinal cord) in rat sciatic nerve. Autoradiographic methods were used to localize the transported lipid within motor axons. Transported phospholipid, primarily phosphatidylcholine, present in the nerve at 6 h, continued to accumulate over the following 12 days. No discrete waves of transported lipid were observed (a small wave of radioactive phospholipid moving at the high rate would have been missed); the amounts of radioactive lipid increased uniformly along the entire sciatic nerve. In light-microscope autoradiographs, a class of large-caliber axons, presumably motor axons, retained the labeled lipid. Some lipid, even at 6 h, was seen within the myelin sheaths. Later, the labeling of the myelin relative to axon increased. The continued accumulation of choline phospholipids in the axons probably signifies their prolonged release from cell bodies and their retention in various axonal membranes, including the axolemma. The build-up of these phospholipids in myelin probably represents their transfer from the axons to the myelin sheaths surrounding them. When nerves are crushed and allowed to regenerate for 6 or 12 days, choline phospholipids transported during these times enter the regenerating nerve. In light and electron microscope autoradiographs, transported lipid was seen to be localized primarily in the regenerating axons. However, grains overlay the adjacent Schwann cell cytoplasm, indicating transported lipids were transferred from the regenerating axons to the associated Schwann cells. In addition, some cells not associated with growing axons were labeled, suggesting that phosphatidylcholine and possibly acetylcholine, carried to the regenerating axons by axonal transport, were actively metabolized in the terminal, with released choline label being used by other cells. These results demonstrate that axonal transport supplies mature and growing axons and their glial cells with choline phospholipids.  相似文献   

5.
Chondroitin sulphate proteoglycans (CSPGs) with the major component NG2 have an inhibitory effect on regeneration of damaged axons after spinal cord injury. In this study, we investigate whether the digestion of CSPGs by chondroitinase ABC (ChABC) may decrease the NG2 expression and promote axon regrowth through the lesion site. Rats underwent spinal cord compression injury and were treated with ChABC or vehicle through an intrathecal catheter delivery at 2, 3, and 4 days after injury. In addition, animals were behaviorally scored using BBB test in weekly intervals after SCI. Based on immunocytochemical analyses, we have quantified distribution of NG2 glycoprotein and GAP-43 in spinal cord tissue in both experimental groups. Multiple injections of ChABC caused decrease of NG2 expression at lesion site at 5 and 7 days, but not at 14 and 28 days in comparison with vehicle-treated rats and significantly enhanced GAP-43 expression during the entire survival. The densitometry analysis showed significantly higher GAP-43 immunoreactivity (1.8–2.2-fold) in the regrowing axons and cell bodies within the central lesion cavity when compared with vehicle group. Longitudinally oriented and disorganized GAP-43-labeled axons were able to infiltrate and penetrate damaged tissue. The outgrowth of GAP-43 axons after CHABC delivery was significantly longer (≤0.457 mm) when compared with the length of axons in vehicle-treated rats (≤0.046 mm). Present findings suggest that degradation of NG2 with acute IT ChABC treatment may promote ongoing (long-lasting) axonal regenerative processes at late survival (14 and 28 days), but with no significant impact on the improvement of motor function.  相似文献   

6.
The spinal cord has an intrinsic, limited ability of spontaneous repair; the endogenous repair of damaged tissue starts a few days after spinal cord injury (SCI). To date, however, detailed observation in histology at the injury site has not been well documented. In the present study we analyzed the histological structure of the repaired tissue from injury site of rats 6 or 14 weeks after contusion injury (NYU impactor device, 25 mm height setting) on T10, and rats 8 weeks after transplantation of lamina propria (LP) or acellular lamina propria. We found that the initial repaired tissue can be histologically divided into three different zones, i.e., fibrotic, cellular and axonal. The fibrotic zone consists of invading connective tissue, while the cellular zone is composed of invading, densely compacted Schwann cells. Schwann cells migrate from dorsal roots laterally toward and merge underneath the fibrotic zone, forming the U-shape shell of the cellular zone. The major component of the axonal zone is regenerating axons. Schwann cells myelinate regenerating axons in all three zones. In rats with combination treatments including scar ablation and LP transplantation, both cellular and axonal zones significantly expand in size, resulting in the disappearance of the lesion cavity and the integration of repaired tissue with spared tissue. Olfactory ensheathing cells from transplanted LP may promote the expansion of the cellular and axonal zones through stimulating host Schwann cells, indirectly contributing to tissue repair and axonal regeneration. The ependyma-derived cells may be directly involved in tissue repair, but not contribute to the formation of myelin sheaths.  相似文献   

