首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The scavenger receptor CD36 binds a diverse array of ligands, including thrombospondin-1, oxidized low density lipoprotein (OxLDL), fatty acids, anionic phospholipids, and apoptotic cells. CD36 has been reported to be present in lipid rafts/caveolae, but little is known about the membrane trafficking of this protein at baseline or following ligand binding. Here, we determined that expression of CD36 in Chinese hamster ovary (CHO) cells and endogenous expression of CD36 in C32 cells led to a homogeneous distribution of the protein on the plasma membrane, as judged by confocal fluorescence microscopy. This homogeneous pattern was observed both by anti-CD36 antibody staining and by live cell imaging of CHO cells expressing a chimeric CD36-green fluorescent protein construct. In contrast, caveolin-1 displayed its usual punctate surface distribution. Correspondingly, dual labeling of CD36 and caveolin-1 showed essentially no overlap, neither by immunofluorescence light microscopy nor by immunogold electron microscopy. Furthermore, isolation of lipid rafts by sucrose gradient ultracentrifugation of cold Triton X-100 cell lysates yielded both CD36 and caveolin-1, but immunoprecipitates of caveolin-1 did not contain CD36. Binding of Ox-LDL led to internalization of CD36 and OxLDL into endosomal structures that did not contain caveolin-1 or transferrin but that co-internalized the glycosyl-phosphatidylinositol-anchored protein decay accelerating factor, a lipid raft protein. Furthermore, expression of CD36 in the caveolin-1-negative KB cell line is sufficient for OxLDL-induced internalization of CD36, indicating that caveolin-1 is not required for this endocytic process. Taken together, these data demonstrate that at steady state, CD36 is localized in lipid rafts but not in caveolae, and that binding of OxLDL to CD36 leads to endocytosis through a lipid raft pathway that is distinct from the clathrin-mediated or caveolin internalization pathways.  相似文献   

2.
Small GTP binding proteins regulate diverse biological processes including gene expression, cytoskeleton reorganization, and protein and vesicular transport. While small GTPases have been investigated in a wide variety of cells, few studies have addressed their role in photoreceptors. In vertebrate retinal rods, the light stimulus is transmitted from rhodopsin via the pathway mediated by the heterotrimeric G protein transducin. To increase their sensitivity to light, photoreceptors accumulate remarkably high concentrations of rhodopsin and transducin in specialized cellular compartments, the outer segments (OS). Transport of these proteins from the inner segments is regulated by the small GTPases Rab6 and Rab8, which do not enter OS. Here, we asked if small G proteins have other functions in photoreceptors. We show that OS contain the small GTPase Rac-1, a member of the Rho family. In contrast to other cells, Rac-1 in OS is exclusively associated with the membranes and resides in lipid rafts. Most importantly, Rac-1 is activated by light. This activation is specifically blocked by a synthetic peptide corresponding to the Asn-Pro-X-X-Tyr motif found in rhodopsin, and Rac-1 coprecipitates with rhodopsin on Concanavalin A Sepharose. These data provide the first direct evidence for the existence of a novel pathway activated by rhodopsin.  相似文献   

3.
In the renal collecting duct, vasopressin controls transport of water and solutes via regulation of membrane transporters such as aquaporin-2 (AQP2) and the epithelial urea transporter UT-A. To discover proteins potentially involved in vasopressin action in rat kidney collecting ducts, we enriched membrane "raft" proteins by harvesting detergent-resistant membranes (DRMs) of the inner medullary collecting duct (IMCD) cells. Proteins were identified and quantified with LC-MS/MS. A total of 814 proteins were identified in the DRM fractions. Of these, 186, including several characteristic raft proteins, were enriched in the DRMs. Immunoblotting confirmed DRM enrichment of representative proteins. Immunofluorescence confocal microscopy of rat IMCDs with antibodies to DRM proteins demonstrated heterogeneity of raft subdomains: MAL2 (apical region), RalA (predominant basolateral labeling), caveolin-2 (punctate labeling distributed throughout the cells), and flotillin-1 (discrete labeling of large intracellular structures). The DRM proteome included GPI-anchored, doubly acylated, singly acylated, cholesterol-binding, and integral membrane proteins (IMPs). The IMPs were, on average, much smaller and more hydrophobic than IMPs identified in non-DRM-enriched IMCD. The content of serine 256-phosphorylated AQP2 was greater in DRM than in non-DRM fractions. Vasopressin did not change the DRM-to-non-DRM ratio of most proteins, whether quantified by tandem mass spectrometry (LC-MS/MS, n = 22) or immunoblotting (n = 6). However, Rab7 and annexin-2 showed small increases in the DRM fraction in response to vasopressin. In accord with the long-term goal of creating a systems-level analysis of transport regulation, this study has identified a large number of membrane-associated proteins expressed in the IMCD that have potential roles in vasopressin action.  相似文献   

