首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Hedgehog and adipogenesis: fat and fiction   总被引:1,自引:0,他引:1  
Cousin W  Fontaine C  Dani C  Peraldi P 《Biochimie》2007,89(12):1447-1453
Morphogenes, abundantly described during embryogenesis have recently emerged as crucial modulators of cell differentiation processes. Hedgehog signaling, the dysregulation of which causing several pathologies such as congenital defects and cancer, is involved in several cell differentiation processes including adipogenesis. This review presents an overview of the relations between Hedgehog signaling, adipocyte differentiation and fat mass. While the anti-adipogenic role of Hedgehog signaling seems to be established, the effect of Hedgehog inhibition on adipocyte differentiation in vitro remains debated. Finally, Hedgehog potential as a pharmacological target to treat fat mass disorders is discussed.  相似文献   

3.
4.
5.
Hedgehog信号通路与肿瘤   总被引:1,自引:0,他引:1  
Hedgehog信号通路在胚胎发育中细胞的生长分化、组织器官形成以及成体干细胞的维持和自稳态的保持等方面具有重要作用。同时,Hedgehog信号通路与Wnt信号通路、Notch信号通路等相互作用、密切联系,在肿瘤的发生、发展过程中也起到关键作用。论文综述了Hedgehog信号通路的作用机理,与其他信号通路、蛋白质因子的相互联系,以及在肿瘤研究中所关注的靶位点和小分子化合物抑制剂,对于癌症的预防和治疗具有一定的参考价值。  相似文献   

6.
Induction of early pituitary progenitors is achieved through combined activities of signals from adjacent embryonic tissues. Previous studies have identified a requirement for oral ectoderm derived Sonic Hedgehog (Shh) in specification and/or proliferation of early pituitary progenitors, however how different Gli genes mediate Shh signaling to control pituitary progenitor development has not yet been determined. Here we show that Gli2, which encodes a major Gli activator, is required for proliferation of specific groups of pituitary progenitors but not for initial dorsoventral patterning. We further show that the action of Gli2 occurs prior to the closure of Rathke' pouch. Lastly, we show that Shh/Gli2 signaling controls the diencephalic expression of Bone morphogenetic protein 4 (Bmp4) and Fibroblast growth factor 8 (Fgf8), two genes that are known to play critical roles in patterning and growth of Rathke's pouch. Our results therefore suggest both cell-autonomous and non-cell-autonomous requirements for Gli2 in regulation of pituitary progenitor specification, proliferation and differentiation.  相似文献   

7.
Vertebrate inner ear development is initiated by the specification of the otic placode, an ectodermal structure induced by signals from neighboring tissue. Although several signaling molecules have been identified as candidate otic inducers, many details of the process of inner ear induction remain elusive. Here, we report that otic induction is responsive to the level of Hedgehog (Hh) signaling activity in Xenopus, making use of both gain- and loss-of-function approaches. Ectopic activation of Hedgehog signaling resulted in the development of ectopic vesicular structures expressing the otic marker genes XPax-2, Xdll-3, and Xwnt-3A, thus revealing otic identity. Induction of ectopic otic vesicles was also achieved by misexpression of two different inhibitors of Hh signaling: the putative Hh antagonist mHIP and XPtc1deltaLoop2, a dominant-negative form of the Hh receptor Patched. In addition, misexpression of XPtc1deltaLoop2 as well as treatment of Xenopus embryos with the specific Hh signaling antagonist cyclopamine resulted in the formation of enlarged otic vesicles. In summary, our observations suggest that a defined level of Hh signaling provides a restrictive environment for otic fate in Xenopus embryos.  相似文献   

8.
In present study, a series of novel containing trifluoromethyl 4-(2-pyrimidinylamino)benzamide derivatives were designed by the fluorine scan strategy. Their Hh signaling inhibitory activities were evaluated by Gli-luciferase reporter method. The comprehensive SAR was discussed and several derivatives were found to display more potent Hh signaling inhibitory activity than positive drug vismodegib. Compound 13d was the most potent compound with IC50 of 1.44 nM against Hh signaling pathway and also exhibited optimal PK properties in the in vivo PK properties study, deserved as an ideal lead compound for further study in future.  相似文献   

