首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Predator-prey models with delay and prey harvesting   总被引:1,自引:0,他引:1  
It is known that predator-prey systems with constant rate harvesting exhibit very rich dynamics. On the other hand, incorporating time delays into predator-prey models could induce instability and bifurcation. In this paper we are interested in studying the combined effects of the harvesting rate and the time delay on the dynamics of the generalized Gause-type predator-prey models and the Wangersky-Cunningham model. It is shown that in these models the time delay can cause a stable equilibrium to become unstable and even a switching of stabilities, while the harvesting rate has a stabilizing effect on the equilibrium if it is under the critical harvesting level. In particular, one of these models loses stability when the delay varies and then regains its stability when the harvesting rate is increased. Computer simulations are carried to explain the mathematical conclusions. Received: 1 March 2000 / Revised version: 7 September 2000 /?Published online: 21 August 2001  相似文献   

2.
Global stability in time-delayed single-species dynamics   总被引:15,自引:0,他引:15  
Criteria are established for three classes of models of single-species dynamics with a single discrete delay to have a globally asymptotically stable positive equilibrium independent of the length of delay. Research partially supported by the NSERC of Canada, grant No. A4823. Research was carried out while the author was a distinguished visitor at the University of Alberta.  相似文献   

3.
Two SIS epidemiologic models with delays   总被引:8,自引:0,他引:8  
 The SIS epidemiologic models have a delay corresponding to the infectious period, and disease-related deaths, so that the population size is variable. The population dynamics structures are either logistic or recruitment with natural deaths. Here the thresholds and equilibria are determined, and stabilities are examined. In a similar SIS model with exponential population dynamics, the delay destabilized the endemic equilibrium and led to periodic solutions. In the model with logistic dynamics, periodic solutions in the infectious fraction can occur as the population approaches extinction for a small set of parameter values. Received: 10 January 1997 / 18 November 1997  相似文献   

4.
本文提出并分析了两个关于人体T-细胞淋巴回归Ⅰ型病毒(HTL V-I)感染并带有坏死白血病细胞(ATL)进程的数学模型,一个常微分方程模型,一个离散时滞模型.首先对常微分方程模型进行了分析,运用相应的特征方程得到一个阈值Ro(CD4+ T-细胞的基本再生数).当R0≤1时,仅有未染病平衡态存在,并且给出了其稳定性;当R0>1时,有一个染病稳定态存在,并且此时它是稳定的.然后,我们在常微分方程模型中引入了一个离散时滞,通过对时滞模型的超越特征方程的分析,导出了与常微分方程模型中同样的稳定性条件,即时滞模型平衡态的稳定性与时滞的具体值无关.  相似文献   

5.
We derive an alternative expression for a delayed logistic equation, assuming that the rate of change of the population depends on three components: growth, death, and intraspecific competition, with the delay in the growth component. In our formulation, we incorporate the delay in the growth term in a manner consistent with the rate of instantaneous decline in the population given by the model. We provide a complete global analysis, showing that, unlike the dynamics of the classical logistic delay differential equation (DDE) model, no sustained oscillations are possible. Just as for the classical logistic ordinary differential equation (ODE) growth model, all solutions approach a globally asymptotically stable equilibrium. However, unlike both the logistic ODE and DDE growth models, the value of this equilibrium depends on all of the parameters, including the delay, and there is a threshold that determines whether the population survives or dies out. In particular, if the delay is too long, the population dies out. When the population survives, i.e., the attracting equilibrium has a positive value, we explore how this value depends on the parameters. When this value is positive, solutions of our DDE model seem to be well approximated by solutions of the logistic ODE growth model with this carrying capacity and an appropriate choice for the intrinsic growth rate that is independent of the initial conditions.  相似文献   

6.
考虑CTL免疫反应的饱和效应及免疫时滞两个因素,建立HIV感染模型.分析了无感染平衡点的全局稳定性,得到了系统免疫未激活平衡点及免疫激活平衡点局部渐近稳定的充分条件.针对功能反应函数中的参数及免疫时滞,讨论了免疫被激活平衡点附近存在Hopf分支的充分条件.最后,对所得理论结果进行了数值模拟.  相似文献   

7.
I extend the well known and biologically well motivated Skellam model of plant population dynamics to biennial plants. The model has two attractors: either one year class competitively excludes the other, resulting in 2-cycles with only vegetative vs only flowering plants in alternating years, or the two year classes coexist at an interior equilibrium. Contrary to earlier models, these two attractors can exist also simultaneously. I investigate the robustness of the model by including delayed flowering, a common phenomenon in plants, and provide a full numerical bifurcation analysis of the generalized model. High fecundity implies strong competition within year classes and promotes coexistence, whereas high survival results in strong competition between year classes and promotes competitive exclusion. Delayed flowering tends to stabilize the interior equilibrium, but (unlike in density-independent matrix models) the population cycles are robust with respect to some delay in flowering.  相似文献   