4.
In murine mammary epithelial cancer cells, galectin-3 binding to β1,6-acetylglucosaminyltransferase V (Mgat5)–modified N-glycans restricts epidermal growth factor (EGF) receptor mobility in the plasma membrane and acts synergistically with phospho-caveolin-1 to promote integrin-dependent matrix remodeling and cell migration. We show that EGF signaling to RhoA is galectin-3 and phospho-caveolin-1 dependent and promotes the formation of transient, actin-rich, circular dorsal ruffles (CDRs), cell migration, and fibronectin fibrillogenesis via Src- and integrin-linked kinase (ILK)–dependent signaling. ILK, Src, and galectin-3 also mediate EGF stimulation of caveolin-1 phosphorylation. Direct activation of integrin with Mn2+ induces galectin-3, ILK, and Src-dependent RhoA activation and caveolin-1 phosphorylation. This suggests that in response to EGF, galectin-3 enables outside-in integrin signaling stimulating phospho-caveolin-1–dependent RhoA activation, actin reorganization in CDRs, cell migration, and fibronectin remodeling. Similarly, caveolin-1/galectin-3–dependent EGF signaling induces motility, peripheral actin ruffling, and RhoA activation in MDA-MB-231 human breast carcinoma cells, but not HeLa cells. These studies define a galectin-3/phospho-caveolin-1/RhoA signaling module that mediates integrin signaling downstream of growth factor activation, leading to actin and matrix remodeling and tumor cell migration in metastatic cancer cells.  相似文献   

5.
Immunohistochemistry was used to determine the distribution of Rac1, Cdc42, RhoA and RhoB GTPases during development of the chick retina. All proteins appear as early as embryonic day 5 (E5) in cells of the vitreal margin, E7–8 in cells of the inner third of the inner nuclear layer and E9–10 in photoreceptors. From E10 until hatching, RhoA, Rac1 and Cdc42 were seen in perikarya and/or processes of amacrine, ganglion cells, and photoreceptors. Rho proteins were also observed in retinal Müller cells, with different distributions. RhoB showed a transient expression, being severely down regulated after E18. The distribution pattern of Rho proteins during the development of the chick retina suggests a concerted role in the differentiation of specific cell types, and probably during synaptogenesis.  相似文献   

6.
Protein 3-nitrotyrosine (3-NY) immunoreactivity of rat brain homogenate was localized to a ca. 50 kDa protein band by western blot (WB) analysis. The nitrated proteins were localized to the raft fraction obtained by centrifugation of the homogenate in a sucrose density gradient, which contained specific raft markers such as flotillin-1 and caveolin-1. Purification of the nitrated raft proteins either by a combination of reversed-phase high-performance liquid chromatography (HPLC) and sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) or by immunoprecipitation (IP) with protein- and modification-specific antibodies coupled to WB and HPLC-electrospray ionization-tandem mass spectrometry (ESI--MS/MS) analysis allowed us to identify two proteins modified by 3-NY: flotillin-1 and alpha-tubulin. Both alpha- and beta-tubulin were detected in the rat brain raft fraction as abundant proteins, which co-immunoprecipitate with flotillin-1 and caveolin-1. Importantly, some protein-protein interactions in rafts were disrupted in 3-NY-containing proteins, e.g. caveolin-1 was dissociated from a complex with flotillin-1 and alpha-tubulin. The analysis of age dependencies did not show any significant change in protein nitration and expression of flotillin-1 and alpha-tubulin, but a decrease in the brain caveolin-1 level for old (34 months) versus young (6 months) rats. The putative mechanism of nitric oxide synthase (NOS) activity regulation by the level of caveolin expression and raft protein-protein interactions is discussed.  相似文献   