9.
Hedgehog (Hh) signaling is frequently activated in human cancer, including esophageal cancer. Most esophageal cancers are diagnosed in the advanced stages, therefore, identifying the very alterations that drive esophageal carcinogenesis may help designing novel strategies to diagnose and treat the disease. Analysis of Hh signaling in precancerous lesions is a critical first step in determining the significance of this pathway for carcinogenesis. Here we report our data on Hh target gene expression in 174 human esophageal specimens [28 esophageal adenocarcinomas (EAC), 19 Barrett’s esophagus, 103 cases of esophageal squamous cell carcinoma (ESCC), and 24 of squamous dysplastic lesions], and in two rat models of esophageal cancer. We found that 96% of human EAC express Hh target genes. We showed that PTCH1 expression is the most reliable biomarker. In contrast to EAC, only 38% of ESCC express Hh target genes. We found activation of Hh signaling in precancerous lesions of ESCCs and EACs in different degrees (21% and 58% respectively). Expression of Hh target genes is frequently detected in severe squamous dysplasia/ carcinoma in situ (p=0.04) and Barrett’s esophagus (p=0.01). Unlike EAC, sonic hedgehog (Shh) expression was rare in ESCCs. Consistent with the human specimen data, we found a high percentage of Hh signaling activation in precancerous lesions in rat models. These data indicate that Hh signaling activation is an early molecular event in the development of esophageal cancer, particularly EAC.  相似文献   

10.
11.
Failure in obtaining expression of functional adrenocorticotropic hormone receptor (ACTHR, or melanocortin 2 receptor, MC2R) in non-adrenal cells has hindered molecular analysis of ACTH signaling pathways. Here, we ectopically expressed the mouse ACTHR in Balb/c mouse 3T3 fibroblasts to analyze ACTH signaling pathways involved in induction of fos and jun genes. Natural constitutive expression of the MC2R accessory protein (MRAP) in Balb3T3 and other mouse 3T3 fibroblasts (NIH, Swiss and 3T3-L1) renders these fibroblastic lines suitable for ectopic expression of ACTHR in its active form properly inserted into the plasma membrane at levels similar to those found in mouse Y1 adrenocortical tumor cells. The Y1 cell line is a cultured cell system well known for stably displaying normal adrenal specific metabolic pathways, ACTHR expression and ACTH functional responses. Thirty-nine sub-lines expressing ACTHR (3T3-AR transfectants) were selected for geneticin-resistance and clonally isolated after transfection of ACTHR-cDNA (in the pSVK3 mammalian plasmidial vector) into Balb3T3 fibroblasts. In addition, sixteen clonal sub-lines of Balb3T3 (3T3-0 transfectants) carrying the pSVK3 empty vector were likewise isolated. Fourteen 3T3-AR and four 3T3-0 clones were screened for response to ACTH39 in comparison with Y1 adrenocortical cells. Eight 3T3-AR clones responded to ACTH39 with activation of adenylate cyclase and induction of c-Fos protein, but the levels of, respectively, activation and induction were not strictly correlated. Other fos and jun genes were also induced by ACTH39 in 3T3-AR transfectants, which express levels of ACTHR protein similar to parental Y1 cells. Signaling pathways relevant to c-Fos induction was extensively investigated in 3 clones: 3T3-AR01 and –07 and 3T3-04. In Y1 cells, specific inhibitors (H89/PKA; PD98059/MEK; Go6983/PKC and SP600125/JNK) show that signals initiated in the ACTH/ACTHR-system activate 4 pathways to induce the c-fos gene, namely: (a) cAMP/PKA/CREB; (b) MEK/ERK1/2; (c) PKC and d) JNK1/2. In 3T3-AR transfectants, both inhibitors PD98059 and Go6983 proved completely ineffective to inhibit c-Fos induction by ACTH39, implying that MEK/ERK and PKC pathways are not involved in this process. On the other hand, SP600125 caused 85% inhibition of c-Fos induction by ACTH39 and, in addition, ACTH39 promotes JNK1/2 phosphorylation, suggesting that JNK is a major signaling pathway mediating c-Fos induction by ACTH39 in these cells. In addiction, PKA inhibitor H89 also inhibits c-Fos induction in 3T3-AR7 cells by ACTH39, implicating activation of the cAMP/PKA/CREB pathway in c-Fos induction by ACTH39. However, the cAMP derivatives db-cAMP and 8Br-cAMP, do not promote CREB phosphorylation and c-Fos induction in parental Balb3T3 and 3T3-AR transfectants, confirming previous report by others. In conclusion, expression of active ACTHR in Balb3T3 fibroblasts renders these cells responsive to ACTH with activation of cAMP/PKA/CREB and JNK pathways and, also, induction of genes from the fos and jun families. These results show that Balb 3T3-AR sublines are useful cellular systems for genetic analysis of ACTH-signaling pathways. However, activation of cAMP/PKA/CREB and JNK pathways and induction of fos and jun genes are not yet sufficient to enable ACTH for interference in morphology, migration and proliferation of Balb3T3 fibroblasts as it does in Y1 adrenocortical cells.  相似文献   

12.
13.
The lymphatic vasculature plays important role in regulating fluid homeostasis, intestinal lipid absorption, and immune surveillance in humans. Malfunction of lymphatic vasculature leads to several human diseases. Understanding the fundamental mechanism in lymphatic vascular development not only expand our knowledge, but also provide a new therapeutic insight. Recently, Hippo-YAP/TAZ signaling pathway, a key mechanism of organ size and tissue homeostasis, has emerged as a critical player that regulate lymphatic specification, sprouting, and maturation. In this review, we discuss the mechanistic regulation and pathophysiological significant of Hippo pathway in lymphatic vascular development.  相似文献   

