首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rhodopsin is an important example of a G protein-coupled receptor (GPCR) in which 11-cis-retinal is the ligand and acts as an inverse agonist. Photolysis of rhodopsin leads to formation of the activated meta II state from its precursor meta I. Various mechanisms have been proposed to explain how the membrane composition affects the meta I-meta II conformational equilibrium in the visual process. For rod disk membranes and recombinant membranes containing rhodopsin, the lipid properties have been discussed in terms of elastic deformation of the bilayer. Here we have investigated the relation of nonlamellar-forming lipids, such as dioleoylphosphatidylethanolamine (DOPE), together with dioleoylphosphatidylcholine (DOPC), to the photochemistry of membrane-bound rhodopsin. We conducted flash photolysis experiments for bovine rhodopsin recombined with DOPE/DOPC mixtures (0:100 to 75:25) as a function of pH to explore the dependence of the photochemical activity on the monolayer curvature free energy of the membrane. It is well-known that DOPC forms bilayers, whereas DOPE has a propensity to adopt the nonlamellar, reverse hexagonal (H(II)) phase. In the case of neutral DOPE/DOPC recombinants, calculations of the membrane surface pH confirmed that an increase in DOPE favored the meta II state. Moreover, doubling the PE headgroup content versus the native rod membranes substituted for the polyunsaturated, docosahexaenoic acyl chains (22:6 omega 3), suggesting rhodopsin function is associated with a balance of forces within the bilayer. The data are interpreted by applying a flexible surface model, in which the meta II state is stabilized by lipids tending to form the H(II) phase, with a negative spontaneous curvature. A simple theory, based on principles of surface chemistry, for coupling the energetics of membrane proteins to material properties of the bilayer lipids is described. For rhodopsin, the free energy balance of the receptor and the lipids is altered by photoisomerization of retinal and involves curvature stress/strain of the membrane (frustration). A new biophysical principle is introduced: matching of the spontaneous curvature of the lipid bilayer to the mean curvature of the lipid/water interface adjacent to the protein, which balances the lipid/protein solvation energy. In this manner, the thermodynamic driving force for the meta I-meta II conformational change of rhodopsin is tightly controlled by mixtures of nonlamellar-forming lipids having distinctive material properties.  相似文献   

2.
Nanoscale membrane curvature in cells is critical for endocytosis/exocytosis and membrane trafficking. However, the biophysical ramifications of nanoscale membrane curvature on the behavior of lipids remain poorly understood. Here, we created an experimental model system of membrane curvature at a physiologically-relevant scale and obtained nanoscopic information on single-lipid distributions and dynamics. Supported lipid bilayers were created over 50 and 70 nm radius nanoparticles to create membrane buds. Single-molecule localization microscopy was performed with diverse mixtures of fluorescent and non-fluorescent lipids. Variations in lipid acyl tales length, saturation, head-group, and fluorescent labeling strategy were tested while maintaining a single fluid lipid phase throughout the membrane. Monte Carlo simulations were used to fit our experimental results and quantify the effects of curvature on the lipid diffusion and sorting. Whereas varying the composition of the non-fluorescent lipids yielded minimal changes to the curvature effects, the labeling strategy of the fluorescent lipids yielded highly varying effects of curvature. Most conditions yield single-population Brownian diffusion throughout the membrane; however, curvature-induced lipid sorting, slowing, and aggregation were observed in some conditions. Head-group labeled lipids such as DPPE-Texas Red and POPE-Rhodamine diffused >2.4× slower on the curved vs. the planar membranes; tail-labeled lipids such as NBD-PPC, TopFluor-PPC, and TopFluor-PIP2, as well as DiIC12 and DiIC18 displayed no significant changes in diffusion due to the membrane curvature. This article is part of a Special Issue entitled: Emergence of Complex Behavior in Biomembranes edited by Marjorie Longo.  相似文献   