7.
In tooth development matrix metalloproteinases (MMPs) are under the control of several regulatory mechanisms including the upregulation of expression by inducers and downregulation by inhibitors. The aim of the present study was to monitor the occurrence and distribution pattern of the extracellular matrix metalloproteinase inducer (EMMPRIN), the metalloproteinases MMP-2 and MT1-MMP and caveolin-1 during the cap and bell stage of rat molar tooth germs by means of immunocytochemistry. Strong EMMPRIN immunoreactivity was detected on the cell membranes of ameloblasts and cells of the stratum intermedium in the bell stage of the enamel organ. Differentiating odontoblasts exhibited intense EMMPRIN immunoreactivity, especially at their distal ends. Caveolin-1 immunoreactivity was evident in cells of the internal enamel epithelium and in ameloblasts. Double immunofluorescence studies revealed a focal co-localization between caveolin-1 and EMMPRIN in ameloblastic cells. Finally, western blotting experiments demonstrated the expression of EMMPRIN and caveolin-1 in dental epithelial cells (HAT-7 cells). A substantial part of EMMPRIN was detected in the detergent-insoluble caveolin-1-containing low-density raft membrane fraction of HAT-7 cells suggesting a partial localization within lipid rafts. The differentiation-dependent co-expression of MMPs with EMMPRIN in the enamel organ and in odontoblasts indicates that EMMPRIN takes part in the induction of proteolytic enzymes in the rat tooth germ. The localization of EMMPRIN in membrane rafts provides a basis for further investigations on the role of caveolin-1 in EMMPRIN-mediated signal transduction cascades in ameloblasts.  相似文献   

8.
Bipolar assembly of caveolae in retinal pigment epithelium   总被引:1,自引:0,他引:1  
Caveolae and their associated structural proteins, the caveolins, are specialized plasmalemmal microdomains involved in endocytosis and compartmentalization of cell signaling. We examined the expression and distribution of caveolae and caveolins in retinal pigment epithelium (RPE), which plays key roles in retinal support, visual cycle, and acts as the main barrier between blood and retina. Electron microscopic observation of rat RPE, in situ primary cultures of rat and human RPE and a rat RPE cell line (RPE-J) demonstrated in all cases the presence of caveolae in both apical and basolateral domains of the plasma membrane. Caveolae were rare in RPE in situ but were frequent in primary RPE cultures and in RPE-J cells, which correlated with increased levels in the expression of caveolin-1 and -2. The bipolar distribution of caveolae in RPE is striking, as all other epithelial cells examined to date (liver, kidney, thyroid, and intestinal) assemble caveolae only at the basolateral side. This might be related to the nonpolar distribution of both caveolin-1 and 2 in RPE because caveolin-2 is basolateral and caveolin-1 nonpolar in other epithelial cells. The bipolar localization of plasmalemmal caveolae in RPE cells may reflect specialized roles in signaling and trafficking important for visual function. caveolin; raft microdomains; membrane traffic; normal rat kidney  相似文献   

9.
Pig coronary artery smooth muscle expresses, among many other proteins, Na+-Ca2+-exchanger NCX1 and sarcoplasmic reticulum Ca2+ pump SERCA2. NCX1 has been proposed to play a role in refilling the sarcoplasmic reticulum Ca2+ pool suggesting a functional linkage between the two proteins. We hypothesized that this functional linkage may require close apposition of SERCA2 and NCX1 involving regions of plasma membrane like lipid rafts. Lipid rafts are specialized membrane microdomains that appear as platforms to co-localize proteins. To determine the distribution of NCX1, SERCA2 and lipid rafts, we isolated microsomes from the smooth muscle tissue, treated them with non-ionic detergent and obtained fractions of different densities by sucrose density gradient centrifugal flotation. We examined the distribution of NCX1; SERCA2; non-lipid raft plasma membrane marker transferrin receptor protein; lipid raft markers caveolin-1, flotillin-2, prion protein, GM1-gangliosides and cholesterol; and cytoskeletal markers clathrin, actin and myosin. Distribution of markers identified two subsets of lipid rafts that differ in their components. One subset is rich in caveolin-1 and flotillin-2 and the other in GM1-gangliosides, prion protein and cholesterol. NCX1 distribution correlated strongly with SERCA2, caveolin-1 and flotillin-2, less strongly with the other membrane markers and negatively with the cytoskeletal markers. These experiments were repeated with a non-detergent method of treating microsomes with sonication at high pH and similar results were obtained. These observations are consistent with the observed functional linkage between NCX1 and SERCA2 and suggest a role for NCX1 in supplying Ca2+ for refilling the sarcoplasmic reticulum.  相似文献   