8.
In the various dynamic models of Dawkin's Battle of the Sexes, payoff matrices serve as the basic ingredients for the specification of a game-dynamic model. Here I model the sex war mechanistically, by expressing the costs of raising the offspring and performing a prolonged courtship via a time delay for the corresponding individuals, instead of via payoff matrices. During such a time delay an individual is not able to have new matings. Only after the delay has occurred, an individual (and its offspring) appears on the mating market again. From these assumptions I derive a pair-formation submodel, and a system of delay-differential equations describing the dynamics of the game. By a time-scale argument, I obtain an approximation of this system by means of a much simpler system of ordinary differential equations. Analysis of this simplified system shows that the model can give rise to two non-trivial asymptotically stable equilibrium points: an interior equilibrium where both female strategies and both male strategies are present, and a boundary equilibrium where only one of the female strategies and both male strategies are present. This behaviour is qualitatively different from that of models of the battle of the sexes formulated in the traditional framework of game-dynamic equations. In other words, the addition of a most elementary further assumption about individual life history fundamentally changes the model predictions. These results show that in analysing evolutionary games one should pay careful attention to the specific mechanisms involved in the conflict. In general, I advocate deriving simple models for evolutionary games, starting from more complex, mechanistic building blocks. The wide-spread method of modelling games at a high phenomenological level, through payoff matrices, can be misleading.  相似文献   

9.
研究了一类具有终宿主产卵期和中间宿主虫卵成熟期两时滞的包虫病传播动力学模型,得到了决定系统动力学行为的阈值R_0,当R_0〈1时,证明了未感染平衡点是局部渐近稳定的;当R_0〉1时,得到了感染平衡点是局部渐近稳定的充分条件。通过数值仿真验证了理论结果并探讨了时滞对系统动力学行为的影响,且发现若时滞在一定的范围内系统存在周期解.  相似文献   

10.
 The effect of overcompensatory recruitment and the combined effect of overcompensatory recruitment and generation delay in discrete nonlinear age-structured population models is studied. Considering overcompensatory recruitment alone, we present formal proofs of the supercritical nature of bifurcations (both flip and Hopf) as well as an extensive analysis of dynamics in unstable parameter regions. One important finding here is that in case of small and moderate year to year survival probabilities there are large regions in parameter space where the qualitative behaviour found in a general n+1 dimensional model is retained already in a one-dimensional model. Another result is that the dynamics at or near the boundary of parameter space may be very complicated. Generally, generation delay is found to act as a destabilizing effect but its effect on dynamics is by no means unique. The most profound effect occurs in the n-generation delay cases. In these cases there is no stable equilibrium X * at all, but whenever X * small, a stable cycle of period n+1 where the periodic points in the cycle are on a very special form. In other cases generation delay does not alter the dynamics in any substantial way. Received 25 April 1995; received in revised form 21 November 1995  相似文献   

11.
文章研究的是一个具有时滞的媒介传播流行病模型.假定长期的发病率是双线性大规模行动的方式,确定了疾病是否流行的阈值R_0.当R_0≤1时,得到无病平衡点是全局稳定的,即疾病消失;当R_0〉1时,得到地方病平衡点.在具有时滞的微分模型中,时滞与载体转变成传染源的孵化期有关。我们研究了时滞对平衡点稳定性的影响,研究表明,在从寄生源到载体的传播过程中,时滞可以破坏动力系统并且得到了Hopt分支的周期解.  相似文献   

12.
In this paper, a nutrient–phytoplankton model described by a couple of reaction-diffusion equations with delay is studied analytically and numerically. The aim of this research is to provide an understanding of the impact of delay on the nutrient–phytoplankton dynamics. Significantly, the delay can not only induce instability of a positive equilibrium, but also promote the formation of patchiness (an irregular pattern) via Hopf bifurcation. However, if the delay does not exist, the positive equilibrium is always globally asymptotically stable when it exists. In addition, the numerical analysis indicates that the input rate and the loss rate of nutrient also play an important role in the growth of phytoplankton, which supports that eutrophic conditions may be a significant reason inducing phytoplankton blooms. Numerical results are consistent with the analytical results.  相似文献   

