首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acute treatment with trimethyltin chloride (TMT) produces neuronal damage in the hippocampal dentate gyrus of mice. We investigated the in vivo role of glutathione in mechanisms associated with TMT-induced neural cell damage in the hippocampus by examining mice depleted of endogenous glutathione by prior treatment with 2-cyclohexen-1-one (CHO). In the hippocampus of animals treated with CHO 1h beforehand, a significant increase was seen in the number of single-stranded DNA-positive cells in the dentate gyrus when determined on day 2 after the injection of TMT at a dose of 2.0 mg/kg. Immunoblot analysis revealed that CHO treatment induced a significant increase in the phosphorylation of c-Jun N-terminal kinase in the cytosolic and nuclear fractions obtained from the dentate gyrus at 16 h after the TMT injection. There was also a concomitant increase in the level of phospho-c-Jun in the cytosol at 16 h after the injection. Expectedly, lipid peroxidation was increased by TMT in the hippocampus, and was enhanced by the CHO treatment. Moreover, CHO treatment facilitated behavioral changes induced by TMT. Taken together, our data indicate that TMT-induced neuronal damage is caused by activation of cell death signals induced at least in part by oxidative stress. We conclude that endogenous glutathione protectively regulates neuronal damage induced by TMT by attenuating oxidative stress.  相似文献   

2.
Role of astrocytes in trimethyltin neurotoxicity   总被引:1,自引:0,他引:1  
Although the neurotoxicity of trimethyltin (TMT) is well known, mechanisms are still not clear. Glia have been proposed to mediate the toxic action of TMT on nerve cells. Accordingly, the effects of TMT were tested in primary neuronal cultures from rat cerebellum and compared to effects in astrocytes and mixed cultures. Neuronal damage observed following TMT exposure was less in the presence of astrocytes and astrocytes alone were resistant to TMT. Thus, astrocytes have a protective effect against TMT-induced neurotoxicity. TMT caused an oxidative stress in granule cell cultures involving a variety of oxidative species (O2)*-, H2O2, NO), but astrocytes were less sensitive to TMT-induced oxidative species generation. Antioxidants, glutathione and 7-nitroindazole attenuated neuronal cell death induced by TMT. It appears that oxidative stress mediates a large part of the destructive action of TMT in neuronal cultures. The presence of astrocytes appears to modulate TMT-induced oxidative stress so that TMT causes only a small increase in lipid peroxidation in mouse brain after systemic administration. Thus, TMT induces a pronounced oxidative stress in cultured neurons, but when astrocytes are present, oxidative species play a lesser role in the neurotoxic action of TMT.  相似文献   

3.
Iron is a highly reactive free radical catalyst that has been shown to exacerbate oxidative stress and cell death in many neurodegenerative diseases. In this study, we produced a rat model of chronic cerebral hypoperfusion (CCH) by permanent bilateral carotid artery occlusion to investigate markers of iron and oxidative stress associated with it. We found CCH led to significant spatial memory impairment in the Morris water maze at 4?months after bilateral ligation. Iron deposition was observed in both the hippocampal CA1 area and cerebral cortex, and was correlated with localized neuronal death and increased lipid peroxidation. Western blotting revealed that the expression levels of ferritin heavy chain and the transferrin receptor were significantly elevated in hippocampus and cortex after CCH, whereas expression of iron regulatory protein 1 was significantly lower than in sham-treated rats. We conclude that localized neurodegeneration and concomitant cognitive impairments following CCH may result, at least in part, from local disruption of neuronal iron metabolism.  相似文献   