10.
Cephalopods are famous for their ability to change color and pattern rapidly for signaling and camouflage. They have keen eyes and remarkable vision, made possible by photoreceptors in their retinas. External to the eyes, photoreceptors also exist in parolfactory vesicles and some light organs, where they function using a rhodopsin protein that is identical to that expressed in the retina. Furthermore, dermal chromatophore organs contain rhodopsin and other components of phototransduction (including retinochrome, a photoisomerase first found in the retina), suggesting that they are photoreceptive. In this study, we used a modified whole-mount immunohistochemical technique to explore rhodopsin and retinochrome expression in a number of tissues and organs in the longfin squid, Doryteuthis pealeii. We found that fin central muscles, hair cells (epithelial primary sensory neurons), arm axial ganglia, and sucker peduncle nerves all express rhodopsin and retinochrome proteins. Our findings indicate that these animals possess an unexpected diversity of extraocular photoreceptors and suggest that extraocular photoreception using visual opsins and visual phototransduction machinery is far more widespread throughout cephalopod tissues than previously recognized.  相似文献   

11.
The retina is an integral part of the central nervous system and retinal cells are known to express insulin receptors (IR), although their function is not known. This article describes recent studies that link the photoactivation of rhodopsin to tyrosine phosphorylation of the IR and subsequent activation of phosphoinositide 3-kinase, a neuron survival factor. Our studies suggest that the physiological role of this process is to provide neuroprotection of the retina against light damage by activating proteins that protect against stress-induced apoptosis. We focus mainly on our recently identified regulation of the IR pathway through the G-protein-coupled receptor rhodopsin. Various mutant and knockout proteins of phototransduction cascade have been used to study the light-induced activation of the retinal IR. Our studies suggest that rhodopsin may have additional previously uncharacterized signaling functions in photoreceptors.  相似文献   

12.
The rod outer segment (OS), comprised of tightly stacked disk membranes packed with rhodopsin, is in a dynamic equilibrium governed by a diurnal rhythm with newly synthesized membrane inserted at the OS base balancing membrane loss from the distal tip via disk shedding. Using transgenic Xenopus and live cell confocal imaging, we found OS axial variation of fluorescence intensity in cells expressing a fluorescently tagged rhodopsin transgene. There was a light synchronized fluctuation in intensity, with higher intensity in disks formed at night and lower intensity for those formed during the day. This fluctuation was absent in constant light or dark conditions. There was also a slow modulation of the overall expression level that was not synchronized with the lighting cycle or between cells in the same retina. The axial variations of other membrane-associated fluorescent proteins, eGFP-containing two geranylgeranyl acceptor sites and eGFP fused to the transmembrane domain of syntaxin, were greatly reduced or not detectable, respectively. In acutely light-adapted rods, an arrestin-eGFP fusion protein also exhibited axial variation. Both the light-sensitive Rho-eGFP and arrestin-eGFP banding were in phase with the previously characterized birefringence banding (Kaplan, Invest. Ophthalmol. Vis. Sci. 21, 395–402 1981). In contrast, endogenous rhodopsin did not exhibit such axial variation. Thus, there is an axial inhomogeneity in membrane composition or structure, detectable by the rhodopsin transgene density distribution and regulated by the light cycle, implying a light-regulated step for disk assembly in the OS. The impact of these results on the use of chimeric proteins with rhodopsin fused to fluorescent proteins at the carboxyl terminus is discussed.  相似文献   