3.
To fuse, membranes must bend. The energy of each lipid monolayer with respect to bending is minimized at the spontaneous curvature of the monolayer. Two lipids known to promote opposite spontaneous curvatures, lysophosphatidylcholine and arachidonic acid, were added to different sides of planar phospholipid membranes. Lysophosphatidylcholine added to the contacting monolayers of fusing membranes inhibited the hemifusion we observed between lipid vesicles and planar membranes. In contrast, fusion pore formation depended upon the distal monolayer of the planar membrane; lysophosphatidylcholine promoted and arachidonic acid inhibited. Thus, the intermediates of hemifusion and fusion pores in phospholipid membranes involve different membrane monolayers and may have opposite net curvatures, Biological fusion may proceed through similar intermediates.  相似文献   

4.
Lewis JR  Cafiso DS 《Biochemistry》1999,38(18):5932-5938
The aqueous-membrane partitioning of alamethicin, a voltage-gated channel-forming peptide, was measured as a function of the membrane spontaneous curvature. EPR spectroscopy was used to measure the partitioning of the peptide in lipid compositions formed from dioleoylphosphatidylcholine (DOPC) and varied percentages of dioleoylphosphatidylethanolamine (DOPE), dioleoylphosphatidylethanolamine-N-methyl (DOPE-Me), or dioleoylphosphatidylethanolamine-N,N-dimethyl (DOPE-Me2). When the mole fraction of DOPE in mixtures of DOPC/DOPE is increased the binding of alamethicin decreases, and the increase in binding free energy is found to be linearly dependent upon the mole fraction of DOPE in the mixture. Addition of DOPE-Me or DOPE-Me2 also increases the binding free energy, except that the effect is reduced relative to that of DOPE. The free-energy increase per mole fraction of DOPE was found to be 1400 cal/mol, whereas for DOPE-Me and DOPE-Me2 the free-energy changes were 980 and 630 cal/mol, respectively. When the free-energy changes for alamethicin binding are compared with the previously determined spontaneous curvatures for mixtures of DOPC/DOPE and DOPC/DOPE-Me, the free energy of binding is found to be linearly dependent upon the spontaneous curvature of the bilayer lipids. The effects of membrane lipid unsaturation on the partitioning of alamethicin were also measured and are qualitatively consistent with this conclusion. The sensitivity to spontaneous curvature and the cooperativity that is seen in the binding curves for alamethicin are postulated to be a result of a localized thinning of the bilayer promoted by this peptide.  相似文献   

5.
Transmembrane proteins are embedded in cellular membranes of varied lipid composition and geometrical curvature. Here, we studied for the first time the allosteric effect of geometrical membrane curvature on transmembrane protein structure and function. We used single-channel optical analysis of the prototypic transmembrane β-barrel α-hemolysin (α-HL) reconstituted on immobilized single small unilamellar liposomes of different diameter and therefore curvature. Our data demonstrate that physiologically abundant geometrical membrane curvatures can enforce a dramatic allosteric regulation (1000-fold inhibition) of α-HL permeability. High membrane curvatures (1/diameter ∼1/40 nm−1) compressed the effective pore diameter of α-HL from 14.2 ± 0.8 Å to 11.4 ± 0.6 Å. This reduction in effective pore area (∼40%) when combined with the area compressibility of α-HL revealed an effective membrane tension of ∼50 mN/m and a curvature-imposed protein deformation energy of ∼7 kBT. Such substantial energies have been shown to conformationally activate, or unfold, β-barrel and α-helical transmembrane proteins, suggesting that membrane curvature could likely regulate allosterically the structure and function of transmembrane proteins in general.  相似文献   