7.
8.
Studying regeneration in the central nervous system (CNS) is hampered by current histological and imaging techniques because they provide only partial information about axonal and glial reactions. Here we developed a tetrahydrofuran-based clearing procedure that renders fixed and unsectioned adult CNS tissue transparent and fully penetrable for optical imaging. In large spinal cord segments, we imaged fluorescently labeled cells by 'ultramicroscopy' and two-photon microscopy without the need for histological sectioning. We found that more than a year after injury growth-competent axons regenerated abundantly through the injury site. A few growth-incompetent axons could also regenerate when they bypassed the lesion. Moreover, we accurately determined quantitative changes of glial cells after spinal cord injury. Thus, clearing CNS tissue enables an unambiguous evaluation of axon regeneration and glial reactions. Our clearing procedure also renders other organs transparent, which makes this approach useful for a large number of preclinical paradigms.  相似文献   

9.
The transected lumbar spinal cord of lizards was studied for its ability to recover after paralysis. At 34 days post-lesion about 50% of lizards were capable of walking with a limited coordination, likely due to the regeneration of few connecting axons crossing the transection site of the spinal cord. This region, indicated as “bridge”, contains glial cells among which oligodendrocytes and their elongation that are immunolabeled for NOGO-A. A main reactive protein band occurs at 100–110 kDa but a weaker band is also observed around 240 kDa, suggesting fragmentation of the native protein due to extraction or to physiological processing of the original protein. Most of the cytoplasmic immunolabeling observed in oligodendrocytes is associated with vesicles of the endoplasmic reticulum. Also, the nucleus is labeled in some oligodendrocytes that are myelinating sparse axons observed within the bridge at 22–34 days post-transection. This suggests that axonal regeneration is present within the bridge region. Immunolabeling for NOGO-A shows that the protein is also present in numerous reactive neurons, in particular motor-neurons localized in the proximal stump of the transected spinal cord. Ultrastructural immunolocalization suggests that NOGO is synthesized in the ribosomes of these neurons and becomes associated with the cisternae of the endoplasmic reticulum, probably following a secretory pathway addressed toward the axon. The present observations suggest that, like for the regenerating spinal cord of fish and amphibians, also in lizard NOGO-A is present in reactive neurons and appears associated to axonal regeneration and myelination.  相似文献   

10.
Chondroitin sulfate proteoglycans (CSPGs) are glial scar-associated molecules considered axonal regeneration inhibitors and can be digested by chondroitinase ABC (ChABC) to promote axonal regeneration after spinal cord injury (SCI). We previously demonstrated that intrathecal delivery of low-dose ChABC (1 U) in the acute stage of SCI promoted axonal regrowth and functional recovery. In this study, high-dose ChABC (50 U) introduced via intrathecal delivery induced subarachnoid hemorrhage and death within 48 h. However, most SCI patients are treated in the sub-acute or chronic stages, when the dense glial scar has formed and is minimally digested by intrathecal delivery of ChABC at the injury site. The present study investigated whether intraparenchymal delivery of ChABC in the sub-acute stage of complete spinal cord transection would promote axonal outgrowth and improve functional recovery. We observed no functional recovery following the low-dose ChABC (1 U or 5 U) treatments. Furthermore, animals treated with high-dose ChABC (50 U or 100 U) showed decreased CSPGs levels. The extent and area of the lesion were also dramatically decreased after ChABC treatment. The outgrowth of the regenerating axons was significantly increased, and some partially crossed the lesion site in the ChABC-treated groups. In addition, retrograde Fluoro-Gold (FG) labeling showed that the outgrowing axons could cross the lesion site and reach several brain stem nuclei involved in sensory and motor functions. The Basso, Beattie and Bresnahan (BBB) open field locomotor scores revealed that the ChABC treatment significantly improved functional recovery compared to the control group at eight weeks after treatment. Our study demonstrates that high-dose ChABC treatment in the sub-acute stage of SCI effectively improves glial scar digestion by reducing the lesion size and increasing axonal regrowth to the related functional nuclei, which promotes locomotor recovery. Thus, our results will aid in the treatment of spinal cord injury.  相似文献   