4.
Trimethyltin (TMT), a by-product of tin, is used in a wide variety of industrial and agricultural purposes which serves as a model neurotoxicant in hippocampal neurodegeneration, and this could, in turn, be exploited for various therapeutic compounds essential for hippocampal neurodegeneration. Therefore, the present investigation explores the sequential changes in behavior, oxidative burden, and apoptosis following TMT administration in rat hippocampus. Male SD rats weighing 250 g were given single dose of 8.5 mg/kg TMT (i.p.) that resulted in “TMT syndrome” which begins at the third post-TMT exposure and continued till 21 days posttreatment. This resulted in behavioral alteration (aggression and spontaneous seizures), cognitive impairment as assessed by plus maze, and passive avoidance resulting in short-term memory deficits. These behavioral alterations were associated with an increase in oxidative stress. The levels of malondialdehyde, reactive oxygen species, and protein carbonyl were significantly increased (p?<?0.001) in the TMT-treated rats after the third day of exposure and were maximum at day 14 postexposure. The glutathione system was not able to adapt rapidly in response to oxidative stress which resulted in imbalance in redox status. The imbalance in the redox state resulted in the death of neurons as seen by a significant increase in caspase activation at gene as well as protein level after TMT exposure on day 14, quoting an extent of changes. Therefore, it is proposed that behavioral deficits could be accounted by the impairment of endogenous glutathione homeostasis which resulted in death of neurons in the hippocampal region.  相似文献   

5.
Reactive oxygen species have been implicated in seizure-induced neurodegeneration, and there is a correlation between free radical level and scavenger enzymatic activity in the epilepsy. It has been suggested that pilocarpine-induced seizures is mediated by an increase in oxidative stress. Current research has found that antioxidant may provide, in a certain degree, neuroprotection against the neurotoxicity of seizures at the cellular level. Alpha-tocopherol has numerous nonenzymatic actions and is a powerful liposoluble antioxidant. The objective of the present study was to evaluate the neuroprotective effects of alpha-tocopherol (TP) in rats, against oxidative stress caused by pilocarpine-induced seizures. 30 min prior to behavioral observation, Wistar rats were treated with, 0.9% saline (i.p., control group), TP (200 mg/kg, i.p., TP group), pilocarpine (400 mg/kg, i.p., P400 group), or the combination of TP (200 mg/kg, i.p.) and pilocarpine (400 mg/kg, i.p.). After the treatments all groups were observed for 6 h. The enzymatic activities, lipid peroxidation and nitrite concentrations were measured using speccitrophotometric methods and these data were assayed. In P400 group mice there was a significant increase in lipid peroxidation and nitrite levels. However, no alteration was observed in superoxide dismutase (SOD) and catalase activities. In the TP and pilocarpine co-administered mice, antioxidant treatment significantly reduced the lipid peroxidation level and nitrite content, as well as increased the SOD and catalase activities in rat hippocampus after seizures. Our findings strongly support the hypothesis that oxidative stress occurs in hippocampus during pilocarpine-induced seizures, indicate that brain damage induced by the oxidative process plays a crucial role in seizures pathogenic consequences, and imply that strong protective effect could be achieved using alpha-tocopherol.  相似文献   

6.
Role of oxidative stress in paraquat-induced dopaminergic cell degeneration   总被引:8,自引:1,他引:7  
Systemic treatment of mice with the herbicide paraquat causes the selective loss of nigrostriatal dopaminergic neurons, reproducing the primary neurodegenerative feature of Parkinson's disease. To elucidate the role of oxidative damage in paraquat neurotoxicity, the time-course of neurodegeneration was correlated to changes in 4-hydroxy-2-nonenal (4-HNE), a lipid peroxidation marker. When mice were exposed to three weekly injections of paraquat, no nigral dopaminergic cell loss was observed after the first administration, whereas a significant reduction of neurons followed the second exposure. Changes in the number of nigral 4-HNE-positive neurons suggest a relationship between lipid peroxidation and neuronal death, since a dramatic increase in this number coincided with the onset and development of neurodegeneration after the second toxicant injection. Interestingly, the third paraquat administration did not cause any increase in 4-HNE-immunoreactive cells, nor did it produce any additional dopaminergic cell loss. Further evidence of paraquat-induced oxidative injury derives from the observation of nitrotyrosine immunoreactivity in the substantia nigra of paraquat-treated animals and from experiments with ferritin transgenic mice. These mice, which are characterized by a decreased susceptibility to oxidative stress, were completely resistant to the increase in 4-HNE-positive neurons and the cell death caused by paraquat. Thus, paraquat exposure yields a model that emphasizes the susceptibility of dopaminergic neurons to oxidative damage.  相似文献   