13.
The high amount of pp60c-src in platelets has led to speculation that this kinase is responsible for tyrosine-specific phosphorylation of cellular proteins during platelet activation by different agonists, and is, therefore, implicated in signal transduction of these cells. Unlike pp60v-src, the association of which with the cytoskeleton appears to be a prerequisite for transformation, pp60c-src is detergent-soluble in fibroblasts overexpressing the c-src gene, and its role in normal cellular function remains elusive. To gain a better understanding of the function of pp60c-src we have investigated the subcellular distribution of pp60c-src and its relationship to the cytoskeleton during platelet activation. Quantitative immunoblotting and immunoprecipitation have revealed that pp60c-src is detergent-soluble in resting platelets, while 40% of total platelet pp60c-src becomes associated with the cytoskeletal fraction upon platelet activation. We have also shown that a small pool of pp60c-src is associated with the membrane skeletal fraction which remains unchanged during the activation process. The interaction of pp60c-src with cytoskeletal proteins strongly correlates with aggregation and is mediated by GPIIb/IIIa receptor-fibrinogen binding. We suggest that the translocation of pp60c-src to the cytoskeleton and its association with cytoskeletal proteins may regulate tyrosine phosphorylation in platelets.  相似文献   

14.
CD13, a receptor for human coronavirus 229E (HCoV-229E), was identified as a major component of the Triton X-100-resistant membrane microdomain in human fibroblasts. The incubation of living fibroblasts with an anti-CD13 antibody on ice gave punctate labeling that was evenly distributed on the cell surface, but raising the temperature to 37 degrees C before fixation caused aggregation of the labeling. The aggregated labeling of CD13 colocalized with caveolin-1 in most cells. The HCoV-229E virus particle showed a binding and redistribution pattern that was similar to that caused by the anti-CD13 antibody: the virus bound to the cell evenly when incubated on ice but became colocalized with caveolin-1 at 37 degrees C; importantly, the virus also caused sequestration of CD13 to the caveolin-1-positive area. Electron microscopy confirmed that HCoV-229E was localized near or at the orifice of caveolae after incubation at 37 degrees C. The depletion of plasmalemmal cholesterol with methyl beta-cyclodextrin significantly reduced the HCoV-229E redistribution and subsequent infection. A caveolin-1 knockdown by RNA interference also reduced the HCoV-229E infection considerably. The results indicate that HCoV-229E first binds to CD13 in the Triton X-100-resistant microdomain, then clusters CD13 by cross-linking, and thereby reaches the caveolar region before entering cells.  相似文献   

15.
16.
Confocal and total internal reflection fluorescence imaging was used to examine the distribution of caveolin-3, sodium-calcium exchange (NCX) and ryanodine receptors (RyRs) in rat ventricular myocytes. Transverse and longitudinal optical sectioning shows that NCX is distributed widely along the transverse and longitudinal tubular system (t-system). The NCX labeling consisted of both punctate and distributed components, which partially colocalize with RyRs (27%). Surface membrane labeling showed a similar pattern but the fraction of RyR clusters containing NCX label was decreased and no nonpunctate labeling was observed. Sixteen percent of RyRs were not colocalized with the t-system and 1.6% of RyRs were found on longitudinal elements of the t-system. The surface distribution of RyR labeling was not generally consistent with circular patches of RyRs. This suggests that previous estimates for the number of RyRs in a junction (based on circular close-packed arrays) need to be revised. The observed distribution of caveolin-3 labeling was consistent with its exclusion from RyR clusters. Distance maps for all colocalization pairs were calculated to give the distance between centroids of punctate labeling and edges for distributed components. The possible roles for punctate NCX labeling are discussed.  相似文献   

17.
Caveolin-3, the major caveolin isoform in cardiomyocytes, plays an important role in the rapid signaling pathways initiated by stimulation of the membrane-associated molecules. To examine the role of caveolin-3 in regulating estrogen receptor α in cardiomyocytes, we investigate whether the membrane estrogen receptor α associates with caveolin-3 and whether this association is linked to the 17β-estradiol-mediated signals. In control cardiomyocytes, following discontinuous sucrose gradient centrifugation, caveolin-3 was found predominantly in the lipid raft buoyant fractions, whereas it was distributed to both the buoyant and non-lipid raft heavy fractions following metabolic inhibition treatment. Confocal microscopy showed that estrogen receptor α co-localized with caveolin-3 on the plasma membrane of neonatal and adult rat cardiomyocytes. This membrane labeling of estrogen receptor α was not seen following treatment with the cholesterol-depleting agent methyl-β-cyclodextrin (5 mM), whereas metabolic inhibition had little effect on the membrane distribution of estrogen receptor α. Metabolic inhibition induced tyrosine phosphorylation of caveolin-3 and decreased its association with estrogen receptor α, both effects being mediated via a Src activation mechanism, since they were inhibited by the selective tyrosine kinase inhibitor PP2. Metabolic inhibition also induced tyrosine phosphorylation of connexin43 and increased its association with c-Src, both effects being prevented by 17β-estradiol (200 nM). The effect of 17β-estradiol on metabolic inhibition-induced tyrosine phosphorylation of connexin43 was inhibited by the specific estrogen receptor antagonist ICI182780. These data identify cardiac caveolin-3 as juxtamembrane scaffolding for estrogen receptor α docking at caveolae, which provide a unique compartment for conveying 17β-estradiol-elicited, rapid signaling to regulate connexin43 phosphorylation during ischemia.  相似文献   