6.
Formation of thiobarbituric acid-reactive substances (TBRS; nmol/mg lipids) indicative of lipid peroxidation was measured in whole cells and in isolated plasma membrane lipids from three yeast species differing in oxidant sensitivity (Schizosaccharomyces pombe, Saccharomyces cerevisiae andRhodotorula glutinis) after exposure to the Fenton reagent, FeII, H2O2,tert-butyl hydroperoxide (TBHP) and azo compounds (AAPH, ACHN). In whole cells, spontaneous TBRS formation rose in the sequenceS. pombe<S. cerevisiae<R. glutinis (1:∼5:∼7). Oxidants increased the TBRS production 13–18 fold in the sequence FeII∼TBHP>AAPH∼ACHN∼Fe-Fenton>H2O2. This increase need not be solely due to increased lipid peroxidation. In isolated plasma membrane lipids from all three species, the spontaneous TBRS production referred to 1 mg lipids was 9–13-fold higher than in whole cells. InS. pombe lipids, only TBHP increased the TBRS production. In lipids fromS. cerevisiae andR. glutinis, all added oxidants increased the spontaneous TBRS production 2–3 times in the sequence TBHP>ACHN>AAPH>FeII>Fe-Fenton>H2O2. Oxidant-induced TBRS production in both whole cells and isolated membrane lipids was partially suppressed by the lipid peroxidation inhibitors 2,6-di-tert-butyl-4-methylphenol (“butylated hydroxytoluene”; BHT) and the newly synthesized PYA12 compound. Both agents were more effective in isolated lipids than in whole cells and against OH-producing than against ROO-or RO-producing oxidants. Yeast membrane lipids, which are generally poor in polyunsaturated fatty acids, are thus subject to perceptible lipid peroxidation.  相似文献   

7.
The hydrophobic surfactant proteins SP-B and SP-C greatly accelerate the adsorption of vesicles containing the surfactant lipids to form a film that lowers the surface tension of the air/water interface in the lungs. Pulmonary surfactant enters the interface by a process analogous to the fusion of two vesicles. As with fusion, several factors affect adsorption according to how they alter the curvature of lipid leaflets, suggesting that adsorption proceeds via a rate-limiting structure with negative curvature, in which the hydrophilic face of the phospholipid leaflets is concave. In the studies reported here, we tested whether the surfactant proteins might promote adsorption by inducing lipids to adopt a more negative curvature, closer to the configuration of the hypothetical intermediate. Our experiments used x-ray diffraction to determine how the proteins in their physiological ratio affect the radius of cylindrical monolayers in the negatively curved, inverse hexagonal phase. With binary mixtures of dioleoylphosphatidylethanolamine (DOPE) and dioleoylphosphatidylcholine (DOPC), the proteins produced a dose-related effect on curvature that depended on the phospholipid composition. With DOPE alone, the proteins produced no change. With an increasing mol fraction of DOPC, the response to the proteins increased, reaching a maximum 50% reduction in cylindrical radius at 5% (w/w) protein. This change represented a doubling of curvature at the outer cylindrical surface. The change in spontaneous curvature, defined at approximately the level of the glycerol group, would be greater. Analysis of the results in terms of a Langmuir model for binding to a surface suggests that the effect of the lipids is consistent with a change in the maximum binding capacity. Our findings show that surfactant proteins can promote negative curvature, and support the possibility that they facilitate adsorption by that mechanism.  相似文献   

8.
A number of processes in living cells are accompanied by significant changes of the geometric curvature of lipid membranes. In turn, heterogeneity of the lateral curvature can lead to spatial redistribution of membrane components, most important of which are transmembrane proteins and liquid-ordered lipid-protein domains. These components have a so-called hydrophobic mismatch: the length of the transmembrane domain of the protein, or the thickness of the bilayer of the domain differ from the thickness of the surrounding membrane. In this work we consider redistribution of membrane components with hydrophobic mismatch in membranes with non-uniform geometric curvature. Dependence of the components’ energy on the curvature is calculated in terms of theory of elasticity of liquid crystals adapted to lipid membranes. According to the calculations, transmembrane proteins prefer regions of the membrane with zero curvature. Liquid-ordered domains having a size of a few nm distribute mainly into regions of the membrane with small negative curvature appearing in the cell plasma membrane in the process of endocytosis. The distribution of domains of a large radius is determined by a decrease of their perimeter upon bending; these domains distribute into membrane regions with relatively large curvature.  相似文献   

9.
The outermost epidermal layer, the stratum corneum (SC), is the main skin barrier. Studies of SC model systems enable characterization of the influence of individual lipids on the organization of the SC lipid matrix, which is the main pathway of water through the skin. This work presents a neutron diffraction study of the SC model membranes based on short-chain ceramide 6 with nearly realistic composition of free fatty acids (FFA) at physiological temperature of the SC. The influence of FFA and the effect of cholesterol–cholesterol sulfate substitution on the structure and hydration of the SC model membranes are described. The structure of the SC membrane with FFA is close to the structure of the earlier studied SC membrane based on short-chain palmitic acid (PA) and does not vary significantly under changes of the ratio of the main membrane components. FFA accelerates membrane swelling at the same low level of hydration of both PA- and FFA-containing membranes. The substitution of cholesterol sulfate by cholesterol in the membrane composition decreases membrane swelling and leads to phase separation in the model system.  相似文献   