7.
We studied the involvement of angiotensin (Ang) II AT1 receptors in the pathophysiology of kainate (KA)-induced neurotoxicity, focusing on the regulation of the oxidative stress state and expression of HSP 72 in the frontal cortex and hippocampus in two strains, spontaneously hypertensive rats (SHRs) and normotensive Wistar rats. The KA injection was executed after the rats were infused subcutaneously via osmotic mini-pumps with losartan (10 mg/kg day) for 14 days. Losartan delayed the onset of KA-induced seizures in SHRs but not in Wistar rats without affecting the seizure intensity score. This selective AT1 receptor antagonist decreased the lipid peroxidation only in naive SHRs. However, it attenuated the KA-induced increase in lipid peroxidation in both SHRs and Wistar rats. The adaptive enhancement of cytosolic superoxide dismutase (SOD) activity in KA-treated SHRs was recovered to control level after sub-chronic losartan infusion while no change in mitochondrial SOD activity was detected in the two strains. Both losartan and KA produced a higher expression of HSP 72 in the hippocampus of the two strains compared to naive rats infused with vehicle. Taken together, our findings demonstrate that the efficacy of a sub-chronic systemic losartan infusion in preventing the KA-induced seizure activity and neurotoxicity is more pronounced in SHRs, considered as a model of essential hypertension, than in normotenisve Wistar rats. The results suggest that the blockade of AT1 receptors, commonly used as a strategy for prevention of high blood pressure, may be useful as an adjunctive treatment in status epilepticus to reduce oxidative stress and neurotoxicity.  相似文献   

8.
To analyze antioxidant ability and lipid peroxidation in the hippocampus of rats in an interictal state of FeCl3-induced epileptogenesis, the hippocampal eliminating decay ratio of exogenously applied nitroxide radical (3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (carbamoyl-PROXYL)) by electron paramagnetic resonance (EPR) spectroscopy, and the thiobarbituric reactive substances (TBARS) level in the hippocampus were measured. The prolonged half-life of electron paramagnetism of carbamoyl-PROXYL in the hippocampus of rats with chronic FeCl3-induced epileptogenesis revealed decreased antioxidant ability, which supports the vulnerability against oxidative stress. In addition, TBARS level (marker of lipid peroxidation) was increased in the hippocampus of rats injected with FeCl3 compared with that of control. This study revealed that repetitive seizures resulted in the decreased hippocampal antioxidant ability with lipid peroxidation and explained the regional vulnerability to oxidative stress in the limbic system with epileptogenesis.  相似文献   

9.
Melatonin has recently been suggested as an antioxidant that may protect neurons from oxidative stress. Acute ethanol administration produces both lipid peroxidation as an indicator of oxidative stress in the brain and impairs water-maze performance in spatial learning and memory tasks. The present study investigated the effect of melatonin against ethanol-induced oxidative stress and spatial memory impairment. The Morris water maze was used to evaluate the cognitive functions of rats. Thiobarbituric acid reactive substances (TBARS), which are the indicators of lipid peroxidation, and the activities of antioxidative enzymes (glutathione peroxidase and superoxide dismutase) were measured in the rat hippocampus and prefrontal cortex which form interconnected neural circuits for spatial memory. Acute administration of ethanol significantly increased TBARS levels in the hippocampus. Combined melatonin-ethanol treatment caused a significant increase in glutathione peroxidase activities and a significant decrease of TBARS in the rat hippocampus. In the prefrontal cortex, there was only a significant decrease of TBARS levels in the combined melatonin-ethanol receiving group as compared to the ethanol-treated group. Melatonin did not affect the impairment of spatial memory due to acute ethanol exposure, but melatonin alone had a positive effect on water maze performances. Our study demonstrated that melatonin decreased ethanol-induced lipid peroxidation and increased glutathione peroxidase activity in the rat hippocampus.  相似文献   