18.
MMP-2 colocalizes with caveolae on the surface of endothelial cells   总被引:8,自引:0,他引:8  
We examined the spatial distribution of MMP-2 on the surface of human endothelial cells using immunofluorescence and confocal microscopy. Staining endothelial cells with MMP-2-specific antibodies revealed a punctate labeling at the basolateral side of the cell periphery, which colocalized with patches of caveolin-1, a major constituent of the caveolae. This colocalization was confirmed by immunogold electron microscopy. MT1-MMP, TIMP-2, and the alphavbeta3 integrin exhibited a similar pattern of staining, with pericellular patches that colocalized with either MMP-2 or caveolin-1. The presence of MT1-MMP and TIMP-2 in caveolae patches could be seen only after treatment with concanavalin A, which induced MMP-2 activation but had no noticeable effect on the pattern or intensity of MMP-2 immunostaining. In contrast, MMP-9 and TIMP-1 staining showed a pattern completely different from that of MMP-2 and TIMP-2, with positive spots uniformly distributed throughout the cell body. Our data show that MMP-2, its activator the MT1-MMP, and its proposed receptor, the alphavbeta3 integrin, are all targeted to the same membrane microdomains on the endothelial cell, thereby restricting matrix proteolysis to a limited microenvironment at the cell surface.  相似文献   

19.
Recoverin is a Ca2+-binding protein implicated in the Ca2+-dependent regulation of desensitization of visual receptor rhodopsin in vertebrate retinal rods. Here we report that Ca2+ sensitivity of recoverin regulating rhodopsin phosphorylation increases in the presence of the photoreceptor membranes enriched in raft structures. The observed effect is mediated by a key protein component of raft structures caveolin-1. The presence of recombinant fragment Phe81-Arg101 of the caveolin-1 cytoplasmic domain enhances Ca2+ affinity of recoverin, therefore affecting its Ca2+-dependent regulatory activity.  相似文献   

20.
Many glucocorticoid (Gc) actions are of rapid onset and therefore require acute regulation of intracellular signaling cascades. Integration of diverse extracellular signals requires cross-talk between intracellular pathways, suggesting the existence of nodes for signal interaction, such as the specialized membrane microdomains caveolae. We have identified rapid Gc-dependent phosphorylation of caveolin, and protein kinase B (PKB)/Akt, in the lung epithelial cell line A549 and found this was dependent on src kinases. There was also activation of PKB downstream molecules glycogen synthase kinase-3beta, and mammalian target of rapamycin. Subcellular fractionation colocalized glucocorticoid receptor (GR) and c-src to caveolin-containing membrane fractions. Coimmunoprecipitation studies also identified interactions between GR and caveolin and suggested that the activation function 1 domain within the GR may serve to support an interaction between GR and caveolin. Disruption of lipid raft formation, impairment of caveolin function using dominant-negative caveolin, down-regulation of caveolin-1 using short hairpin RNA or complete ablation of caveolin-1 prevented Gc-induced activation of PKB. Loss of caveolin-1 also prevents Gc activation of glycogen synthase kinase-3beta and mammalian target of rapamycin. In contrast, caveolin interference/down-regulation had no effect on Gc transactivation. Functional analysis of caveolin-1 knockdown and knockout cells identified profound loss of Gc-mediated growth inhibition compared with controls, with a requirement for caveolin in order for Gc to regulate cell cycle progression. Therefore, disruption of caveolae leads to dissociation of Gc action, with impaired induction of PKB activation, and cell growth inhibition, but with negligible effects on Gc transactivation. These observations have implications for understanding the diverse physiological actions of Gc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号