10.
The roles of acyl chain unsaturation and curvature in the excimer formation efficiency (EFE) of site-specific conjugated pyrene molecules in lipid membranes have been investigated by steady-state and time-resolved fluorescence spectroscopy. Six 1-2-(pyrenyl-n-acyl)-phosphatidylcholine (dipy(n)PC) probes, with pyrenyl chains of varying methylene units n from 4 to 14 carbons, were incorporated separately into dioleoylphosphatidylcholine (DOPC) or dioleoylphosphatidylethanolamine (DOPE) lipid membranes at 0.1 mol%. Both the excimer-to-monomer fluorescence intensity ratio and association-to-dissociation rate constant ratio of conjugated pyrenes were used to quantify EFE. At all temperatures (T = 0-30 degrees C) and for n = 4 and 6, the EFE for DOPE was always smaller than EFE for DOPC. At T < 10 degrees C (where DOPE and DOPC are in the liquid crystalline L alpha phase) and for n > 8, the EFE for curvature frustrated DOPE was significantly greater than EFE for nonfrustrated DOPC (control), and the difference increased gradually with n. At T> 18 degrees C (where DOPE is in the inverted hexagonal H(II) phase and DOPC is in the L alpha phase) and for n > 8, EFE for the curvature-relaxed DOPE was again smaller than the EFE for DOPC control. The contributions of splay conformation and internal dynamics of pyrenyl chains to EFE were examined separately using a lattice model. Our results suggest that i) the cis double bonds of the host lipid matrix strongly perturb both the conformation and dynamics of conjugated pyrenes at the specific location around n = 8, and ii) the lateral stress at the upper part (n < 8) of the curvature frustrated bilayer membranes (DOPE) may be significantly relaxed once the membrane surface adopts a favorable negative interfacial curvature.  相似文献   

11.
The effect of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) in mixed membranes with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) on interaction with a class A amphipathic peptide, Ac-DWLKAFYDKVAEKLKEAF-NH2 (Ac-18A-NH2), was investigated. The fluorescence lifetime of 2-(9-anthroyloxy)stearic acid and 2H NMR spectra were used to evaluate the penetration of water molecules into the membrane interface and the order of lipid acyl chains, respectively. The results demonstrated that DOPE in the mixed membranes decreased the fluorescence lifetime and increased the acyl-chain order, and that Ac-18A-NH2 affected them more for membranes with higher DOPE fractions. The partition coefficient (Kp) of the peptide to the mixed membranes was increased with the increase in the DOPE mole fractions. From the temperature dependence of the Kp values, the binding of Ac-18A-NH2 to POPC/DOPE mixed membranes was found to be entropy-driven. The formation of an α-helix at the membrane’s surface is supposed to induce positive curvature strain, which decreases the headgroup hydration and acyl-chain order of lipids. Thus, the binding of Ac-18A-NH2 to membranes is entropically more favorable at higher DOPE fractions since the peptide’s insertion into the membrane can decrease the order parameter and unfavorable headgroup hydration, which explains the enhanced peptide binding.  相似文献   