10.
Oxidative stress has been implicated in neurodegenerative diseases, including glaucoma. However, due to the lack of clinically relevant models and expense of long-term testing, few studies have modeled antioxidant therapy for prevention of neurodegeneration. We investigated the contribution of oxidative stress to the pathogenesis of glaucoma in the DBA/2J mouse model of glaucoma. Similar to other neurodegenerative diseases, we observed lipid peroxidation and upregulation of oxidative stress-related mRNA and protein in DBA/2J retina. To test the role of oxidative stress in disease progression, we chose to deliver the naturally occurring, antioxidant α-lipoic acid (ALA) to DBA/2J mice in their diet. We used two paradigms for ALA delivery: an intervention paradigm in which DBA/2J mice at 6 months of age received ALA in order to intervene in glaucoma development, and a prevention paradigm in which DBA/2J mice were raised on a diet supplemented with ALA, with the goal of preventing glaucoma development. At 10 and 12 months of age (after 4 and 11 months of dietary ALA respectively), we measured changes in genes and proteins related to oxidative stress, retinal ganglion cell (RGC) number, axon transport, and axon number and integrity. Both ALA treatment paradigms showed increased antioxidant gene and protein expression, increased protection of RGCs and improved retrograde transport compared to control. Measures of lipid peroxidation, protein nitrosylation, and DNA oxidation in retina verified decreased oxidative stress in the prevention and intervention paradigms. These data demonstrate the utility of dietary therapy for reducing oxidative stress and improving RGC survival in glaucoma.  相似文献   

11.
The role of oxidative stress in electroconvulsive therapy-related effects is not well studied. The purpose of this study was to determine oxidative stress parameters in several brain structures after a single electroconvulsive seizure or multiple electroconvulsive seizures. Rats were given either a single electroconvulsive shock or a series of eight electroconvulsive shocks. Brain regions were isolated, and levels of oxidative stress in the brain tissue (cortex, hippocampus, striatum and cerebellum) were measured. We demonstrated a decrease in lipid peroxidation and protein carbonyls in the hippocampus, cerebellum, and striatum several times after a single electroconvulsive shock or multiple electroconvulsive shocks. In contrast, lipid peroxidation increases both after a single electroconvulsive shock or multiple electroconvulsive shocks in cortex. In conclusion, we demonstrate an increase in oxidative damage in cortex, in contrast to a reduction of oxidative damage in hippocampus, striatum, and cerebellum.  相似文献   

12.
The chronic mild stress (CMS) protocol is widely used to evoke depression-like behaviors in the laboratory. Some animals exposed to CMS are resistant to the development of anhedonia, whereas the remaining are responsive, CMS-resilient and CMS-sensitive, respectively. The aim of this study was to examine the effects of chronic stress on oxidative parameters in the rat brain. The consumption of sweet food, protein and lipid oxidation levels and superoxide dismutase and catalase activities in the rat hippocampus, cortex and cerebellum were assessed. We found a significant increase in protein peroxidation (hippocampus and cortex), a significant increase in catalase activity (cortex, hippocampus and cerebellum) and a decrease in superoxide dismutase activity (cortex, hippocampus and cerebellum) in the CMS-sensitive group compared to the CMS-resilient group and normal controls as well as an increase in lipid peroxidation (cerebellum) in the CMS-sensitive and CMS-resilient groups compared to normal controls. However, there was no significant difference in protein peroxidation (cerebellum) and lipid peroxidation (cortex and hippocampus) among the three groups. In conclusion, our results indicate that the segregation into CMS-sensitive and -resilient groups based on sucrose intake is paralleled by significant differences in oxidative parameters. CMS induces oxidative damage and alterations in the activity of antioxidants which may lead to increased oxidative damage, irrespective of the anhedonia-like status of the stressed animals.  相似文献   