11.
Song XY  Li F  Zhang FH  Zhong JH  Zhou XF 《PloS one》2008,3(3):e1707

Background

The blood brain barrier (BBB) and truncated trkB receptor on astrocytes prevent the penetration of brain derived neurotrophic factor (BDNF) applied into the peripheral (PNS) and central nervous system (CNS) thus restrict its application in the treatment of nervous diseases. As BDNF is anterogradely transported by axons, we propose that peripherally derived and/or applied BDNF may act on the regeneration of central axons of ascending sensory neurons.

Methodology/Principal Findings

The present study aimed to test the hypothesis by using conditioning lesion of the sciatic nerve as a model to increase the expression of endogenous BDNF in sensory neurons and by injecting exogenous BDNF into the peripheral nerve or tissues. Here we showed that most of regenerating sensory neurons expressed BDNF and p-CREB but not p75NTR. Conditioning-lesion induced regeneration of ascending sensory neuron and the increase in the number of p-Erk positive and GAP-43 positive neurons was blocked by the injection of the BDNF antiserum in the periphery. Enhanced neurite outgrowth of dorsal root ganglia (DRG) neurons in vitro by conditioning lesion was also inhibited by the neutralization with the BDNF antiserum. The delivery of exogenous BDNF into the sciatic nerve or the footpad significantly increased the number of regenerating DRG neurons and regenerating sensory axons in the injured spinal cord. In a contusion injury model, an injection of BDNF into the footpad promoted recovery of motor functions.

Conclusions/Significance

Our data suggest that endogenous BDNF in DRG and spinal cord is required for the enhanced regeneration of ascending sensory neurons after conditioning lesion of sciatic nerve and peripherally applied BDNF may have therapeutic effects on the spinal cord injury.  相似文献   

12.
Summary The tail of the gymnotid Sternarchus albifrons, including the spinal cord, regenerates following amputation. Regenerated spinal cord shows a rostro-caudal gradient of differentiation. Cross sections of the most distal regenerated cord show radially enlarged ependymal cells, relatively undifferentiated cells, and numerous blood vessels. More anterior sections contain well differentiated electromotor neurons, glial cells, and myelinated axons. The number of electromotor-neuron cell bodies in cross sections of regenerated spinal cord is three to six times the number in nonregenerated cord. Distinct tracts of axons, easily identifiable in normal cord, are not distinguishable in cross sections of regenerated cord. Some reorganization of the spinal cord also appears to take place anterior to the site of transection.Individual electromotor neurons in the regenerated spinal cord have morphologies largely similar to those of normal electrocytes, i.e., cell bodies are rounded, lack dendrites, have synapses characterized by gap junctions with presynaptic axons, and lack an unmyelinated initial segment. The presence of electromotor neurons with normal morphology in regenerated spinal cord correlates with the re-establishment of relatively normal electrocyte axonSchwann cell relationships in the regenerating electric organ of this sternarchid.Supported in part by the Medical Research Service, Veterans Administration and by a grant from the National Institutes of Health. We also thank the Paralyzed Veterans of America for their support. We thank Mary E. Smith and Susan Cameron for excellent technical support  相似文献   

13.
The present work describes the ultrastructure of the spinal cord in the regenerating tail of the lizard, Anolis. The distal growing region of the tail contains the advancing ependymal tube which is relatively devoid of axons but already contains channels between ependymal cell processes which anticipate their ingrowth. More proximally, fascicles of naked axons having their origin in the stump are present in the ependymal channels. Therefore, the pattern of fiber regeneration in the spinal cord is prescribed by the ependyma and not by the growing axons. Details of the ultrastructure of proximal, intermediate, and distal regions of the regenerate are reported. Particular attention is paid to the structure and differentiation of the ependymal cells and the relation of the ependyma to other glial cells, to nerve fibers, and to meningeal tissues.  相似文献   

14.