12.
Asymmetry of inner and outer leaflet lipid composition is an important characteristic of eukaryotic plasma membranes. We previously described a technique in which methyl-β-cyclodextrin-induced lipid exchange is used to prepare biological membrane-like asymmetric small unilamellar vesicles (SUVs). Here, to mimic plasma membranes more closely, we used a lipid-exchange-based method to prepare asymmetric large unilamellar vesicles (LUVs), which have less membrane curvature than SUVs. Asymmetric LUVs in which sphingomyelin (SM) or SM + 1-palmitoyl-2-oleoyl-phosphatidylcholine was exchanged into the outer leaflet of vesicles composed of 1,2-dioleoyl-phosphatidylethanolamine (DOPE) and 1-palmitoyl-2-oleoyl-phosphatidylserine (POPS) were prepared with or without cholesterol. Approximately 80–100% replacement of outer leaflet DOPE and POPS was achieved. At room temperature, SM exchange into the outer leaflet increased the inner leaflet lipid order, suggesting significant interleaflet interaction. However, the SM-rich outer leaflet formed an ordered state, melting with a midpoint at ∼37°C. This was about the same value observed in pure SM vesicles, and was significantly higher than that observed in symmetric vesicles with the same SM content, which melted at ∼20°C. In other words, ordered state formation by outer-leaflet SM in asymmetric vesicles was not destabilized by an inner leaflet composed of DOPE and POPS. These properties suggest that the coupling between the physical states of the outer and inner leaflets in these asymmetric LUVs becomes very weak as the temperature approaches 37°C. Overall, the properties of asymmetric LUVs were very similar to those previously observed in asymmetric SUVs, indicating that they do not arise from the high membrane curvature of asymmetric SUVs.  相似文献   

13.
《Biophysical journal》2022,121(17):3188-3199
Membrane reshaping is an essential biological process. The chemical composition of lipid membranes determines their mechanical properties and thus the energetics of their shape. Hundreds of distinct lipid species make up native bilayers, and this diversity complicates efforts to uncover what compositional factors drive membrane stability in cells. Simplifying assumptions, therefore, are used to generate quantitative predictions of bilayer dynamics based on lipid composition. One assumption commonly used is that “per lipid” mechanical properties are both additive and constant—that they are an intrinsic property of lipids independent of the surrounding composition. Related to this is the assumption that lipid bulkiness, or “shape,” determines its curvature preference, independently of context. In this study, all-atom molecular dynamics simulations on three separate multilipid systems were used to explicitly test these assumptions, applying methodology recently developed to isolate properties of single lipids or nanometer-scale patches of lipids. The curvature preference experienced by populations of lipid conformations were inferred from their redistribution on a dynamically fluctuating bilayer. Representative populations were extracted by both structural similarity and semi-automated hidden Markov model analysis. The curvature preferences of lipid dimers were then determined and compared with an additive model that combines the monomer curvature preference of both the individual lipids. In all three systems, we identified conformational subpopulations of lipid dimers that showed non-additive curvature preference, in each case mediated by a special chemical interaction (e.g., hydrogen bonding). Our study highlights the importance of specific chemical interactions between lipids in multicomponent bilayers and the impact of interactions on bilayer stiffness. We identify two mechanisms of bilayer softening: diffusional softening, driven by the dynamic coupling between lipid distributions and membrane undulations, and conformational softening, driven by the inter-conversion between distinct dimeric conformations.  相似文献   

14.
The Ca2+-triggered merger of two apposed membranes is the defining step of regulated exocytosis. CHOL is required at critical levels in secretory vesicle membranes to enable efficient, native membrane fusion: CHOL-sphingomyelin enriched microdomains organize the site and regulate fusion efficiency, and CHOL directly supports the capacity for membrane merger by virtue of its negative spontaneous curvature. Specific, structurally dissimilar lipids substitute for CHOL in supporting the ability of vesicles to fuse: diacylglycerol, αT, and phosphatidylethanolamine support triggered fusion in CHOL-depleted vesicles, and this correlates quantitatively with the amount of curvature each imparts to the membrane. Lipids of lesser negative curvature than cholesterol do not support fusion. The fundamental mechanism of regulated bilayer merger requires not only a defined amount of membrane-negative curvature, but this curvature must be provided by molecules having a specific, critical spontaneous curvature. Such a local lipid composition is energetically favorable, ensuring the necessary “spontaneous” lipid rearrangements that must occur during native membrane fusion—Ca2+-triggered fusion pore formation and expansion. Thus, different fusion sites or vesicle types can use specific alternate lipidic components, or combinations thereof, to facilitate and modulate the fusion pore.  相似文献   