13.
Structural and functional impairments of mitochondria in brain tissues in the pathogenesis of Alzheimer’s disease (AD) cause energy deficiency, increased generation of reactive oxygen species (ROS), and premature neuronal death. However, the causal relations between accumulation of beta-amyloid (Aβ) peptide in mitochondria and mitochondrial dysfunction, as well as molecular mechanisms underlying deleterious effects of both these factors in sporadic AD, the most common form in humans, remain unknown. Here we used olfactory bulbectomized (OBX) mice of NMRI strain as a model for sporadic AD. Five weeks after surgery, the OBX mice developed major behavioral and biochemical features of AD neurodegeneration, including spatial memory loss, increased brain levels of Aβ, and energy deficiency. Mitochondria isolated from the neocortex and hippocampus of OBX mice displayed severe functional impairments, such as low NADH oxidation rate, reduced transmembrane potential, and decreased cytochrome c oxidase (complex IV) activity that correlated with high levels of soluble Aβ1-40. Mitochondria from OBX mice showed increased contents of lipid peroxidation products, indicative of the development of oxidative stress. We found that neurodegeneration caused by olfactory bulbectomy is accompanied by energy metabolism disturbances and oxidative stress in brain mitochondria similar to those occurring in transgenic animals–familial AD models and patients with sporadic AD. Therefore, OBX mice can serve as a valid AD model for investigating the mechanisms of AD neurodegeneration, drug testing, and development of therapeutic strategies for AD treatment.  相似文献   

14.
Previous studies have demonstrated that melatonin administration improves spatial learning and memory and hippocampal long-term potentiation in the adult Ts65Dn (TS) mouse, a model of Down syndrome (DS). This functional benefit of melatonin was accompanied by protection from cholinergic neurodegeneration and the attenuation of several hippocampal neuromorphological alterations in TS mice. Because oxidative stress contributes to the progression of cognitive deficits and neurodegeneration in DS, this study evaluates the antioxidant effects of melatonin in the brains of TS mice. Melatonin was administered to TS and control mice from 6 to 12 months of age and its effects on the oxidative state and levels of cellular senescence were evaluated. Melatonin treatment induced antioxidant and antiaging effects in the hippocampus of adult TS mice. Although melatonin administration did not regulate the activities of the main antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glutathione S-transferase) in the cortex or hippocampus, melatonin decreased protein and lipid oxidative damage by reducing the thiobarbituric acid reactive substances (TBARS) and protein carbonyls (PC) levels in the TS hippocampus due to its ability to act as a free radical scavenger. Consistent with this reduction in oxidative stress, melatonin also decreased hippocampal senescence in TS animals by normalizing the density of senescence-associated β-galactosidase positive cells in the hippocampus. These results showed that this treatment attenuated the oxidative damage and cellular senescence in the brain of TS mice and support the use of melatonin as a potential therapeutic agent for age-related cognitive deficits and neurodegeneration in adults with DS.  相似文献   