Background

A major class of axon growth-repulsive molecules associated with CNS scar tissue is the family of chondroitin sulphate proteoglycans (CSPGs). Experimental spinal cord injury (SCI) has demonstrated rapid re-expression of CSPGs at and around the lesion site. The pharmacological digestion of CSPGs in such lesion models results in substantially enhanced axonal regeneration and a significant functional recovery. The potential therapeutic relevance of interfering with CSPG expression or function following experimental injuries seems clear, however, the spatio-temporal pattern of expression of individual members of the CSPG family following human spinal cord injury is only poorly defined. In the present correlative investigation, the expression pattern of CSPG family members NG2, neurocan, versican and phosphacan was studied in the human spinal cord.

Methods

An immunohistochemical investigation in post mortem samples of control and lesioned human spinal cords was performed. All patients with traumatic SCI had been clinically diagnosed as having "complete" injuries and presented lesions of the maceration type.

Results

In sections from control spinal cord, NG2 immunoreactivity was restricted to stellate-shaped cells corresponding to oligodendrocyte precursor cells. The distribution patterns of phosphacan, neurocan and versican in control human spinal cord parenchyma were similar, with a fine reticular pattern being observed in white matter (but also located in gray matter for phosphacan). Neurocan staining was also associated with blood vessel walls. Furthermore, phosphacan, neurocan and versican were present in the myelin sheaths of ventral and dorsal nerve roots axons. After human SCI, NG2 and phosphacan were both detected in the evolving astroglial scar. Neurocan and versican were detected exclusively in the lesion epicentre, being associated with infiltrating Schwann cells in the myelin sheaths of invading peripheral nerve fibres from lesioned dorsal roots.

Conclusion

NG2 and phosphacan were both present in the evolving astroglial scar and, therefore, might play an important role in the blockade of successful CNS regeneration. Neurocan and versican, however, were located at the lesion epicentre, associated with Schwann cell myelin on regenerating peripheral nerve fibres, a distribution that was unlikely to contribute to failed CNS axon regeneration. The present data points to the importance of such correlative investigations for demonstrating the clinical relevance of experimental data.  相似文献   

15.
The effects of electro-acupuncture (EA) on insulin-like growth factor-I (IGF-I) expression in the spared dorsal root ganglia (DRG) and associated spinal dorsal horns were explored in cats subjected to unilateral removal of L1–L5 and L7–S2 DRG, sparing the L6 DRG. Immunohistochemistry revealed the presence of IGF-I immunoreactive products in the L6 DRG neurons and some neurons and glial cells in the spinal cord. Western blot demonstrated that the level of IGF-I was significantly up-regulated both in the spared DRG and the dorsal horns of L3 and L6 cord segments at both 7 and 14 days post operation following EA. The present findings demonstrated the association between neuroplasticity and IGF-I expression, suggesting the possible role of IGF-I in EA promoted spinal cord plasticity.  相似文献   

16.
Little is known about the molecules mediating the cross‐talk between post‐traumatic axons and scar‐forming cells after spinal cord injury. We found that a sustained NB‐3 induction was simultaneously present in the terminations of post‐traumatic corticospinal axons and scar‐forming cells at the spinal lesion site, where they were in direct contact when axons tried to penetrate the glial scar. The regrowth of corticospinal axons was enhanced in vivo with NB‐3 deficiency or interruption of NB‐3 trans‐homophilic interactions. Biochemical, in vitro and in vivo evidence demonstrated that NB‐3 homophilically interacted in trans to initiate a growth inhibitory signal transduction from scar‐forming cells to neurons by modulating mTOR activity via CHL1 and PTPσ. NB‐3 deficiency promoted BMS scores, electrophysiological transmission, and synapse reformation between regenerative axons and neurons. Our findings demonstrate that NB‐3 trans‐homophilic interactions mediate the cross‐talk between post‐traumatic axons and scar‐forming cells and impair the intrinsic growth ability of injured axons.  相似文献   