15.
Elucidating molecular mechanisms by which lipids regulate protein function within biological membranes is critical for understanding the many cellular processes. Recently, we have found that dimeric αβ-tubulin, a subunit of microtubules, regulates mitochondrial respiration by blocking the voltage-dependent anion channel (VDAC) of mitochondrial outer membrane. Here, we show that the mechanism of VDAC blockage by tubulin involves tubulin interaction with the membrane as a critical step. The on-rate of the blockage varies up to 100-fold depending on the particular lipid composition used for bilayer formation in reconstitution experiments and increases with the increasing content of dioleoylphosphatidylethanolamine (DOPE) in dioleoylphosphatidylcholine (DOPC) bilayers. At physiologically low salt concentrations, the on-rate is decreased by the charged lipid. The off-rate of VDAC blockage by tubulin does not depend on the lipid composition. Using confocal fluorescence microscopy, we compared tubulin binding to the membranes of giant unilamellar vesicles (GUVs) made from DOPC and DOPC/DOPE mixtures. We found that detectable binding of the fluorescently labeled dimeric tubulin to GUV membranes requires the presence of DOPE. We propose that prior to the characteristic blockage of VDAC, tubulin first binds to the membrane in a lipid-dependent manner. We thus reveal a new potent regulatory role of the mitochondrial lipids in control of the mitochondrial outer membrane permeability and hence mitochondrial respiration through tuning VDAC sensitivity to blockage by tubulin. More generally, our findings give an example of the lipid-controlled protein-protein interaction where the choice of lipid species is able to change the equilibrium binding constant by orders of magnitude.  相似文献   

16.
There is increasing evidence for the involvement of lipid membranes in both the functional and pathological properties of α-synuclein (α-Syn). Despite many investigations to characterize the binding of α-Syn to membranes, there is still a lack of understanding of the binding mode linking the properties of lipid membranes to α-Syn insertion into these dynamic structures. Using a combination of an optical biosensing technique and in situ atomic force microscopy, we show that the binding strength of α-Syn is related to the specificity of the lipid environment (the lipid chemistry and steric properties within a bilayer structure) and to the ability of the membranes to accommodate and remodel upon the interaction of α-Syn with lipid membranes. We show that this interaction results in the insertion of α-Syn into the region of the headgroups, inducing a lateral expansion of lipid molecules that can progress to further bilayer remodeling, such as membrane thinning and expansion of lipids out of the membrane plane. We provide new insights into the affinity of α-Syn for lipid packing defects found in vesicles of high curvature and in planar membranes with cone-shaped lipids and suggest a comprehensive model of the interaction between α-Syn and lipid bilayers. The ability of α-Syn to sense lipid packing defects and to remodel membrane structure supports its proposed role in vesicle trafficking.  相似文献   

17.
α-Synuclein is involved in Parkinson's disease and its interaction with cell membrane is crucial to its pathological and physiological functions. Membrane properties, such as curvature and lipid composition, have been shown to affect the interactions by various techniques, but ion effects on α-synuclein membrane interactions remain elusive. Ca2 + dynamic fluctuation in neurons plays important roles in the onset of Parkinson's disease and its influx is considered as one of the reasons to cause cell death. Using solution Nuclear Magnetic Resonance (NMR) spectroscopy, here we show that Ca2 + can modulate α-synuclein membrane interactions through competitive binding to anionic lipids, resulting in dissociation of α-synuclein from membranes. These results suggest a negative modulatory effect of Ca2 + on membrane mediated normal function of α-synuclein, which may provide a clue, to their dysfunction in neurodegenerative disease.  相似文献   