15.
Previous studies have reported that lindane, an organochlorine pesticide induces oxidative stress in rat brain that may lead to neurodegeneration. However, as the proteins involved in lindane induced neurodegeneration are yet to be identified, the present study aims to identify the proteins that may regulate lindane induced neurotoxicity. The data showed that repeated exposure of lindane (2.5 mg/kg) for 21 days to adult rats significantly increased the reactive oxygen species and lipid peroxidation in different brain regions. Proteomic study revealed that lindane induces major dysregulation in the ubiquitin proteasome pathway. Alterations in the expression of molecular chaperones in brain regions and an increase in the expression of α‐synuclein in substantia‐nigra and corpus‐striatum and amyloid precursor protein in hippocampus and frontal‐cortex suggests the accumulation of proteins in these brain regions. Western blotting also revealed alterations in the dopaminergic and cholinergic pathways in hippocampus and substantia‐nigra isolated from lindane treated rats. Neurobehavioural data indicating alterations in learning and working memory, conditioned avoidance response and motor function, supports the proteomic data. The data suggest that repeated exposure of lindane to adult rats induces alterations, which are similar to that seen in neurodegenerative diseases.  相似文献   

16.
Oxidative stress has been shown to underlie neuropathological aspects of Alzheimer's disease (AD). 4-Hydroxy-2-nonenal (HNE) is a highly reactive product of lipid peroxidation of unsaturated lipids. HNE-induced oxidative toxicity is a well-described model of oxidative stress-induced neurodegeneration. GSH plays a key role in antioxidant defense, and HNE exposure causes an initial depletion of GSH that leads to gradual toxic accumulation of reactive oxygen species. In the current study, we investigated whether pretreatment of cortical neurons with acetyl-L-carnitine (ALCAR) and alpha-lipoic acid (LA) plays a protective role in cortical neuronal cells against HNE-mediated oxidative stress and neurotoxicity. Decreased cell survival of neurons treated with HNE correlated with increased protein oxidation (protein carbonyl, 3-nitrotyrosine) and lipid peroxidation (HNE) accumulation. Pretreatment of primary cortical neuronal cultures with ALCAR and LA significantly attenuated HNE-induced cytotoxicity, protein oxidation, lipid peroxidation, and apoptosis in a dose-dependent manner. Additionally, pretreatment of ALCAR and LA also led to elevated cellular GSH and heat shock protein (HSP) levels compared to untreated control cells. We have also determined that pretreatment of neurons with ALCAR and LA leads to the activation of phosphoinositol-3 kinase (PI3K), PKG, and ERK1/2 pathways, which play essential roles in neuronal cell survival. Thus, this study demonstrates a cross talk among the PI3K, PKG, and ERK1/2 pathways in cortical neuronal cultures that contributes to ALCAR and LA-mediated prosurvival signaling mechanisms. This evidence supports the pharmacological potential of cotreatment of ALCAR and LA in the management of neurodegenerative disorders associated with HNE-induced oxidative stress and neurotoxicity, including AD.  相似文献   

17.
We have demonstrated that kainate (KA) induces a reduction in mitochondrial Mn-superoxide dismutase (Mn-SOD) expression in the rat hippocampus and that KA-induced oxidative damage is more prominent in senile-prone (SAM-P8) than senile-resistant (SAM-R1) mice. To extend this, we examined whether KA seizure sensitivity contributed to mitochondrial degeneration in these mouse strains. KA-induced seizure susceptibility in SAM-P8 mice paralleled prominent increases in lipid peroxidation and protein oxidation and was accompanied by significant impairment in glutathione homeostasis in the hippocampus. These findings were more pronounced in the mitochondrial fraction than in the hippocampal homogenate. Consistently, KA-induced decreases in Mn-SOD protein expression, mitochondrial transmembrane potential, and uncoupling protein (UCP)-2 expression were more prominent in SAM-P8 than SAM-R1 mice. Marked release of cytochrome c from mitochondria into the cytosol and a higher level of caspase-3 cleavage were observed in KA-treated SAM-P8 mice. Additionally, electron microscopic evaluation indicated that KA-induced increases in mitochondrial damage and lipofuscin-like substances were more pronounced in SAM-P8 than SAM-R1 animals. These results suggest that KA-mediated mitochondrial oxidative stress contributed to hippocampal degeneration in the senile-prone mouse.  相似文献   