14.
15.
16.
Cancer stemness, mainly consisting of chemo-resistance, radio-resistance, tumorigenesis, metastasis, tumor self-renewal, cancer metabolism reprogramming, and tumor immuno-microenvironment remodeling, play crucial roles in the cancer progression process and has become the hotspot of cancer research field in recent years. Nowadays, the exact molecular mechanisms of cancer stemness have not been fully understood. Extensive studies have recently implicated that non-coding RNA (ncRNA) plays vital roles in modulating cancer stemness. Notably, N6-methyladenosine (m6A) modification is of crucial importance for RNAs to exert their biological functions, including RNA splicing, stability, translation, degradation, and export. Emerging evidence has revealed that m6A modification can govern the expressions and functions of ncRNAs, consequently controlling cancer stemness properties. However, the interaction mechanisms between ncRNAs and m6A modification in cancer stemness modulation are rarely investigated. In this review, we elucidate the recent findings on the relationships of m6A modification, ncRNAs, and cancer stemness. We also focus on some key signaling pathways such as Wnt/β-catenin signaling, MAPK signaling, Hippo signaling, and JAK/STAT3 signaling to illustrate the underlying interplay mechanisms between m6A modification and ncRNAs in cancer stemness. In particular, we briefly highlight the clinical potential of ncRNAs and m6A modifiers as promising biomarkers and therapeutic targets for indicating cancer stemness properties and improving the diagnostic precision for a wide variety of cancers.  相似文献   

17.
18.
19.
FASN plays an important role in the malignant phenotype of various tumors. Our previous studies show that inhibition FASN could induce apoptosis and inhibit proliferation in human osteosarcoma (OS) cell in vivo and vitro. The aim in this study was to investigate the effect of inhibition FASN on the activity of HER2/PI3K/AKT axis and invasion and migration of OS cell. The expression of FASN, HER2 and p-HER2(Y1248) proteins was detected by immunohistochemistry in OS tissues from 24 patients with pulmonary metastatic disease, and the relationship between FASN and p-HER2 as well as HER2 was investigated. The results showed that there was a positive correlation between FASN and HER2 as well as p-HER2 protein expression. The U-2 OS cells were transfected with either the FASN specific RNAi plasmid or the negative control RNAi plasmid. FASN mRNA was measured by RT-PCR. Western blot assays was performed to examine the protein expression of FASN, HER2, p-HER2(Y1248), PI3K, Akt and p-Akt (Ser473). Migration and invasion of cells were investigated by wound healing and transwell invasion assays. The results showed that the activity of HER2/PI3K/AKT signaling pathway was suppressed by inhibiting FASN. Meanwhile, the U-2OS cells migration and invasion were also impaired by inhibiting the activity of FASN/HER2/PI3K/AKT. Our results indicated that inhibition of FASN suppresses OS cell invasion and migration via down-regulation of the “HER2/PI3K/AKT” axis in vitro. FASN blocker may be a new therapeutic strategy in OS management.  相似文献   

20.
Our previous study demonstrated that ultrasound is able to promote differentiation on neural stem cells (NSCs), and dual-frequency ultrasound promotes this effect due to enhanced acoustic cavitation compared with single-frequency ultrasound. However, the underlying biological reasons have not been well disclosed. The purpose of this study was to investigate the underlying bioeffects, mechanisms and signaling pathways of dual-frequency ultrasound on NSC differentiation. The morphology, neurite outgrowth, and differentiation percentages were investigated under various dual-frequency simulation parameters with exposure periods varying from 5 to 15 min. Morphological observations identified that dual-frequency ultrasound stimulation promoted ultrasound dose-dependent neurite outgrowth. In particular, cells exposed for 10 min/2 days showed optimal neurite outgrowth and neuron differentiation percentages. In addition, live cell calcium images showed that dual-frequency ultrasound enhanced the internal calcium content of the cells, and calcium ions entering cells from the extracellular environment could be observed. Dual frequency ultrasound exposure enhanced extracellular calcium influx and upregulated extracellular signal-regulated kinases 1/2 (ERK1/2) expression. Observations from immunostaining and protein expression examinations also identified that dual-frequency ultrasound promoted brain-derived neurotrophic factor (BDNF) secretion from astrocytes derived from NSCs. In summary, evidence supports that dual-frequency ultrasound effectively enhances functional neuron differentiation via calcium channel regulation via the downstream ERK1/2 pathway and promotes BDNF secretion to serve as feedback to cascade neuron differentiation. The results may provide an alternative for cell-based therapy in brain injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号