18.
The effect of thioglycolate-based depilatory lotions was studied on the in vitro passive and iontophoretic permeability of insulin through porcine epidermis and biophysical changes in the stratum corneum (SC) lipids and proteins. The porcine epidermis and Franz diffusion cells modified for iontophoresis were used for the in vitro transport studies. Cathodal iontophoresis was performed at 0.2 mA/cm2 current density. Resistance of the control- and depilatory-lotion-treated epidermis was determined according to Ohmslaw. Biophysical changes were studied on porcine SC before (control) and after treatment with the depilatory lotions using Fourier transform infrared (FT-IR) spectroscopy. Asymmetric (∼2915 cm−1) and symmetric (∼2848 cm−1) Carbon-Hydrogen (C-H) stretching absorbances were studied to estimate the extent of lipid extraction. Fourier self-deconvolution and second derivative procedures were applied to amide I band (1700–1600 cm−1) in order to estimate quantitatively the changes in the secondary structure of the SC protein. The passive permeability of insulin was significantly (P<.05) increased through depilatory-lotion-treated (ie, Better Off, Marzena, and Sally Hansen) epidermis in comparison to control. Iontophoresis significantly enhanced (P<.05) the permeability of insulin through depilatory-pretreated epidermis in comparison with the control epidermis. Further, we were able to achieve the desired flux of insulin (5.25 U/cm2/d) through Better Off-treated epidermis using 0.2 mA/cm2 current density and 100 U/mL donor concentration of insulin. The SC treated with depilatory lotions showed a decrease in peak areas of C-H stretching absorbances in comparison with untreated SC. Depilatory lotion treatment also decreased (P<.05) the epidermal resistance in comparison with the control epidermis. The decrease in the α-helix conformation and the increase in the random and turn structures were observed in the SC proteins due to depilatory lotion treatment. The changes in the secondary structure of proteins and lipid extraction from the SC are suggested as the cause of the decrease in the epidermal resistance and the increase in the passive and iontophoretic permeability of insulin through depilatory-pretreated epidermis in comparison with the control epidermis.  相似文献   

19.
Flash photolysis studies have shown that the membrane lipid environment strongly influences the ability of rhodopsin to form the key metarhodopsin II intermediate. Here we have used plasmon-waveguide resonance (PWR) spectroscopy, an optical method sensitive to both mass and conformation, to probe the effects of lipid composition on conformational changes of rhodopsin induced by light and due to binding and activation of transducin (G(t)). Octylglucoside-solubilized rhodopsin was incorporated by detergent dilution into solid-supported bilayers composed either of egg phosphatidylcholine or various mixtures of a nonlamellar-forming lipid (dioleoylphosphatidylethanolamine; DOPE) together with a lamellar-forming lipid (dioleoylphosphatidylcholine; DOPC). Light-induced proteolipid conformational changes as a function of pH correlated well with previous flash photolysis studies, indicating that the PWR spectral shifts monitored metarhodopsin II formation. The magnitude of these effects, and hence the extent of the conformational transition, was found to be proportional to the DOPE content. Our data are consistent with previous suggestions that lipids having a negative spontaneous curvature favor elongation of rhodopsin during the activation process. In addition, measurements of the G(t)/rhodopsin interaction in a DOPC/DOPE (25:75) bilayer at pH 5 demonstrated that light activation increased the affinity for G(t) from 64 nM to 0.7 nM, whereas G(t) affinity for dark-adapted rhodopsin was unchanged. By contrast, in DOPC bilayers the affinity of G(t) for light-activated rhodopsin was only 18 nM at pH 5. Moreover exchange of GDP for GTP gamma S was also monitored by PWR spectroscopy. Only the light-activated receptor was able to induce this exchange which was unaffected by DOPE incorporation. These findings demonstrate that nonbilayer-forming lipids can alter functionally linked conformational changes of G-protein-coupled receptors in membranes, as well as their interactions with downstream effector proteins.  相似文献   

20.
Transmembrane proteins are embedded in cellular membranes of varied lipid composition and geometrical curvature. Here, we studied for the first time the allosteric effect of geometrical membrane curvature on transmembrane protein structure and function. We used single-channel optical analysis of the prototypic transmembrane β-barrel α-hemolysin (α-HL) reconstituted on immobilized single small unilamellar liposomes of different diameter and therefore curvature. Our data demonstrate that physiologically abundant geometrical membrane curvatures can enforce a dramatic allosteric regulation (1000-fold inhibition) of α-HL permeability. High membrane curvatures (1/diameter ∼1/40 nm−1) compressed the effective pore diameter of α-HL from 14.2 ± 0.8 Å to 11.4 ± 0.6 Å. This reduction in effective pore area (∼40%) when combined with the area compressibility of α-HL revealed an effective membrane tension of ∼50 mN/m and a curvature-imposed protein deformation energy of ∼7 kBT. Such substantial energies have been shown to conformationally activate, or unfold, β-barrel and α-helical transmembrane proteins, suggesting that membrane curvature could likely regulate allosterically the structure and function of transmembrane proteins in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号