18.
1. The effect of chronic ethanol consumption on the level of the t-butyl hydroperoxide (Bu'OOH)-induced lipid peroxidation in rat liver homogenate and subcellular fractions was measured using chemiluminescence technique and malondialdehyde formation. 2. It was shown that under the action of ethanol the rate of lipid peroxidation was decreased in the whole and "postnuclear" liver homogenates. 3. Ethanol significantly decreased the intensity of lipid peroxidation in microsomes, but did not affect the Bu'OOH-dependent process in mitochondria. 4. The level of lipid peroxidation was reduced after incubation of the total particulate fraction (mitochondria plus microsomes) with the undialysed cytosol from ethanol-treated rat liver. Dialysis of the cytosol prevented depressive effect of ethanol treatment on lipid peroxidation. 5. Reduced glutathione (0.1-1.0 mM) was shown to decrease the rate of lipid peroxidation in rat liver microsomes, but did not affect its level in mitochondria. 6. Pyrazole injections to rats reduced and phenobarbital treatment increased the level of the Bu'OOH-dependent lipid peroxidation in liver microsomes. 7. The data obtained indicate that the Bu'OOH-dependent lipid peroxidation is not an appropriate marker of the ethanol-induced oxidative stress in rat liver cells.  相似文献   

19.
Hepatoma cells show alterations in the response to oxidative stress (decreased lipid peroxidation) and in xenobiotic metabolism enzymes (decreased P450, increased GST and ALDH3). This study examined the effect of lipid peroxidation on the expression of the above enzymes in two rat hepatoma cell lines (MH(1)C(1) and 7777). To induce oxidative stress, cells were exposed to arachidonic acid (to increase lipid peroxidation substrate) and/or to beta-naphthoflavone (to increase CYP450), and treated with one dose of iron/histidine. The cells, that were still viable after the challenge, were refed with the culture medium and CYP1A1, GST, and ALDH3 enzymes monitored for 1, 6, 12, and 24 h. Treatments that increased markers indicative of lipid peroxidation are associated with a decrease in enzyme activities, which was permanent for CYP1A1 and transient for the other enzymes. We speculate from these data that aldehydic byproducts of lipid peroxidation may be responsible for these effects. Thus, restoration of lipid peroxidation in hepatoma cells seems to induce a rapid adaptation to oxidative stress, which is achieved by a simultaneous decrease of reactive oxygen species production and an increase in the two main enzymes involved in the removal of the aldehydic products of lipid peroxidation.  相似文献   

20.
Zhu M  Gu F  Shi J  Hu J  Hu Y  Zhao Z 《Free radical biology & medicine》2008,45(10):1493-1499
Conditional presenilin 1 and presenilin 2 double knockout causes memory dysfunction and reproduces neurodegenerative phenotypes of Alzheimer disease (AD) in mice. Oxidative stress has been long implicated predominantly in amyloidosis-mediated AD pathologies; however, its role in response to the loss-of-function pathogenic mechanism of AD remains unclear. In this study, we examined the oxidative stress status in PS1 and PS2 double-knockout (PS cDKO) mice using F(2)-isoprostanes (iPF(2alpha)-III) as the marker of lipid peroxidation. Lipid peroxidation was enhanced in a gender- and age-related manner in the PS cDKO mice independent of brain Abeta deposition. Such oxidative abnormalities predominantly in cerebral cortex at 2-4 months of age preceded the onset of many pronounced AD neuropathologies, suggesting that increased lipid peroxidation is not only an early pathophysiological response to PS inactivation, but also a potential culprit responsible for the AD-like neurodegenerative pathologies in the PS cDKO mice. Western blot analysis of cortical glial fibrillary acidic protein demonstrated an increased astrogliosis response to PS inactivation, in particular in the PS cDKO mice at as young as 2 months of age, suggesting that lipid peroxidation and neuronal injury may be closely associated with the loss-of-function neuropathogenic mechanism of AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号