13.
We consider the effect of distributed delays in neural feedback systems. The avian optic tectum is reciprocally connected with the isthmic nuclei. Extracellular stimulation combined with intracellular recordings reveal a range of signal delays from 3 to 9 ms between isthmotectal elements. This observation together with prior mathematical analysis concerning the influence of a delay distribution on system dynamics raises the question whether a broad delay distribution can impact the dynamics of neural feedback loops. For a system of reciprocally connected model neurons, we found that distributed delays enhance system stability in the following sense. With increased distribution of delays, the system converges faster to a fixed point and converges slower toward a limit cycle. Further, the introduction of distributed delays leads to an increased range of the average delay value for which the system's equilibrium point is stable. The system dynamics are determined almost exclusively by the mean and the variance of the delay distribution and show only little dependence on the particular shape of the distribution.  相似文献   

14.
Structured population on two patches: modeling dispersal and delay   总被引:3,自引:0,他引:3  
We derive from the age-structured model a system of delay differential equations to describe the interaction of spatial dispersal (over two patches) and time delay (arising from the maturation period). Our model analysis shows that varying the immature death rate can alter the behavior of the homogeneous equilibria, leading to transient oscillations around an intermediate equilibrium and complicated dynamics (in the form of the coexistence of possibly stable synchronized periodic oscillations and unstable phase-locked oscillations) near the largest equilibrium.  相似文献   

15.
具有三个年龄阶段的单种群自食模型   总被引:5,自引:1,他引:4  
建立并研究了两个具有三个年龄阶段的单种群自食模型.这篇文章的主要目的是研究时滞对种群生长的作用,对于没有时滞的的模型,我们利用Liapunov函数,得到了系统平衡点全局渐近稳定的充分条件;而具有时滞的的模型,我们得到,随着时滞T增加,当系数满足一定条件时,正平衡点的稳定性可以改变有限次,最后变成不稳定;否则,时滞模型的正平衡点的稳定性不改变。  相似文献   

16.
By constructing appropriate Liapunov functionals, asymptotic behaviour of the solutions of various delay differential systems describing prey-predator, competition and symbiosis models has been studied. It has been shown that equilibrium states of these models are globally stable, provided certain conditions in terms of instantaneous and delay interaction coefficients are satisfied.  相似文献   

17.
Models of growth with density regulation in more than one life stage   总被引:1,自引:0,他引:1  
Discrete-time models of growth of populations with nonoverlapping generations and density regulation in two life stages are studied. It is assumed that there is no delay in the effects of density. Assigning exponential, linear, or hyperbolic functions to describe the dependence of preadult survival and fecundity on density, nine models are obtained. The dynamics of the model resulting from using the exponential function to describe the density dependence of both preadult survival and fecundity is analyzed: for large values of the intrinsic rate of increase there may exist up to three equilibrium population sizes, two stable. This indicates that a life history with two episodes of density regulation can give origin to alternative stable states. The models are fitted to recruitment data from growth experiments of Drosophila laboratory populations obtained with the Serial Transfer System Type 2 (Ayala et al., 1973. Theor. Pop. Biol. 4, 331-356) and collected by other authors. The results of the fittings suggest that this recruitment data can be adequately described with the models.  相似文献   

18.
A sufficient condition for the existence of a globally asymptotically stable equilibrium in Volterra models with continuous time delay is obtained, and some properties of the stable equilibrium are proven. Furthermore, some applications in which asymptotic stability only depends on the sign of the coefficients are considered.  相似文献   

19.
一类含间隙分布时滞的种群增长模型的稳定性   总被引:4,自引:0,他引:4  
本文首先利用间隙分布时滞函数来建立更为符合实际的种群增长模型,然后运用两种不同的方法,对其平衡位置的局部稳定性进行了全面的讨论,得出了局部渐近稳定的充分必要条件,在参数平面上划分出了稳定和不稳地的区域。  相似文献   

20.
The dynamics of a general in-host model with intracellular delay is studied. The model can describe in vivo infections of HIV-I, HCV, and HBV. It can also be considered as a model for HTLV-I infection. We derive the basic reproduction number R 0 for the viral infection, and establish that the global dynamics are completely determined by the values of R 0. If R 0≤1, the infection-free equilibrium is globally asymptotically stable, and the virus are cleared. If R 0>1, then the infection persists and the chronic-infection equilibrium is locally asymptotically stable. Furthermore, using the method of Lyapunov functional, we prove that the chronic-infection equilibrium is globally asymptotically stable when R 0>1. Our results shows that for intercellular delays to generate sustained oscillations in in-host models it is necessary have a logistic mitosis term in target-cell compartments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号