17.
Although glia have been historically classified as the structurally supporting cells of the central nervous system, their role in tissue mechanics is still largely unstudied. The influence of myelin and glia on the mechanical properties of spinal cord tissue was examined by testing embryonic day 18 chick embryo spinal cords in uniaxial tension following disruption of the glial matrix using either ethidium bromide (EB) or an antibody against galactocerebroside (αGalC) in the presence of complement. Demyelination was confirmed by myelin basic protein immunoreactivity and quantified using osmium tetroxide staining. A substantial loss of astrocytes and oligodendrocytes concurrent with demyelination was observed following EB injection but not αGalC injection. No morphological changes were observed following injection of saline or IgG with complement as controls for EB and αGalC. Demyelinated spinal cords demonstrated significantly lower stiffness and ultimate tensile stress than myelinated spinal cords. No significant differences were observed in the tensile response between the two demyelinating protocols. The results demonstrate that the glial matrix provides significant mechanical support to the spinal cord, and suggests that myelin and cellular coupling of axons via the glial matrix in large part dictates the tensile response of the tissue.  相似文献   

18.
Summary Cut and crushed crayfish claw nerves were examined with the electron microscope at intervals up to 6 months after lesion. In sections 1 centimeter distal to the lesion there were no signs of degeneration among the giant motor axons even after many months. Swelling of glial wrappings was observed within 48 hours of nerve severance and was particularly notable in the innermost glial layer, the adaxonal layer. Golgi elements, rough endoplasmic reticulum, and mitochondria accumulated in the glia. These changes were perhaps indicative of a greater supportive role required by the severed axons. Regeneration from the proximal stumps of the giant axons began within one week and had proceeded across the lesion gap by 4 weeks. Axon sprouts appeared to travel toward the terminals within the glial sheaths of the distal giant axon segments. Before regeneration was complete, as determined by a simple behaviour test, the regenerating axons occupied increasing proportions of the sheath space. After regeneration was complete occasional degenerations were seen among the sprouts. These degenerations may have occurred in regenerating axons which had grown to the incorrect muscles. The original distal giant axons probably degenerated, as well, after regeneration was complete. There was no evidence of rehealing of proximal and distal segments of the axons.This work was supported by NIH postdoctoral fellowship number 1F2 NB 32, 723 N RB awarded to RHN and grants in aid from the Multiple Sclerosis Society, The American Cancer Society and The National Institutes of Health.  相似文献   

19.
Fu D  Guo Q  Ai Y  Cai H  Yan J  Dai R 《Neurochemical research》2006,31(3):333-340
The present study investigated the expression patterns of glial cells and interleukin-1β (IL-1β) in the rat spinal cord after a surgical incision, which is closely related with clinical postoperative pain. Microglia and astrocytes became activated in the spinal cord following incision. Real-time polymerase chain reaction (PCR) and immunohistochemisty showed that IL-1β mRNA and protein level in the spinal cord was transiently upregulated after surgical incision. The increased IL-1β-immunoreactivity (IR) was mainly localized in neurons but not the activated microglia or astrocytes. Although obvious increase in IL-1β-IR could be observed in the lumbar segments of the spinal cord ipsilateral to a hind paw incision, significant upregulation of IL-1β was not detected in the lumbar segments following thoracic incision. The present study indicated that surgical incision could induce glial activation and segmental upregulation of IL-1β in the spinal cord. The activated glial cells and upregulated IL-1β, in turn, may be involved in the incision-induced pain hypersensitivity.  相似文献   

20.
Failure of injured axons to regenerate in the central nervous system (CNS) is the main obstacle for repair of stroke and traumatic injuries to the spinal cord and sensory roots. This regeneration failure is high-lighted at the dorsal root transitional zone (DRTZ), the boundary between the peripheral (PNS) and central nervous system where sensory axons enter the spinal cord. Injured sensory axons regenerate in the PNS compartment of the dorsal root but are halted as soon as they reach the DRTZ. The failure of regenerating dorsal root axons to re-enter the mature spinal cord is a reflection of the generally nonpermissive nature of the CNS environment, in contrast to the regeneration supportive properties of the PNS. The dorsal root injury paradigm is therefore an attractive model for studying mechanisms underlying CNS regeneration failure in general and how to overcome the hostile CNS environment. Here we review the main lines that have been pursued to achieve growth of injured dorsal root axons into the spinal cord: (i) modifying the inhibitory nature of the DRTZ by breaking down or blocking the effect of growth repelling molecules, (ii) stimulate elongation of injured dorsal root axons by a prior conditioning lesion or administration of specific growth factors, (iii) implantation of olfactory ensheathing cells to provide a growth supportive cellular terrain at the DRTZ, and (iv) replacing the regeneration deficient adult dorsal root ganglion neurons with embryonic neurons or neural stem cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号